51
|
SHP2 negatively regulates HLA-ABC and PD-L1 expression via STAT1 phosphorylation in prostate cancer cells. Oncotarget 2017; 8:53518-53530. [PMID: 28881828 PMCID: PMC5581127 DOI: 10.18632/oncotarget.18591] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 05/22/2017] [Indexed: 02/07/2023] Open
Abstract
Src homology region 2-containing protein tyrosine phosphatase 2 (SHP2) is a ubiquitous protein tyrosine phosphatase that activates the signal transduction pathways of several growth factors and cytokines. In our study, SHP2 expression was very high in prostate cancer (PCa) cell lines, and the expression of phospho-signal transducer and activator of transcription 1 (p-STAT1) and STAT1 was very low. SHP2 knockdown upregulated the expression of p-STAT1 and downregulated phospho-extracellular signal regulated kinase (p-ERK). SHP2 depletion also increased the expression of human leukocyte antigen (HLA)-ABC and programmed death ligand 1 (PD-L1). When tumor cells were pretreated with Janus kinase 2 (JAK2) inhibitor, SHP2 depletion failed to induce HLA-ABC and PD-L1 expression. Furthermore, treating tumor cells with the mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK) inhibitor PD0325901 did not upregulate HLA-ABC and PD-L1. SHP2 depletion was associated with increased T-cell activation (CD25 MFI of CD8+) by coculture of allogeneic healthy donor peripheral blood monocytes (PBMC) with SHP2 siRNA pretreated PCa cell lines. These results show that SHP2 targeting upregulates HLA-ABC and PD-L1 expression via STAT1 phosphorylation in PCa cells and SHP2 depletion could increase T-cell activation.
Collapse
|
52
|
Moy JD, Moskovitz JM, Ferris RL. Biological mechanisms of immune escape and implications for immunotherapy in head and neck squamous cell carcinoma. Eur J Cancer 2017; 76:152-166. [PMID: 28324750 DOI: 10.1016/j.ejca.2016.12.035] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 10/26/2016] [Accepted: 12/13/2016] [Indexed: 02/07/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is an aggressive malignancy with high morbidity and mortality. Despite advances in cytotoxic therapies and surgical techniques, overall survival (OS) has not improved over the past few decades. This emphasises the need for intense investigation into novel therapies with good tumour control and minimal toxicity. Cancer immunotherapy has led this endeavour, attempting to improve tumour recognition and expand immune responses against tumour cells. While various forms of HNSCC immunotherapy are in preclinical trials, the most promising direction thus far has been with monoclonal antibodies (mAbs), targeting growth factor and immune checkpoint receptors. Preclinical and early phase trials have shown unprecedented efficacy with minimal adverse effects. This article will review biological mechanisms of immune escape and implications for immunotherapy in HNSCC.
Collapse
Affiliation(s)
- Jennifer D Moy
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA.
| | | | - Robert L Ferris
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Cancer Immunology Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| |
Collapse
|
53
|
Concha-Benavente F, Ferris RL. Oncogenic growth factor signaling mediating tumor escape from cellular immunity. Curr Opin Immunol 2017; 45:52-59. [PMID: 28208102 DOI: 10.1016/j.coi.2017.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/05/2017] [Accepted: 01/19/2017] [Indexed: 01/05/2023]
Abstract
Unrestrained growth factor signals can promote carcinogenesis, as well as other hallmarks of cancer such as immune evasion. Our understanding of the function and complex regulation of HER family of receptors has led to the development of targeted therapeutic agents that suppress tumor growth. However, these receptors also mediate escape from recognition by the host immune system. We discuss how HER family of oncogenic receptors downregulate tumor antigen presentation and upregulate suppressive membrane-bound or soluble secreted inhibitory molecules that ultimately lead to impaired cellular immunity mediated by cytotoxic T lymphocyte (CTL) recognition. Implementing this knowledge into new therapeutic strategies to enhance tumor immunogenicity may restore effector cell mediated immune clearance of tumors and clinical efficacy of tumor-targeted immunotherapy against HER receptor overexpression.
Collapse
Affiliation(s)
- Fernando Concha-Benavente
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA; University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Robert L Ferris
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA; University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.
| |
Collapse
|
54
|
Sasada T, Azuma K, Ohtake J, Fujimoto Y. Immune Responses to Epidermal Growth Factor Receptor (EGFR) and Their Application for Cancer Treatment. Front Pharmacol 2016; 7:405. [PMID: 27833557 PMCID: PMC5080289 DOI: 10.3389/fphar.2016.00405] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 10/13/2016] [Indexed: 01/21/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) is a prototypic cell-surface receptor belonging to the ErbB/HER onocogene family. Overexpression or somatic mutations of EGFR have been reported to play an important role in tumorigenesis in various types of epithelial cancers. Therefore, targeting of EGFR with specific blocking antibodies or inhibitors have been developing for treatment for EGFR-associated tumors. Immune responses to HER2, another molecule of the ErbB/HER onocogene family, have been well studied, but only limited information on the immune responses to EGFR in cancer has been currently available. In this review, we have summarized the available data and discussed potential clinical importance of the anti-EGFR immune responses and EGFR-mediated immune regulation in cancer. Several lines of evidence suggest that cellular and humoral immune responses to EGFR might be useful as a marker and/or target for cancer therapy against EGFR-associated tumors. In addition, recent studies suggest the critical roles of EGFR-mediated signaling in regulation of expression of an immune checkpoint molecule, programmed death-ligand 1 (PD-L1) in tumor cells. Further studies are warranted to clarify the impact of the anti-EGFR immune responses and EGFR-mediated immunomodulation for clinical application for cancer treatment.
Collapse
Affiliation(s)
- Tetsuro Sasada
- Cancer Vaccine Center, Kanagawa Cancer Center Research Institute, Yokohama Japan
| | - Koichi Azuma
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Kurume Japan
| | - Junya Ohtake
- Cancer Vaccine Center, Kanagawa Cancer Center Research Institute, Yokohama Japan
| | - Yuki Fujimoto
- Cancer Vaccine Center, Kanagawa Cancer Center Research Institute, Yokohama Japan
| |
Collapse
|
55
|
Ferris RL, Geiger JL, Trivedi S, Schmitt NC, Heron DE, Johnson JT, Kim S, Duvvuri U, Clump DA, Bauman JE, Ohr JP, Gooding WE, Argiris A. Phase II trial of post-operative radiotherapy with concurrent cisplatin plus panitumumab in patients with high-risk, resected head and neck cancer. Ann Oncol 2016; 27:2257-2262. [PMID: 27733374 DOI: 10.1093/annonc/mdw428] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 08/31/2016] [Accepted: 09/01/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Treatment intensification for resected, high-risk, head and neck squamous cell carcinoma (HNSCC) is an area of active investigation with novel adjuvant regimens under study. In this trial, the epidermal growth-factor receptor (EGFR) pathway was targeted using the IgG2 monoclonal antibody panitumumab in combination with cisplatin chemoradiotherapy (CRT) in high-risk, resected HNSCC. PATIENTS AND METHODS Eligible patients included resected pathologic stage III or IVA squamous cell carcinoma of the oral cavity, larynx, hypopharynx, or human-papillomavirus (HPV)-negative oropharynx, without gross residual tumor, featuring high-risk factors (margins <1 mm, extracapsular extension, perineural or angiolymphatic invasion, or ≥2 positive lymph nodes). Postoperative treatment consisted of standard RT (60-66 Gy over 6-7 weeks) concurrent with weekly cisplatin 30 mg/m2 and weekly panitumumab 2.5 mg/kg. The primary endpoint was progression-free survival (PFS). RESULTS Forty-six patients were accrued; 44 were evaluable and were analyzed. The median follow-up for patients without recurrence was 49 months (range 12-90 months). The probability of 2-year PFS was 70% (95% CI = 58%-85%), and the probability of 2-year OS was 72% (95% CI = 60%-87%). Fourteen patients developed recurrent disease, and 13 (30%) of them died. An additional five patients died from causes other than HNSCC. Severe (grade 3 or higher) toxicities occurred in 14 patients (32%). CONCLUSIONS Intensification of adjuvant treatment adding panitumumab to cisplatin CRT is tolerable and demonstrates improved clinical outcome for high-risk, resected, HPV-negative HNSCC patients. Further targeted monoclonal antibody combinations are warranted. REGISTERED CLINICAL TRIAL NUMBER NCT00798655.
Collapse
Affiliation(s)
- R L Ferris
- Cancer Immunology Program, University of Pittsburgh Cancer Institute, Pittsburgh .,Departments of Otolaryngology, Division of Head and Neck Surgery.,Immunology
| | - J L Geiger
- Internal Medicine, Division of Hematology/Oncology, University of Pittsburgh, Pittsburgh
| | - S Trivedi
- Departments of Otolaryngology, Division of Head and Neck Surgery
| | - N C Schmitt
- Department of Otolaryngology, Johns Hopkins University, Baltimore.,Tumor Biology Section, National Institute of Deafness and Communication Disorders, National Institutes of Health, Bethesda
| | - D E Heron
- Cancer Immunology Program, University of Pittsburgh Cancer Institute, Pittsburgh.,Departments of Otolaryngology, Division of Head and Neck Surgery.,Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, USA
| | - J T Johnson
- Departments of Otolaryngology, Division of Head and Neck Surgery
| | - S Kim
- Departments of Otolaryngology, Division of Head and Neck Surgery
| | - U Duvvuri
- Departments of Otolaryngology, Division of Head and Neck Surgery
| | - D A Clump
- Cancer Immunology Program, University of Pittsburgh Cancer Institute, Pittsburgh.,Department of Otolaryngology, Johns Hopkins University, Baltimore
| | - J E Bauman
- Cancer Immunology Program, University of Pittsburgh Cancer Institute, Pittsburgh.,Internal Medicine, Division of Hematology/Oncology, University of Pittsburgh, Pittsburgh
| | - J P Ohr
- Cancer Immunology Program, University of Pittsburgh Cancer Institute, Pittsburgh.,Internal Medicine, Division of Hematology/Oncology, University of Pittsburgh, Pittsburgh
| | - W E Gooding
- Cancer Immunology Program, University of Pittsburgh Cancer Institute, Pittsburgh
| | - A Argiris
- Department of Medical Oncology, Hygeia Hospital, Athens, Greece.,Department of Medical Oncology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, USA
| |
Collapse
|
56
|
Srivastava RM, Trivedi S, Concha-Benavente F, Gibson SP, Reeder C, Ferrone S, Ferris RL. CD137 Stimulation Enhances Cetuximab-Induced Natural Killer: Dendritic Cell Priming of Antitumor T-Cell Immunity in Patients with Head and Neck Cancer. Clin Cancer Res 2016; 23:707-716. [PMID: 27496866 DOI: 10.1158/1078-0432.ccr-16-0879] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/22/2016] [Accepted: 07/19/2016] [Indexed: 01/24/2023]
Abstract
PURPOSE Cetuximab, an EGFR-specific antibody (mAb), modestly improves clinical outcome in patients with head and neck cancer (HNC). Cetuximab mediates natural killer (NK) cell:dendritic cell (DC) cross-talk by cross-linking FcγRIIIa, which is important for inducing antitumor cellular immunity. Cetuximab-activated NK cells upregulate the costimulatory receptor CD137 (4-1BB), which, when triggered by agonistic mAb urelumab, might enhance NK-cell functions, to promote T-cell-based immunity. EXPERIMENTAL DESIGN CD137 expression on tumor-infiltrating lymphocytes was evaluated in a prospective cetuximab neoadjuvant trial, and CD137 stimulation was evaluated in a phase Ib trial, in combining agonistic urelumab with cetuximab. Flow cytometry and cytokine release assays using NK cells and DC were used in vitro, testing the addition of urelumab to cetuximab-activated NK, DC, and cross presentation to T cells. RESULTS CD137 agonist mAb urelumab enhanced cetuximab-activated NK-cell survival, DC maturation, and tumor antigen cross-presentation. Urelumab boosted DC maturation markers, CD86 and HLA DR, and antigen-processing machinery (APM) components TAP1/2, leading to increased tumor antigen cross-presentation. In neoadjuvant cetuximab-treated patients with HNC, upregulation of CD137 by intratumoral, cetuximab-activated NK cells correlated with FcγRIIIa V/F polymorphism and predicted clinical response. Moreover, immune biomarker modulation was observed in an open label, phase Ib clinical trial, of patients with HNC treated with cetuximab plus urelumab. CONCLUSIONS These results suggest a beneficial effect of combination immunotherapy using cetuximab and CD137 agonist in HNC. Clin Cancer Res; 23(3); 707-16. ©2016 AACR.
Collapse
Affiliation(s)
| | - Sumita Trivedi
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Sandra P Gibson
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Carly Reeder
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Robert L Ferris
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania. .,Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Cancer Immunology Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| |
Collapse
|
57
|
Chang AY, Gejman RS, Brea EJ, Oh CY, Mathias MD, Pankov D, Casey E, Dao T, Scheinberg DA. Opportunities and challenges for TCR mimic antibodies in cancer therapy. Expert Opin Biol Ther 2016; 16:979-87. [PMID: 27094818 PMCID: PMC4936943 DOI: 10.1080/14712598.2016.1176138] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Monoclonal antibodies (mAbs) are potent cancer therapeutic agents, but exclusively recognize cell-surface targets whereas most cancer-associated proteins are found intracellularly. Hence, potential cancer therapy targets such as over expressed self-proteins, activated oncogenes, mutated tumor suppressors, and translocated gene products are not accessible to traditional mAb therapy. An emerging approach to target these epitopes is the use of TCR mimic mAbs (TCRm) that recognize epitopes similar to those of T cell receptors (TCR). AREAS COVERED TCRm antigens are composed of a linear peptide sequence derived from degraded proteins and presented in the context of cell-surface MHC molecules. We discuss how the nature of the TCRm epitopes provides both advantages (absolute tumor specificity and access to a new universe of important targets) and disadvantages (low density, MHC restriction, MHC down-regulation, and cross-reactive linear epitopes) to conventional mAb therapy. We will also discuss potential solutions to these obstacles. EXPERT OPINION TCRm combine the specificity of TCR recognition with the potency, pharmacologic properties, and versatility of mAbs. The structure and presentation of a TCRm epitope has important consequences related to the choice of targets, mAb design, available peptides and MHC subtype restrictions, possible cross-reactivity, and therapeutic activity.
Collapse
Affiliation(s)
- Aaron Y. Chang
- Memorial Sloan Kettering Cancer Center, New York, New York, 10065
- Weill Cornell Medicine, New York, New York, 10065
| | - Ron S. Gejman
- Memorial Sloan Kettering Cancer Center, New York, New York, 10065
- Weill Cornell Medicine, New York, New York, 10065
| | - Elliott J. Brea
- Memorial Sloan Kettering Cancer Center, New York, New York, 10065
- Weill Cornell Medicine, New York, New York, 10065
| | - Claire Y. Oh
- Memorial Sloan Kettering Cancer Center, New York, New York, 10065
- Weill Cornell Medicine, New York, New York, 10065
| | | | - Dmitry Pankov
- Memorial Sloan Kettering Cancer Center, New York, New York, 10065
| | - Emily Casey
- Memorial Sloan Kettering Cancer Center, New York, New York, 10065
| | - Tao Dao
- Memorial Sloan Kettering Cancer Center, New York, New York, 10065
| | - David A. Scheinberg
- Memorial Sloan Kettering Cancer Center, New York, New York, 10065
- Weill Cornell Medicine, New York, New York, 10065
| |
Collapse
|
58
|
Concha-Benavente F, Srivastava R, Ferrone S, Ferris RL. Immunological and clinical significance of HLA class I antigen processing machinery component defects in malignant cells. Oral Oncol 2016; 58:52-8. [PMID: 27264839 DOI: 10.1016/j.oraloncology.2016.05.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/11/2016] [Indexed: 12/31/2022]
Abstract
Experimental as well as clinical studies demonstrate that the immune system plays a major role in controlling generation and progression of tumors. The cancer immunoediting theory supports the notion that tumor cell immunogenicity is dynamically shaped by the immune system, as it eliminates immunogenic tumor cells in the early stage of the disease and then edits their antigenicity. The end result is the generation of a tumor cell population able to escape from immune recognition and elimination by tumor infiltrating lymphocytes. Two major mechanisms, which affect the target cells and the effector phase of the immune response, play a crucial role in the editing process. One is represented by the downregulation of tumor antigen (TA) processing and presentation because of abnormalities in the HLA class I antigen processing machinery (APM). The other one is represented by the anergy of effector immune infiltrates in the tumor microenvironment caused by aberrant inhibitory signals triggered by immune checkpoint receptor (ICR) ligands, such as programmed death ligand-1 (PD-L1). In this review, we will focus on tumor immune escape mechanisms caused by defects in HLA class I APM component expression and/or function in different types of cancer, with emphasis on head and neck cancer (HNC). We will also discuss the immunological implications and clinical relevance of these HLA class I APM abnormalities. Finally, we will describe strategies to counteract defective TA presentation with the expectation that they will enhance tumor recognition and elimination by tumor infiltrating effector T cells.
Collapse
Affiliation(s)
| | | | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Robert L Ferris
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA; Cancer Immunology Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.
| |
Collapse
|
59
|
Trivedi S, Srivastava RM, Concha-Benavente F, Ferrone S, Garcia-Bates TM, Li J, Ferris RL. Anti-EGFR Targeted Monoclonal Antibody Isotype Influences Antitumor Cellular Immunity in Head and Neck Cancer Patients. Clin Cancer Res 2016; 22:5229-5237. [PMID: 27217441 DOI: 10.1158/1078-0432.ccr-15-2971] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 05/13/2016] [Indexed: 01/08/2023]
Abstract
PURPOSE EGF receptor (EGFR) is highly overexpressed on several cancers and two targeted anti-EGFR antibodies which differ by isotype are FDA-approved for clinical use. Cetuximab (IgG1 isotype) inhibits downstream signaling of EGFR and activates antitumor, cellular immune mechanisms. As panitumumab (IgG2 isotype) may inhibit downstream EGFR signaling similar to cetuximab, it might also induce adaptive immunity. EXPERIMENTAL DESIGN We measured in vitro activation of cellular components of the innate and adaptive immune systems. We also studied the in vivo activation of components of the adaptive immune system in patient specimens from two recent clinical trials using cetuximab or panitumumab. RESULTS Both monoclonal antibodies (mAb) primarily activate natural killer (NK) cells, although cetuximab is significantly more potent than panitumumab. Cetuximab-activated neutrophils mediate antibody-dependent cellular cytotoxicity (ADCC) against head and neck squamous cell carcinomas (HNSCC) tumor cells, and interestingly, this effect was FcγRIIa- and FcγRIIIa genotype-dependent. Panitumumab may activate monocytes through CD32 (FcγRIIa); however, monocytes activated by either mAb are not able to mediate ADCC. Cetuximab enhanced dendritic cell (DC) maturation to a greater extent than panitumumab, which was associated with improved tumor antigen cross-presentation by cetuximab compared with panitumumab. This correlated with increased EGFR-specific cytotoxic CD8+ T cells in patients treated with cetuximab compared with those treated with panitumumab. CONCLUSIONS Although panitumumab effectively inhibits EGFR signaling to a similar extent as cetuximab, it is less effective at triggering antitumor, cellular immune mechanisms which may be crucial for effective therapy of HNSCC. Clin Cancer Res; 22(21); 5229-37. ©2016 AACR.
Collapse
Affiliation(s)
- Sumita Trivedi
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | | | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Tatiana M Garcia-Bates
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jing Li
- Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Robert L Ferris
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania. .,University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania.,Cancer Immunology Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| |
Collapse
|
60
|
René C, Lozano C, Eliaou JF. Expression of classical HLA class I molecules: regulation and clinical impacts: Julia Bodmer Award Review 2015. HLA 2016; 87:338-49. [PMID: 27060357 DOI: 10.1111/tan.12787] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 03/04/2016] [Indexed: 12/19/2022]
Abstract
Human leukocyte antigen (HLA) class I genes are ubiquitously expressed, but in a tissue specific-manner. Their expression is primarily regulated at the transcriptional level and can be modulated both positively and negatively by different stimuli. Advances in sequencing technologies led to the identification of new regulatory variants located in the untranslated regions (UTRs), which could influence the expression. After a brief description of the mechanisms underlying the transcriptional regulation of HLA class I genes expression, we will review how the expression levels of HLA class I genes could affect biological and pathological processes. Then, we will discuss on the differential expression of HLA class I genes according to the locus, allele and UTR polymorphisms and its clinical impact. This interesting field of study led to a new dimension of HLA typing, going beyond a qualitative aspect.
Collapse
Affiliation(s)
- C René
- Department of Immunology, CHRU de Montpellier, University Hospital Saint-Eloi, Montpellier, France.,Faculté de Médecine, University of Montpellier, Montpellier, France.,INSERM U1183, Institute for Regenerative Medicine and Biotherapy (IRMB), CHU Montpellier, Montpellier, France
| | - C Lozano
- Department of Immunology, CHRU de Montpellier, University Hospital Saint-Eloi, Montpellier, France
| | - J-F Eliaou
- Department of Immunology, CHRU de Montpellier, University Hospital Saint-Eloi, Montpellier, France.,Faculté de Médecine, University of Montpellier, Montpellier, France.,INSERM U1194, IRCM, University of Montpellier, Montpellier, France
| |
Collapse
|
61
|
Window of opportunity studies: Do they fulfil our expectations? Cancer Treat Rev 2016; 43:50-7. [DOI: 10.1016/j.ctrv.2015.12.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/21/2015] [Accepted: 12/22/2015] [Indexed: 11/21/2022]
|
62
|
Li J, Srivastava RM, Ettyreddy A, Ferris RL. Cetuximab ameliorates suppressive phenotypes of myeloid antigen presenting cells in head and neck cancer patients. J Immunother Cancer 2015; 3:54. [PMID: 26579227 PMCID: PMC4647471 DOI: 10.1186/s40425-015-0097-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/23/2015] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Myeloid-derived suppressor cells (MDSC) and M2 monocytes/macrophages are two types of suppressive myeloid antigen presenting cells that have been shown to promote tumor progression and correlate with poor prognosis in cancer patients. Tumor antigen specific monoclonal antibodies (mAb) have emerged as important agents for cancer therapy. In addition to the direct inhibition of tumor growth, the Fc portions of the therapeutic mAbs, such as the IgG1 portion of the anti-epidermal growth factor receptor (EGFR) mAb cetuximab, might interact with the Fc-gamma receptors (FcγR) on myeloid cells and modulate their suppressive activity. METHODS Patients with locally advanced head and neck squamous cell carcinoma (HNSCC) on the UPCI 08-013 NCT01218048 trial were treated with single-agent cetuximab before surgery. Blood were collected pre- and post-cetuximab treatment to analyze frequency of monocytic MDSC (CD11b(+)CD14(+)HLA-DR(lo/-)), granulocytic MDSC (LIN(-)CD11b(+)CD15(+)) and CD11b(+)CD14(+)HLA-DR(hi) monocytes by flow cytometry. Besides, CD11b(+)CD14(+)HLA-DR(hi) monocytes were sorted for qPCR analysis of IL-10 and IL-12B transcripts. MDSC were generated in vitro with or without coated hIgG1 and tested for suppressive activity in mixed leukocyte reaction (MLR). Naïve monocytes from HNSCC patients co-cultured with tumor cell lines in the presence of cetuximab or hIgG1 were analyzed for M1/2 surface markers and cytokines. RESULTS We observed significantly increased monocytic MDSC in non-responders and decreased granulocytic MDSC in responders after cetuximab treatment. In addition, circulating CD11b(+)CD14(+)HLA-DR(hi) monocytes of cetuximab responders displayed attenuated M2 polarization, with decreased CD163(+) expression and IL-10 transcripts after cetuximab treatment. This beneficial effect appeared to be FcγR dependent, since CD16 ligation reproduced the reversal of suppressive activity of MDSC in vitro. CD14(+) naïve monocytes from the co-cultures of tumor cells, cetuximab and HNSCC patient PBMC or purified monocytes were skewed to an M1-like phenotype, with increased expression of HLA-DR, CD86 and production of IL-12 p70. Likewise, reduced M2 features (expression of CD163 and production of IL-10) were found after crosslinking CD16 on the surface of monocytes to cetuximab-coated tumor cells. CONCLUSION Our studies demonstrate a novel function of cetuximab in ameliorating suppressive phenotypes of FcγR bearing myeloid cells in cancer patients, which is associated with better clinical outcome of cetuximab-treated patients. CLINICAL TRIAL REGISTRY #NCT01218048. Registered 7 October 2010.
Collapse
Affiliation(s)
- Jing Li
- />Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | | | | | - Robert L. Ferris
- />Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA USA
- />Department of Immunology, University of Pittsburgh, Pittsburgh, PA USA
- />Cancer Immunology Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA USA
- />Hillman Cancer Center Research Pavilion, 5117 Centre Avenue, Room 2.26b, Pittsburgh, PA 15213-1863 USA
| |
Collapse
|
63
|
Schmitt NC, Trivedi S, Ferris RL. STAT1 Activation Is Enhanced by Cisplatin and Variably Affected by EGFR Inhibition in HNSCC Cells. Mol Cancer Ther 2015; 14:2103-11. [PMID: 26141950 DOI: 10.1158/1535-7163.mct-15-0305] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/23/2015] [Indexed: 12/20/2022]
Abstract
Cisplatin is a cytotoxic chemotherapeutic drug frequently used to treat many solid tumors, including head and neck squamous cell carcinoma (HNSCC). EGF receptor (EGFR) inhibitors have also shown efficacy as alternatives to cisplatin in some situations. However, large clinical trials have shown no added survival benefit from the use of these two drugs in combination. Possible explanations for this include overlapping downstream signaling cascades. Using in vitro studies, we tested the hypothesis that cisplatin and EGFR inhibitors rely on the activation of the tumor suppressor STAT1, characterized by its phosphorylation at serine (S727) or tyrosine (Y701) residues. Cisplatin consistently increased the levels of p-S727-STAT1, and STAT1 siRNA knockdown attenuated cisplatin-induced cell death. EGFR stimulation also activated p-S727-STAT1 and p-Y701-STAT1 in a subset of cell lines, whereas EGFR inhibitors alone decreased levels of p-S727-STAT1 and p-Y701-STAT1 in these cells. Contrary to our hypothesis, EGFR inhibitors added to cisplatin treatment caused variable effects among cell lines, with attenuation of p-S727-STAT1 and enhancement of cisplatin-induced cell death in some cells and minimal effect in other cells. Using HNSCC tumor specimens from a clinical trial of adjuvant cisplatin plus the anti-EGFR antibody panitumumab, higher intratumoral p-S727-STAT1 appeared to correlate with worse survival. Together, these results suggest that cisplatin-induced cell death is associated with STAT1 phosphorylation, and the addition of anti-EGFR therapy to cisplatin has variable effects on STAT1 and cell death in HNSCC.
Collapse
Affiliation(s)
- Nicole C Schmitt
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania. University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - Sumita Trivedi
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania. University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - Robert L Ferris
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania. University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania.
| |
Collapse
|