51
|
Weiss-Schneeweiss H, Emadzade K, Jang TS, Schneeweiss G. Evolutionary consequences, constraints and potential of polyploidy in plants. Cytogenet Genome Res 2013; 140:137-50. [PMID: 23796571 PMCID: PMC3859924 DOI: 10.1159/000351727] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Polyploidy, the possession of more than 2 complete genomes, is a major force in plant evolution known to affect the genetic and genomic constitution and the phenotype of an organism, which will have consequences for its ecology and geography as well as for lineage diversification and speciation. In this review, we discuss phylogenetic patterns in the incidence of polyploidy including possible underlying causes, the role of polyploidy for diversification, the effects of polyploidy on geographical and ecological patterns, and putative underlying mechanisms as well as chromosome evolution and evolution of repetitive DNA following polyploidization. Spurred by technological advances, a lot has been learned about these aspects both in model and increasingly also in nonmodel species. Despite this enormous progress, long-standing questions about polyploidy still cannot be unambiguously answered, due to frequently idiosyncratic outcomes and insufficient integration of different organizational levels (from genes to ecology), but likely this will change in the near future. See also the sister article focusing on animals by Choleva and Janko in this themed issue.
Collapse
Affiliation(s)
- H. Weiss-Schneeweiss
- Department of Systematic and Evolutionary Botany University of Vienna, Rennweg 14 AT–1030 Vienna (Austria)
| | - K. Emadzade
- Department of Systematic and Evolutionary Botany University of Vienna, Rennweg 14 AT–1030 Vienna (Austria)
| | - T.-S. Jang
- Department of Systematic and Evolutionary Botany University of Vienna, Rennweg 14 AT–1030 Vienna (Austria)
| | - G.M. Schneeweiss
- Department of Systematic and Evolutionary Botany University of Vienna, Rennweg 14 AT–1030 Vienna (Austria)
| |
Collapse
|
52
|
Tayalé A, Parisod C. Natural pathways to polyploidy in plants and consequences for genome reorganization. Cytogenet Genome Res 2013; 140:79-96. [PMID: 23751271 DOI: 10.1159/000351318] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The last decade highlighted polyploidy as a rampant evolutionary process that triggers drastic genome reorganization, but much remains to be understood about their causes and consequences in both autopolyploids and allopolyploids. Here, we provide an overview of the current knowledge on the pathways leading to different types of polyploids and patterns of polyploidy-induced genome restructuring and functional changes in plants. Available evidence leads to a tentative 'diverge, merge and diverge' model supporting polyploid speciation and stressing patterns of divergence between diploid progenitors as a suitable predictor of polyploid genome reorganization. The merging of genomes at the origin of a polyploid lineage may indeed reveal different kinds of incompatibilities (chromosomal, genic and transposable elements) that have accumulated in diverging progenitors and reduce the fitness of nascent polyploids. Accordingly, successful polyploids have to overcome these incompatibilities through non-Mendelian mechanisms, fostering polyploid genome reorganization in association with the establishment of new lineages. See also sister article focusing on animals by Collares-Pereira et al., in this themed issue.
Collapse
Affiliation(s)
- A Tayalé
- Laboratory of Evolutionary Botany, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | | |
Collapse
|
53
|
GORELICK ROOT, OLSON KRYSTLE. Polyploidy Is Genetic Hence May Cause Non-Adaptive Radiations, Whereas Pseudopolyploidy Is Genomic Hence May Cause Adaptive Non-Radiations. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 320:286-94. [DOI: 10.1002/jez.b.22499] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 03/12/2013] [Indexed: 12/21/2022]
Affiliation(s)
- ROOT GORELICK
- Department of Biology; Carleton University; Ottawa, Ontario Canada
- School of Mathematics and Statistics and Institute of Interdisciplinary Studies; Carleton University; Ottawa, Ontario Canada
| | - KRYSTLE OLSON
- Department of Biology; Carleton University; Ottawa, Ontario Canada
| |
Collapse
|
54
|
Abstract
The wheat group has evolved through allopolyploidization, namely, through hybridization among species from the plant genera Aegilops and Triticum followed by genome doubling. This speciation process has been associated with ecogeographical expansion and with domestication. In the past few decades, we have searched for explanations for this impressive success. Our studies attempted to probe the bases for the wide genetic variation characterizing these species, which accounts for their great adaptability and colonizing ability. Central to our work was the investigation of how allopolyploidization alters genome structure and expression. We found in wheat that allopolyploidy accelerated genome evolution in two ways: (1) it triggered rapid genome alterations through the instantaneous generation of a variety of cardinal genetic and epigenetic changes (which we termed "revolutionary" changes), and (2) it facilitated sporadic genomic changes throughout the species' evolution (i.e., evolutionary changes), which are not attainable at the diploid level. Our major findings in natural and synthetic allopolyploid wheat indicate that these alterations have led to the cytological and genetic diploidization of the allopolyploids. These genetic and epigenetic changes reflect the dynamic structural and functional plasticity of the allopolyploid wheat genome. The significance of this plasticity for the successful establishment of wheat allopolyploids, in nature and under domestication, is discussed.
Collapse
|
55
|
Xiao J, Song C, Liu S, Tao M, Hu J, Wang J, Liu W, Zeng M, Liu Y. DNA methylation analysis of allotetraploid hybrids of red crucian carp (Carassius auratus red var.) and common carp (Cyprinus carpio L.). PLoS One 2013; 8:e56409. [PMID: 23457564 PMCID: PMC3574156 DOI: 10.1371/journal.pone.0056409] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 01/08/2013] [Indexed: 11/30/2022] Open
Abstract
Hybridization and polyploidization may lead to divergence in adaptation and boost speciation in angiosperms and some lower animals. Epigenetic change plays a significant role in the formation and adaptation of polyploidy. Studies of the effects of methylation on genomic recombination and gene expression in allopolyploid plants have achieved good progress. However, relevant advances in polyploid animals have been relatively slower. In the present study, we used the bisexual, fertile, genetically stable allotetraploid generated by hybridization of Carassius auratus red var. and Cyprinus carpio L. to investigate cytosine methylation level using methylation-sensitive amplification polymorphism (MSAP) analysis. We observed 38.31% of the methylation changes in the allotetraploid compared with the parents at 355 randomly selected CCGG sites. In terms of methylation status, these results indicate that the level of methylation modification in the allotetraploid may have increased relative to that in the parents. We also found that the major methylation changes were hypermethylation on some genomic fragments and genes related to metabolism or cell cycle regulation. These results provide circumstantial evidence that DNA methylation might be related to the gene expression and phenotype variation in allotetraploid hybrids. Our study partly fulfils the need for epigenetic research in polyploid animals, and provides evidence for the epigenetic regulation of allopolyploids.
Collapse
Affiliation(s)
- Jun Xiao
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of the Ministry of Education of China, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Can Song
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of the Ministry of Education of China, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Shaojun Liu
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of the Ministry of Education of China, College of Life Sciences, Hunan Normal University, Changsha, China
- * E-mail:
| | - Min Tao
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of the Ministry of Education of China, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Jie Hu
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of the Ministry of Education of China, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Jun Wang
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of the Ministry of Education of China, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Wei Liu
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of the Ministry of Education of China, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ming Zeng
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of the Ministry of Education of China, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yun Liu
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of the Ministry of Education of China, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
56
|
Collares-Pereira M, Matos I, Morgado-Santos M, Coelho M. Natural Pathways towards Polyploidy in Animals: TheSqualius alburnoidesFish Complex as a Model System to Study Genome Size and Genome Reorganization in Polyploids. Cytogenet Genome Res 2013; 140:97-116. [DOI: 10.1159/000351729] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
57
|
Todorovska E, Hadjiivanova B, Bozhanova V, Dechev D, Muhovski Y, Panchev I, Abu-Mhadi N, Peycheva V, Ivanova A. Molecular and Phenotypic Characterization of Advanced Backcross Lines Derived from Interspecific Hybridization of Durum Wheat. BIOTECHNOL BIOTEC EQ 2013. [DOI: 10.5504/bbeq.2013.0030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
58
|
Feldman M, Levy AA, Fahima T, Korol A. Genomic asymmetry in allopolyploid plants: wheat as a model. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:5045-59. [PMID: 22859676 DOI: 10.1093/jxb/ers192] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The evolvement of duplicated gene loci in allopolyploid plants has become the subject of intensive studies. Most duplicated genes remain active in neoallopolyploids contributing either to a favourable effect of an extra gene dosage or to the build-up of positive inter-genomic interactions when genes or regulation factors on homoeologous chromosomes are divergent. However, in a small number of loci (about 10%), genes of only one genome are active, while the homoeoalleles on the other genome(s) are either eliminated or partially or completely suppressed by genetic or epigenetic means. For several traits, the retention of controlling genes is not random, favouring one genome over the other(s). Such genomic asymmetry is manifested in allopolyploid wheat by the control of various morphological and agronomical traits, in the production of rRNA and storage proteins, and in interaction with pathogens. It is suggested that the process of cytological diploidization leading to exclusive intra-genomic meiotic pairing and, consequently, to complete avoidance of inter-genomic recombination, has two contrasting effects. Firstly, it provides a means for the fixation of positive heterotic inter-genomic interactions and also maintains genomic asymmetry resulting from loss or silencing of genes. The possible mechanisms and evolutionary advantages of genomic asymmetry are discussed.
Collapse
Affiliation(s)
- Moshe Feldman
- Department of Plant Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel.
| | | | | | | |
Collapse
|
59
|
Involvement of disperse repetitive sequences in wheat/rye genome adjustment. Int J Mol Sci 2012; 13:8549-8561. [PMID: 22942719 PMCID: PMC3430250 DOI: 10.3390/ijms13078549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 06/25/2012] [Accepted: 07/04/2012] [Indexed: 01/09/2023] Open
Abstract
The union of different genomes in the same nucleus frequently results in hybrid genotypes with improved genome plasticity related to both genome remodeling events and changes in gene expression. Most modern cereal crops are polyploid species. Triticale, synthesized by the cross between wheat and rye, constitutes an excellent model to study polyploidization functional implications. We intend to attain a deeper knowledge of dispersed repetitive sequence involvement in parental genome reshuffle in triticale and in wheat-rye addition lines that have the entire wheat genome plus each rye chromosome pair. Through Random Amplified Polymorphic DNA (RAPD) analysis with OPH20 10-mer primer we unraveled clear alterations corresponding to the loss of specific bands from both parental genomes. Moreover, the sequential nature of those events was revealed by the increased absence of rye-origin bands in wheat-rye addition lines in comparison with triticale. Remodeled band sequencing revealed that both repetitive and coding genome domains are affected in wheat-rye hybrid genotypes. Additionally, the amplification and sequencing of pSc20H internal segments showed that the disappearance of parental bands may result from restricted sequence alterations and unraveled the involvement of wheat/rye related repetitive sequences in genome adjustment needed for hybrid plant stabilization.
Collapse
|
60
|
Pfliegler WP, Antunovics Z, Sipiczki M. Double sterility barrier between Saccharomyces species and its breakdown in allopolyploid hybrids by chromosome loss. FEMS Yeast Res 2012; 12:703-18. [PMID: 22697168 DOI: 10.1111/j.1567-1364.2012.00820.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 06/06/2012] [Accepted: 06/08/2012] [Indexed: 11/28/2022] Open
Abstract
The analysis of 57 synthetic interspecies hybrids revealed that Saccharomyces cerevisiae and Saccharomyces uvarum ( Saccharomyces bayanus var. uvarum) are isolated by a double sterility barrier: by hybrid sterility (hybrid cells cannot produce viable spores) operating in allodiploids and by F1 sterility (F1 cells cannot produce viable spores) operating in allopolyploids. F1-sterility is caused by mating-type heterozygosity. It can be overcome by eliminating chromosome 2 of the S. uvarum subgenome that carries a MAT locus. The loss of this MAT gene abolishes the repression of mating activity. In cultures of the resulting fertile alloaneuploid F1 segregants, the cells can conjugate with each other like haploids and form zygotes capable of performing meiotic divisions producing viable and fertile F2 spores. To the best of our knowledge, this is the first report on breaking down interspecies hybrid sterility by chromosome loss in eukaryotic organisms. The filial generations are genetically unstable and can undergo additional changes mainly in the S. uvarum subgenome (directional changes). It is proposed that regaining fertility and subsequent preferential reduction in one of the subgenomes may account for the formation of chimerical ('natural hybrid') genomes found among wine and brewery strains and may also play roles in speciation of hybrid taxa in the Saccharomyces genus.
Collapse
Affiliation(s)
- Walter P Pfliegler
- Department of Genetics and Applied Microbiology, University of Debrecen, Debrecen, Hungary
| | | | | |
Collapse
|
61
|
Song C, Liu S, Xiao J, He W, Zhou Y, Qin Q, Zhang C, Liu Y. Polyploid organisms. SCIENCE CHINA-LIFE SCIENCES 2012; 55:301-11. [DOI: 10.1007/s11427-012-4310-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 02/29/2012] [Indexed: 12/16/2022]
|
62
|
Olsen KM, Kooyers NJ, Small LL. Recurrent gene deletions and the evolution of adaptive cyanogenesis polymorphisms in white clover (Trifolium repens L.). Mol Ecol 2012; 22:724-38. [PMID: 22694056 DOI: 10.1111/j.1365-294x.2012.05667.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding the molecular evolution of genes that underlie intraspecific polymorphisms can provide insights into the process of adaptive evolution. For adaptive polymorphisms characterized by gene presence/absence (P/A) variation, underlying loci commonly show signatures of long-term balancing selection, with gene-presence and gene-absence alleles maintained as two divergent lineages. We examined the molecular evolution of two unlinked P/A polymorphisms that underlie a well-documented adaptive polymorphism for cyanogenesis (hydrogen cyanide release with tissue damage) in white clover. Both cyanogenic and acyanogenic plants occur in this species, and the ecological forces that maintain this chemical defence polymorphism have been studied for several decades. Using a sample of 65 plants, we investigated the molecular evolution of sequences flanking the two underlying cyanogenesis genes: Ac/ac (controlling the presence/absence of cyanogenic glucosides) and Li/li (controlling the presence/absence of their hydrolysing enzyme, linamarase). A combination of genome walking, PCR assays, DNA sequence analysis and Southern blotting was used to test whether these adaptive P/A polymorphisms show evidence of long-term balancing selection, or whether gene-absence alleles have evolved repeatedly through independent deletion events. For both loci, we detect no signatures of balancing selection in the closest flanking genomic sequences. Instead, we find evidence for variation in the size of the deletions characterizing gene-absence alleles. These observations strongly suggest that both of these polymorphisms have been evolving through recurrent gene deletions over time. We discuss the genetic mechanisms that could account for this surprising pattern and the implications of these findings for mechanisms of rapid adaptive evolution in white clover.
Collapse
Affiliation(s)
- Kenneth M Olsen
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130-4899, USA.
| | | | | |
Collapse
|
63
|
Tang Z, Fu S, Yan B, Zhang H, Ren Z. Unequal chromosome division and inter-genomic translocation occurred in somatic cells of wheat-rye allopolyploid. JOURNAL OF PLANT RESEARCH 2012; 125:283-90. [PMID: 21643833 DOI: 10.1007/s10265-011-0432-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 04/28/2011] [Indexed: 05/06/2023]
Abstract
Newly synthesized wheat-rye allopolyploids were investigated by genomic in situ hybridization, over the first, second, third and fourth allopolyploid generations. Inter and intra chromosome connections were observed in 12 root-tip cells of CA4.4.7 (S(2) generation), and translocations between wheat and rye chromosomes were also detected in five root-tip cells. In root-tip cells of CA4.4.7.5 and CA4.4.7.2.2 (S(3) and S(4) generation), the chromosome connections occurred again, a dissociative small rye segment was detected in seven cells of CA4.4.7.5. In plants MSV6.1 and MSV6.5 (S(1) generation), almost half of the root-tip cells contained 13 rye chromosomes and the rest held 12 rye chromosomes, and all the cells of the two plants contained 42 wheat chromosomes. Five pairing configurations of rye chromosomes, including 5 II + 3 I, 6 II + 1 I, 6 II, 5 II + 2 I and 4 II + 4 I, were observed in pollen mother cells of the two plants. The two plants' progeny, including S(2), S(3), and S(4) generation plants, contained 42 wheat chromosomes and 12 rye chromosomes. Therefore, the inter chromosome translocation and unequal chromosome division could occur in somatic cells of wide hybrids. The unequal chromosome division in somatic cell could induce chromosome elimination at the early stages of allopolyploidization.
Collapse
Affiliation(s)
- Zongxiang Tang
- State Key Laboratory of Plant Breeding and Genetics, Sichuan Agriculture University, Ya'an 625014, Sichuan, China.
| | | | | | | | | |
Collapse
|
64
|
Akiyama Y, Goel S, Conner JA, Hanna WW, Yamada-Akiyama H, Ozias-Akins P. Evolution of the apomixis transmitting chromosome in Pennisetum. BMC Evol Biol 2011; 11:289. [PMID: 21975191 PMCID: PMC3198970 DOI: 10.1186/1471-2148-11-289] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 10/05/2011] [Indexed: 11/28/2022] Open
Abstract
Background Apomixis is an intriguing trait in plants that results in maternal clones through seed reproduction. Apomixis is an elusive, but potentially revolutionary, trait for plant breeding and hybrid seed production. Recent studies arguing that apomicts are not evolutionary dead ends have generated further interest in the evolution of asexual flowering plants. Results In the present study, we investigate karyotypic variation in a single chromosome responsible for transmitting apomixis, the Apospory-Specific Genomic Region carrier chromosome, in relation to species phylogeny in the genera Pennisetum and Cenchrus. A 1 kb region from the 3' end of the ndhF gene and a 900 bp region from trnL-F were sequenced from 12 apomictic and eight sexual species in the genus Pennisetum and allied genus Cenchrus. An 800 bp region from the Apospory-Specific Genomic Region also was sequenced from the 12 apomicts. Molecular cytological analysis was conducted in sixteen Pennisetum and two Cenchrus species. Our results indicate that the Apospory-Specific Genomic Region is shared by all apomictic species while it is absent from all sexual species or cytotypes. Contrary to our previous observations in Pennisetum squamulatum and Cenchrus ciliaris, retrotransposon sequences of the Opie-2-like family were not closely associated with the Apospory-Specific Genomic Region in all apomictic species, suggesting that they may have been accumulated after the Apospory-Specific Genomic Region originated. Conclusions Given that phylogenetic analysis merged Cenchrus and newly investigated Pennisetum species into a single clade containing a terminal cluster of Cenchrus apomicts, the presumed monophyletic origin of Cenchrus is supported. The Apospory-Specific Genomic Region likely preceded speciation in Cenchrus and its lateral transfer through hybridization and subsequent chromosome repatterning may have contributed to further speciation in the two genera.
Collapse
Affiliation(s)
- Yukio Akiyama
- Department of Horticulture, The University of Georgia, 2360 Rainwater Rd,, Tifton, GA 31793-5766, USA
| | | | | | | | | | | |
Collapse
|
65
|
Weiss-Schneeweiss H, Blöch C, Turner B, Villaseñor JL, Stuessy TF, Schneeweiss GM. The promiscuous and the chaste: frequent allopolyploid speciation and its genomic consequences in American daisies (Melampodium sect. Melampodium; Asteraceae). Evolution 2011; 66:211-28. [PMID: 22220876 DOI: 10.1111/j.1558-5646.2011.01424.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polyploidy, an important factor in eukaryotic evolution, is especially abundant in angiosperms, where it often acts in concert with hybridization to produce allopolyploids. The application of molecular phylogenetic techniques has identified the origins of numerous allopolyploids, but little is known on genomic and chromosomal consequences of allopolyploidization, despite their important role in conferring divergence of allopolyploids from their parental species. Here, using several plastid and nuclear sequence markers, we clarify the origin of tetra- and hexaploids in a group of American daisies, allowing characterization of genome dynamics in polyploids compared to their diploid ancestors. All polyploid species are allopolyploids. Among the four diploid gene pools, the propensity for allopolyploidization is unevenly distributed phylogenetically with a few species apparently more prone to participate, but the underlying causes remain unclear. Polyploid genomes are characterized by differential loss of ribosomal DNA loci (5S and 35S rDNA), known hotspots of chromosomal evolution, but show genome size additivity, suggesting limited changes beyond those affecting rDNA loci or the presence of processes counterbalancing genome reduction. Patterns of rDNA sequence conversion and provenance of the lost loci are highly idiosyncratic and differ even between allopolyploids of identical parentage, indicating that allopolyploids deriving from the same lower-ploid parental species can follow different evolutionary trajectories.
Collapse
Affiliation(s)
- Hanna Weiss-Schneeweiss
- Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
66
|
Bento M, Gustafson JP, Viegas W, Silva M. Size matters in Triticeae polyploids: larger genomes have higher remodeling. Genome 2011; 54:175-83. [PMID: 21423280 DOI: 10.1139/g10-107] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Polyploidization is one of the major driving forces in plant evolution and is extremely relevant to speciation and diversity creation. Polyploidization leads to a myriad of genetic and epigenetic alterations that ultimately generate plants and species with increased genome plasticity. Polyploids are the result of the fusion of two or more genomes into the same nucleus and can be classified as allopolyploids (different genomes) or autopolyploids (same genome). Triticeae synthetic allopolyploid species are excellent models to study polyploids evolution, particularly the wheat-rye hybrid triticale, which includes various ploidy levels and genome combinations. In this review, we reanalyze data concerning genomic analysis of octoploid and hexaploid triticale and different synthetic wheat hybrids, in comparison with other polyploid species. This analysis reveals high levels of genomic restructuring events in triticale and wheat hybrids, namely major parental band disappearance and the appearance of novel bands. Furthermore, the data shows that restructuring depends on parental genomes, ploidy level, and sequence type (repetitive, low copy, and (or) coding); is markedly different after wide hybridization or genome doubling; and affects preferentially the larger parental genome. The shared role of genetic and epigenetic modifications in parental genome size homogenization, diploidization establishment, and stabilization of polyploid species is discussed.
Collapse
Affiliation(s)
- Miguel Bento
- Centro de Botânica Aplicada à Agricultura, Secção de Genética, Instituto Superior de Agronomia, Technical University of Lisbon, Tapada da Ajuda, Lisbon, Portugal
| | | | | | | |
Collapse
|
67
|
Tiwari VK, Rawat N, Neelam K, Kumar S, Randhawa GS, Dhaliwal HS. Random chromosome elimination in synthetic Triticum-Aegilops amphiploids leads to development of a stable partial amphiploid with high grain micro- and macronutrient content and powdery mildew resistance. Genome 2011; 53:1053-65. [PMID: 21164538 DOI: 10.1139/g10-083] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Synthetic amphiploids are the immortal sources for studies on crop evolution, genome dissection, and introgression of useful variability from related species. Cytological analysis of synthetic decaploid wheat (Triticum aestivum L.) - Aegilops kotschyi Boiss. amphiploids (AABBDDUkUkSkSk) showed some univalents from the C1 generation onward followed by chromosome elimination. Most of the univalents came to metaphase I plate after the reductional division of paired chromosomes and underwent equational division leading to their elimination through laggards and micronuclei. Substantial variation in the chromosome number of pollen mother cells from different tillers, spikelets, and anthers of some plants also indicated somatic chromosome elimination. Genomic in situ hybridization, fluorescence in situ hybridization, and simple sequence repeat markers analysis of two amphiploids with reduced chromosomes indicated random chromosome elimination of various genomes with higher sensitivity of D followed by the Sk and Uk genomes to elimination, whereas 1D chromosome was preferentially eliminated in both the amphiploids investigated. One of the partial amphiploids, C4 T. aestivum 'Chinese Spring' - Ae. kotschyi 396 (2n = 58), with 34 T. aestivum, 14 Uk, and 10 Sk had stable meiosis and high fertility. The partial amphiploids with white glumes, bold seeds, and tough rachis with high grain macro- and micronutrients and resistance to powdery mildew could be used for T. aestivum biofortification and transfer of powdery mildew resistance.
Collapse
Affiliation(s)
- Vijay K Tiwari
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | | | | | | | | | | |
Collapse
|
68
|
Kalinka A, Achrem M, Rogalska SM. Cytomixis-like chromosomes/chromatin elimination from pollen mother cells (PMCs) in wheat-rye allopolyploids. THE NUCLEUS 2010. [DOI: 10.1007/s13237-010-0002-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
69
|
Does polyploidy occur in central European species of the family Sphaeriidae (Mollusca: Bivalvia)? Open Life Sci 2010. [DOI: 10.2478/s11535-010-0066-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractSome representatives of the bivalve family Sphaeriidae are assumed to be polyploid. In this study, 11 sphaeriid species (nine of the genus Pisidium, one of Musculium, and one of Sphaerium) inhabiting central Europe were studied karyologically, 10 of them for the first time. Analysis revealed high chromosome numbers (from 140 to 240). To elucidate the origin of high chromosome numbers, DNA contents were measured by flow cytometry in 5 of the studied species and, for comparison, in S. corneum and S. nucleus, which are known to be diploid (2n=30). Species with high chromosome counts yielded very similar DNA contents that are not higher than in the related species with low diploid numbers. This finding contradicts a possible origin of these species by recent polyploidization or hybridization of related species. Chromosome complements of the investigated species with high chromosome numbers differ from those with low 2n in their small chromosome size and the high proportion of subtelo- or acrocentric chromosomes. This indicates their possible origin either by an ancient polyplodization event followed by chromosomal rearrangements or by multiple chromosome fissions.
Collapse
|
70
|
Generality and characteristics of genetic and epigenetic changes in newly synthesized allotetraploid wheat lines. J Genet Genomics 2010; 37:737-48. [DOI: 10.1016/s1673-8527(09)60091-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 09/22/2010] [Accepted: 09/24/2010] [Indexed: 01/25/2023]
|
71
|
Baum BR, Feldman M. Elimination of 5S DNA unit classes in newly formed allopolyploids of the genera Aegilops and Triticum. Genome 2010; 53:430-8. [PMID: 20555432 DOI: 10.1139/g10-017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two classes of 5S DNA units, namely the short (containing units of 410 bp) and the long (containing units of 500 bp), are recognized in species of the wheat (the genera Aegilops and Triticum) group. While every diploid species of this group contains 2 unit classes, the short and the long, every allopolyploid species contains a smaller number of unit classes than the sum of the unit classes of its parental species. The aim of this study was to determine whether the reduction in these unit classes is due to the process of allopolyploidization, that is, interspecific or intergeneric hybridization followed by chromosome doubling, and whether it occurs during or soon after the formation of the allopolyploids. To study this, the number and types of unit classes were determined in several newly formed allotetraploids, allohexaploids, and an allooctoploid of Aegilops and Triticum. It was found that elimination of unit classes of 5S DNA occurred soon (in the first 3 generations) after the formation of the allopolyploids. This elimination was reproducible, that is, the same unit classes were eliminated in natural and synthetic allopolyploids having the same genomic combinations. No further elimination occurred in the unit classes of the 5S DNA during the life of the allopolyploid. The genetic and evolutionary significance of this elimination as well as the difference in response to allopolyploidization of 5S DNA and rDNA are discussed.
Collapse
Affiliation(s)
- B R Baum
- Agriculture and Agri-Food Canada, Neatby Building, Ottawa, ON, Canada.
| | | |
Collapse
|
72
|
Genome Size in Diploids, Allopolyploids, and Autopolyploids of Mediterranean Triticeae. ACTA ACUST UNITED AC 2010. [DOI: 10.1155/2010/341380] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Nuclear DNA amount, determined by the flow cytometry method, in diploids, natural and synthetic allopolyploids, and natural and synthetic autopolyploids of the tribe Triticeae (Poaceae) is reviewed here and discussed. In contrast to the very small and nonsignificant variation in nuclear DNA amount that was found at the intraspecific level, the variation at the interspecific level is very large. Evidently changes in genome size are either the cause or the result of speciation. Typical autopolyploids had the expected additive DNA amount of their diploid parents, whereas natural and synthetic cytologically diploidized autopolyploids and natural and synthetic allopolyploids had significantly less DNA than the sum of their parents. Thus, genome downsizing, occurring during or immediately after the formation of these polyploids, provides the physical basis for their cytological diploidization, that is, diploid-like meiotic behavior. Possible mechanisms that are involved in genome downsizing and the biological significance of this phenomenon are discussed.
Collapse
|
73
|
Shapiro JA. Mobile DNA and evolution in the 21st century. Mob DNA 2010; 1:4. [PMID: 20226073 PMCID: PMC2836002 DOI: 10.1186/1759-8753-1-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 01/25/2010] [Indexed: 01/05/2023] Open
Abstract
Scientific history has had a profound effect on the theories of evolution. At the beginning of the 21st century, molecular cell biology has revealed a dense structure of information-processing networks that use the genome as an interactive read-write (RW) memory system rather than an organism blueprint. Genome sequencing has documented the importance of mobile DNA activities and major genome restructuring events at key junctures in evolution: exon shuffling, changes in cis-regulatory sites, horizontal transfer, cell fusions and whole genome doublings (WGDs). The natural genetic engineering functions that mediate genome restructuring are activated by multiple stimuli, in particular by events similar to those found in the DNA record: microbial infection and interspecific hybridization leading to the formation of allotetraploids. These molecular genetic discoveries, plus a consideration of how mobile DNA rearrangements increase the efficiency of generating functional genomic novelties, make it possible to formulate a 21st century view of interactive evolutionary processes. This view integrates contemporary knowledge of the molecular basis of genetic change, major genome events in evolution, and stimuli that activate DNA restructuring with classical cytogenetic understanding about the role of hybridization in species diversification.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago, Gordon Center for Integrative Science W123B, 929 E 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
74
|
Fu S, Tang Z, Ren Z. Inter- and intra-genomic transfer of small chromosomal segments in wheat-rye allopolyploids. JOURNAL OF PLANT RESEARCH 2010; 123:97-103. [PMID: 19821008 DOI: 10.1007/s10265-009-0264-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2009] [Accepted: 08/30/2009] [Indexed: 05/06/2023]
Affiliation(s)
- Shulan Fu
- Sichuan Agriculture University, Ya'an, Sichuan, China.
| | | | | |
Collapse
|
75
|
Banaei Moghaddam AM, Fuchs J, Czauderna T, Houben A, Mette MF. Intraspecific hybrids of Arabidopsis thaliana revealed no gross alterations in endopolyploidy, DNA methylation, histone modifications and transcript levels. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 120:215-226. [PMID: 19690829 DOI: 10.1007/s00122-009-1127-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 07/28/2009] [Indexed: 05/28/2023]
Abstract
Arabidopsis accessions Col-0 and C24 and their reciprocal hybrids were employed as a model system to investigate the potential relationship between changes in DNA methylation, chromatin structure, endopolyploidization and gene expression in heterotic genotypes. Nucleolus size, endopolyploidization level and distribution of DNA and histone H3 methylation at the microscopic level does not differ between parents and their hybrids. Methylation sensitive amplified polymorphism revealed a largely constant pattern of DNA methylation (97% of signals analyzed) after intraspecific crosses. The parental expression profile of selected genes was maintained in hybrid offspring. No correlation was found between expression pattern and DNA methylation levels at restriction sites within 5' regulatory regions. Thus, the results revealed only minor changes of chromatin properties and other nuclear features in response to intraspecific hybridization in Arabidopsis thaliana.
Collapse
|
76
|
Genome evolution in allopolyploid wheat--a revolutionary reprogramming followed by gradual changes. J Genet Genomics 2009; 36:511-8. [PMID: 19782952 DOI: 10.1016/s1673-8527(08)60142-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2009] [Revised: 07/15/2009] [Accepted: 07/16/2009] [Indexed: 11/22/2022]
Abstract
Allopolyploidy accelerates genome evolution in wheat in two ways: 1) allopolyploidization triggers rapid genome alterations (revolutionary changes) through the instantaneous generation of a variety of cardinal genetic and epigenetic changes, and 2) the allopolyploid condition facilitates sporadic genomic changes during the life of the species (evolutionary changes) that are not attainable at the diploid level. The revolutionary alterations, occurring during the formation of the allopolyploid and leading to rapid cytological and genetic diploidization, facilitate the successful establishment of the newly formed allopolyploid in nature. On the other hand, the evolutionary changes, occurring during the life of the allopolyploids, increase the intra-specific genetic diversity, and consequently, increased fitness, adaptability and competitiveness. These phenomena, emphasizing the dynamic plasticity of the allopolyploid wheat genome with regards to both structure and function, are described and discussed in this review.
Collapse
|
77
|
Ozkan H, Feldman M. Rapid cytological diploidization in newly formed allopolyploids of the wheat (Aegilops-Triticum) group. Genome 2009; 52:926-34. [DOI: 10.1139/g09-067] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Recent studies in the genera Aegilops and Triticum showed that allopolyploid formation triggers rapid genetic and epigenetic changes that lead to cytological and genetic diploidization. To better understand the consequences of cytological diploidization, chromosome pairing and seed fertility were studied in S1, S2, and S3generations of 18 newly formed allopolyploids at different ploidy levels. Results showed that bivalent pairing at first meiotic metaphase was enhanced and seed fertility was improved during each successive generation. A positive linear relationship was found between increased bivalent pairing, improved fertility, and elimination of low-copy noncoding DNA sequences. These findings support the conclusion that rapid elimination of low-copy noncoding DNA sequences from one genome of a newly formed allopolyploid, different sequences from different genomes, is an efficient way to quickly augment the divergence between homoeologous chromosomes and thus bring about cytological diploidization. This facilitates the rapid establishment of the raw allopolyploids as successful, competitive species in nature.
Collapse
Affiliation(s)
- Hakan Ozkan
- Department of Field Crops, Faculty of Agriculture, University of Cukurova, 01330 Adana, Turkey
- Department of Plant Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Moshe Feldman
- Department of Field Crops, Faculty of Agriculture, University of Cukurova, 01330 Adana, Turkey
- Department of Plant Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
78
|
Fradkin M, Greizerstein E, Paccapelo H, Ferreira V, Grassi E, Poggio L, Ferrari MR. Cytological analysis of hybrids among triticales and trigopiros. Genet Mol Biol 2009; 32:797-801. [PMID: 21637457 PMCID: PMC3036882 DOI: 10.1590/s1415-47572009005000070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Accepted: 04/28/2009] [Indexed: 11/22/2022] Open
Abstract
We studied three different tricepiros: (Don Santiago x Don Noé), (Cumé x Horovitz) and (Cumé x Don Noé). The tricepiro (Don Santiago x Don Noé) was obtained by crossing the triticale Don Santiago INTA (AABBRR, 2n = 6x = 42) with the trigopiro Don Noé INTA (AABBDDJJ, 2n = 8x = 56). The number of chromosomes for the F1 was 2n = 49, the most frequent meiotic configuration being 14 bivalents and 21 univalents. The univalents were situated in the periphery of the equatorial plane, whereas the bivalents were located in the central zone. The chromatids in some of the univalents split when bivalents underwent reductional division in anaphase I. There were few laggard chromosomes or chromatids at this phase. The number of chromosomes (2n = 48-58) was high and variable, and the number of bivalents per cell (18-23) also high in F 3 individuals. In all F 8 tricepiros (Don Santiago x Don Noé), F 12 tricepiros (Cumé x Horovitz) and F 12 tricepiros (Cumé x Don Noé), the number of chromosomes (2n = 42) was the same, these retaining the rye genome, as demonstrated by GISH and FISH. These new synthesized allopolyploids constitute interesting models for investigating the evolutionary changes responsible for diploidization, and the chromosomal and genomic re-ordering that cannot be revealed in natural allopolyploids.
Collapse
Affiliation(s)
- Maia Fradkin
- Laboratorio de Citogenética y Evolución, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires Argentina
| | | | | | | | | | | | | |
Collapse
|
79
|
Allopolyploid origin of Mediterranean species inHelictotrichon(Poaceae) and its consequences for karyotype repatterning and homogenisation of rDNA repeat units. SYST BIODIVERS 2009. [DOI: 10.1017/s1477200009003041] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
80
|
Liu B, Xu C, Zhao N, Qi B, Kimatu JN, Pang J, Han F. Rapid genomic changes in polyploid wheat and related species: implications for genome evolution and genetic improvement. J Genet Genomics 2009; 36:519-28. [PMID: 19782953 DOI: 10.1016/s1673-8527(08)60143-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 07/15/2009] [Accepted: 07/20/2009] [Indexed: 01/06/2023]
Affiliation(s)
- Bao Liu
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China.
| | | | | | | | | | | | | |
Collapse
|
81
|
Tang Z, Fu S, Ren Z, Zou Y. Rapid Evolution of Simple Sequence Repeat Induced by Allopolyploidization. J Mol Evol 2009; 69:217-28. [DOI: 10.1007/s00239-009-9261-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 05/21/2009] [Accepted: 06/29/2009] [Indexed: 01/24/2023]
|
82
|
Able JA, Crismani W, Boden SA. Understanding meiosis and the implications for crop improvement. FUNCTIONAL PLANT BIOLOGY : FPB 2009; 36:575-588. [PMID: 32688671 DOI: 10.1071/fp09068] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Accepted: 05/01/2009] [Indexed: 06/11/2023]
Abstract
Over the past 50 years, the understanding of meiosis has aged like a fine bottle of wine: the complexity is developing but the wine itself is still young. While emphasis in the plant kingdom has been placed on the model diploids Arabidopsis (Arabidopsis thaliana L.) and rice (Orzya sativa L.), our research has mainly focussed on the polyploid, bread wheat (Triticum aestivum L.). Bread wheat is an important food source for nearly two-thirds of the world's population. While creating new varieties can be achieved using existing or advanced breeding lines, we would also like to introduce beneficial traits from wild related species. However, expanding the use of non-adapted and wild germplasm in cereal breeding programs will depend on the ability to manipulate the cellular process of meiosis. Three important and tightly-regulated events that occur during early meiosis are chromosome pairing, synapsis and recombination. Which key genes control these events in meiosis (and how they do so) remains to be completely answered, particularly in crops such as wheat. Although the majority of published findings are from model organisms including yeast (Saccharomyces cerevisiae) and the nematode Caenorhabditis elegans, information from the plant kingdom has continued to grow in the past decade at a steady rate. It is with this new knowledge that we ask how meiosis will contribute to the future of cereal breeding. Indeed, how has it already shaped cereal breeding as we know it today?
Collapse
Affiliation(s)
- Jason A Able
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1, Glen Osmond, South Australia 5064, Australia
| | - Wayne Crismani
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1, Glen Osmond, South Australia 5064, Australia
| | - Scott A Boden
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1, Glen Osmond, South Australia 5064, Australia
| |
Collapse
|
83
|
Eilam T, Anikster Y, Millet E, Manisterski J, Feldman M. Genome size in natural and synthetic autopolyploids and in a natural segmental allopolyploid of several Triticeae species. Genome 2009; 52:275-85. [PMID: 19234556 DOI: 10.1139/g09-004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Nuclear DNA amount (1C) was determined by flow cytometry in the autotetraploid cytotype of Hordeum bulbosum, in the cytologically diploidized autotetraploid cytotypes of Elymus elongatus, Hordeum murinum subsp. murinum and Hordeum murinum subsp. leporinum, in Hordeum marinum subsp. gussoneanum, in their progenitor diploid cytotypes, and in a newly synthesized autotetraploid line of E. elongatus. Several lines collected from different regions of the distribution area of every taxon, each represented by a number of plants, were analyzed in each taxon. The intracytotype variation in nuclear DNA amount of every diploid and autotetraploid cytotype was very small, indicating that no significant changes have occurred in DNA amount either after speciation or after autopolyploid formation. The autotetraploid cytotypes of H. bulbosum and the cytologically diploidized H. marinum subsp. gussoneanum had the expected additive amount of their diploid cytotypes. On the other hand, the cytologically diploidized autotetraploid cytotypes of E. elongatus and H. murinum subsp. murinum and H. murinum subsp. leporinum had considerably less nuclear DNA (10%-23%) than the expected additive value. Also, the newly synthesized autotetraploid line of E. elongatus showed similar reduction in DNA as its natural counterpart, indicating that the reduction in genome size occurred in the natural cytotype during autopolyploidization. It is suggested that the diploid-like meiotic behavior of these cytologically dipolidized autotetraploids is caused by the instantaneous elimination of a large number of DNA sequences, different sequences from different homologous pairs, leading to differentiation of the constituent genomes. The eliminated sequences are likely to include those that participate in homologous recognition and initiation of meiotic pairing. A gene system determining exclusive bivalent pairing by utilizing the differentiation between the two groups of homologues has been presumably superimposed on the DNA reduction process.
Collapse
Affiliation(s)
- T Eilam
- Institute for Cereal Crops Improvement, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | |
Collapse
|
84
|
Ochogavía AC, Cervigni G, Selva JP, Echenique VC, Pessino SC. Variation in cytosine methylation patterns during ploidy level conversions in Eragrostis curvula. PLANT MOLECULAR BIOLOGY 2009; 70:17-29. [PMID: 19160057 DOI: 10.1007/s11103-009-9454-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2008] [Accepted: 01/05/2009] [Indexed: 05/12/2023]
Abstract
In many species polyploidization involves rearrangements of the progenitor genomes, at both genetic and epigenetic levels. We analyzed the cytosine methylation status in a 'tetraploid-diploid-tetraploid' series of Eragrostis curvula with a common genetic background by using the MSAP (Methylation-sensitive Amplified Polymorphism) technique. Considerable levels of polymorphisms were detected during ploidy conversions. The total level of methylation observed was lower in the diploid genotype compared to the tetraploid ones. A significant proportion of the epigenetic modifications occurring during the tetraploid-diploid conversion reverted during the diploid-tetraploid one. Genetic and expression data from previous work were used to analyze correlation with methylation variation. All genetic, epigenetic and gene expression variation data correlated significantly when compared by pairs in simple Mantel tests. Dendrograms reflecting genetic, epigenetic and expression distances as well as principal coordinate analysis suggested that plants of identical ploidy levels present similar sets of data. Twelve (12) different genomic fragments displaying different methylation behavior during the ploidy conversions were isolated, sequenced and characterized.
Collapse
Affiliation(s)
- Ana C Ochogavía
- Facultad de Ciencias Agrarias, Universidad Nacional de Rosario Argentina, Parque Villarino, S2125ZAA, Zavalla, Provincia de Santa Fe, Argentina
| | | | | | | | | |
Collapse
|
85
|
Zhang L, Sun G, Yan Z, Chen Q, Yuan Z, Lan X, Zheng Y, Liu D. Comparison of newly synthetic hexaploid wheat with its donors on SSR products. J Genet Genomics 2009; 34:939-46. [PMID: 17945172 DOI: 10.1016/s1673-8527(07)60105-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Accepted: 03/21/2007] [Indexed: 10/22/2022]
Abstract
Microsatellites or SSRs as powerful genetic markers have widely been used in genetics and evolutionary biology in common wheat. Because of the high polymorphism, newly synthesized hexaploid wheat has been used in the construction of genetic segregation population for SSR markers. However, data on the evolution of microsatellites during the polyploidization event of hexaploid wheat are limited. In this study, 66 pairs of specific to A/B genome SSR patterns among newly synthesized hexaploid wheat, the donor tetraploid wheat and Aegilops tauschii were compared. The results indicated that most SSR markers were conserved during the polyploidization events of newly synthetic hexaploid wheat, from Triticum turgidum and Ae. tauschii. Over 70% A/B genome specific SSR markers could amplify the SSR sequences from the D genome of Ae. tauschii. Most amplified fragments from Ae. tauschii were detected in synthetic hexaploid at corresponding positions with the same sizes and patterns as in its parental Ae. tauschii. This suggested that these SSR markers, specific for A/B genome in common wheat, could amplify SSR products of D genome besides A/B genome in the newly synthesized hexaploid wheat, that is, these SSR primers specific for A/B genome in common wheat were nonspecific for the A/B genome in the synthetic hexaploid wheat. In addition, one amplified Ae. tauschii product was not detected in the newly synthetic hexaploid wheat. An extra-amplified product was found in the newly synthetic hexaploid wheat. These results suggested that caution should be taken when using SSR marker to genotype newly synthetic hexaploid wheat.
Collapse
Affiliation(s)
- Lianquan Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Dujiangyan 611830, China
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Doyle JJ, Flagel LE, Paterson AH, Rapp RA, Soltis DE, Soltis PS, Wendel JF. Evolutionary genetics of genome merger and doubling in plants. Annu Rev Genet 2009; 42:443-61. [PMID: 18983261 DOI: 10.1146/annurev.genet.42.110807.091524] [Citation(s) in RCA: 428] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Polyploidy is a common mode of evolution in flowering plants. The profound effects of polyploidy on gene expression appear to be caused more by hybridity than by genome doubling. Epigenetic mechanisms underlying genome-wide changes in expression are as yet poorly understood; only methylation has received much study, and its importance varies among polyploids. Genetic diploidization begins with the earliest responses to genome merger and doubling; less is known about chromosomal diploidization. Polyploidy duplicates every gene in the genome, providing the raw material for divergence or partitioning of function in homoeologous copies. Preferential retention or loss of genes occurs in a wide range of taxa, suggesting that there is an underlying set of principles governing the fates of duplicated genes. Further studies are required for general patterns to be elucidated, involving different plant families, kinds of polyploidy, and polyploids of different ages.
Collapse
Affiliation(s)
- Jeff J Doyle
- Department of Plant Biology, Cornell University, Ithaca, New York 14850, USA.
| | | | | | | | | | | | | |
Collapse
|
87
|
HEDRÉN MIKAEL, NORDSTRÖM SOFIE, STÅHLBERG DAVID. Polyploid evolution and plastid DNA variation in theDactylorhiza incarnata/maculatacomplex (Orchidaceae) in Scandinavia. Mol Ecol 2008; 17:5075-91. [DOI: 10.1111/j.1365-294x.2008.03965.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
88
|
Mandáková T, Lysak MA. Chromosomal phylogeny and karyotype evolution in x=7 crucifer species (Brassicaceae). THE PLANT CELL 2008; 20:2559-70. [PMID: 18836039 PMCID: PMC2590746 DOI: 10.1105/tpc.108.062166] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 09/06/2008] [Accepted: 09/17/2008] [Indexed: 05/18/2023]
Abstract
Karyotype evolution in species with identical chromosome number but belonging to distinct phylogenetic clades is a long-standing question of plant biology, intractable by conventional cytogenetic techniques. Here, we apply comparative chromosome painting (CCP) to reconstruct karyotype evolution in eight species with x=7 (2n=14, 28) chromosomes from six Brassicaceae tribes. CCP data allowed us to reconstruct an ancestral Proto-Calepineae Karyotype (PCK; n=7) shared by all x=7 species analyzed. The PCK has been preserved in the tribes Calepineae, Conringieae, and Noccaeeae, whereas karyotypes of Eutremeae, Isatideae, and Sisymbrieae are characterized by an additional translocation. The inferred chromosomal phylogeny provided compelling evidence for a monophyletic origin of the x=7 tribes. Moreover, chromosomal data along with previously published gene phylogenies strongly suggest the PCK to represent an ancestral karyotype of the tribe Brassiceae prior to its tribe-specific whole-genome triplication. As the PCK shares five chromosomes and conserved associations of genomic blocks with the putative Ancestral Crucifer Karyotype (n=8) of crucifer Lineage I, we propose that both karyotypes descended from a common ancestor. A tentative origin of the PCK via chromosome number reduction from n=8 to n=7 is outlined. Comparative chromosome maps of two important model species, Noccaea caerulescens and Thellungiella halophila, and complete karyotypes of two purported autotetraploid Calepineae species (2n=4x=28) were reconstructed by CCP.
Collapse
Affiliation(s)
- Terezie Mandáková
- Department of Functional Genomics and Proteomics, Institute of Experimental Biology, Masaryk University, Brno CZ-625 00, Czech Republic
| | | |
Collapse
|
89
|
Chen L, Chen J. Changes of cytosine methylation induced by wide hybridization and allopolyploidy inCucumis. Genome 2008; 51:789-99. [DOI: 10.1139/g08-063] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We previously demonstrated that allopolyploidization could induce phenotypic variations and genome changes in a newly synthesized allotetraploid in Cucumis . To explore the molecular involvement of epigenetic phenomena, we investigated cytosine methylation in Cucumis by using methylation-sensitive amplified polymorphism (MSAP). Results revealed a twofold difference in the level of cytosine methylation between the reciprocal F1hybrids and the allotetraploid. Analysis of the methylation pattern indicated that methylation changed at 2.0% to 6.4% of total sites in both the F1hybrids and the allotetraploid compared with their corresponding parents. Furthermore, 68.2% to 80.0% of the changed sites showed an increase in cytosine methylation and a majority of the methylated sites were from the maternal parent. Observations in different generations of the allotetraploid found that the extent of change in cytosine methylation pattern between the S1and S2was significantly higher than that between the S2and S3, suggesting stability in advanced generations. Analysis of 7 altered sequences indicated their similarity to known functional genes or genes involved in regulating gene expression. Reverse transcription – polymerase chain reaction analysis suggested that at least two of the methylation changes might be related to gene expression changes, which further supports the hypothesis that DNA methylation plays a significant role in allopolyploidization.
Collapse
Affiliation(s)
- Longzheng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
90
|
Liu M, Li ZY. Genome doubling and chromosome elimination with fragment recombination leading to the formation of Brassica rapa-type plants with genomic alterations in crosses with Orychophragmus violaceus. Genome 2008; 50:985-93. [PMID: 18059544 DOI: 10.1139/g07-071] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In distant hybridization of plants, nonclassical hybrids with unexpected chromosome complements, chromosome elimination, and genetic introgression have been well documented. We obtained intergeneric hybrids between Brassica rapa, B. rapa var. chinensis, and another cruciferous species, Orychophragmus violaceus, following embryo rescue. Hybrids mainly displayed phenotypes of B. rapa, although certain O. violaceus or novel characteristics also appeared. Variable numbers of chromosomes were observed in somatic cells in the roots of plantlets on medium and in ovaries and pollen mother cells (PMCs). However, higher numbers were recorded in the roots. GISH revealed that the majority of ovary cells and PMCs contained 20 chromosomes of B. rapa with or without individual O. violaceus chromosomes or fragments added or introgressed. AFLP analysis showed that fragments deleted from the B. rapa genome were much more frequent than novel and O. violaceus fragments. The mechanisms involved genome doubling and successive elimination of O. violaceus chromosomes accompanied by fragment recombination and introgression, producing B. rapa-type plants with modified genetic constitutions and phenotypes.
Collapse
Affiliation(s)
- Min Liu
- National Key Laboratory of Crop Genetic Improvement, National Center of Crop Molecular Breeding Technology, National Center of Oil Crop Improvement (Wuhan), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | | |
Collapse
|
91
|
Eilam T, Anikster Y, Millet E, Manisterski J, Feldman M. Nuclear DNA amount and genome downsizing in natural and synthetic allopolyploids of the generaAegilopsandTriticum. Genome 2008; 51:616-27. [DOI: 10.1139/g08-043] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent molecular studies in the genera Aegilops and Triticum showed that allopolyploidization (interspecific or intergeneric hybridization followed by chromosome doubling) generated rapid elimination of low-copy or high-copy, non-coding and coding DNA sequences. The aims of this work were to determine the amount of nuclear DNA in allopolyploid species of the group and to see to what extent elimination of DNA sequences affected genome size. Nuclear DNA amount was determined by the flow cytometry method in 27 natural allopolyploid species (most of which were represented by several lines and each line by several plants) as well as 14 newly synthesized allopolyploids (each represented by several plants) and their parental plants. Very small intraspecific variation in DNA amount was found between lines of allopolyploid species collected from different habitats or between wild and domesticated forms of allopolyploid wheat. In contrast to the constancy in nuclear DNA amount at the intraspecific level, there are significant differences in genome size between the various allopolyploid species, at both the tetraploid and hexaploid levels. In most allopolyploids nuclear DNA amount was significantly less than the sum of DNA amounts of the parental species. Newly synthesized allopolyploids exhibited a similar decrease in nuclear DNA amount in the first generation, indicating that genome downsizing occurs during and (or) immediately after the formation of the allopolyploids and that there are no further changes in genome size during the life of the allopolyploids. Phylogenetic considerations of the origin of the B genome of allopolyploid wheat, based on nuclear DNA amount, are discussed.
Collapse
Affiliation(s)
- T. Eilam
- Institute for Cereal Crops Improvement, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Y. Anikster
- Institute for Cereal Crops Improvement, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - E. Millet
- Institute for Cereal Crops Improvement, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - J. Manisterski
- Institute for Cereal Crops Improvement, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - M. Feldman
- Institute for Cereal Crops Improvement, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
92
|
Tang ZX, Fu SL, Ren ZL, Zhou JP, Yan BJ, Zhang HQ. Variations of tandem repeat, regulatory element, and promoter regions revealed by wheat–rye amphiploids. Genome 2008; 51:399-408. [DOI: 10.1139/g08-027] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To better understand the evolution of allopolyploids, 4 different combinations between wheat ( Triticum aestivum L.) and rye ( Secale cereale L.) including 12 F1hybrids and 12 derived amphiploids were analyzed and compared with their direct parental plants by PCR analysis using 150 wheat SSR (single sequence repeat) markers and by FISH analysis using a rye-specific repetitive sequence (pSc200) as a probe. Nine SSR markers amplified rye-specific fragments whose sizes ranged from 471 bp to 1089 bp. These fragments contain regulatory elements and (or) promoters. Some of these fragments were amplified from all 24 progenies, while others were amplified from a subset of the progenies. The disappearance of rye-specific fragments from some progenies was caused by sequence elimination or DNA modification. Marker Xgwm320 amplified a new fragment (403 bp), a rye-specific tandem repeat, from some of the progenies. Twenty-eight SSR markers displayed microsatellite variation in progenies derived from ‘Chinese Spring’ × ‘Jinzhou-heimai’, but none of the 150 SSR markers displayed microsatellite variation in the progenies derived from the other three combinations. FISH signals of pSc200 were eliminated from one telomere/subtelomere of 4 chromosomes of ‘Kustro’ during allopolyploidization and expanded in amphiploids derived from ‘Chinese Spring’ × ‘AR106BONE’. Thus, allopolyploidization in wheat–rye can be accompanied by rapid variation of tandem repeats, regulatory elements, and promoter regions. The alterations of repetitive sequence pSc200 indicate coordination between the constituent genomes of the newly formed amphiploids. Different genetic backgrounds of parents appear to affect genome changes during allopolyploidization.
Collapse
Affiliation(s)
- Zong-Xiang Tang
- State Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Ya’an, Sichuan 625014, China
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Shu-Lan Fu
- State Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Ya’an, Sichuan 625014, China
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zheng-Long Ren
- State Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Ya’an, Sichuan 625014, China
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Jian-Ping Zhou
- State Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Ya’an, Sichuan 625014, China
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Ben-Ju Yan
- State Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Ya’an, Sichuan 625014, China
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Huai-Qiong Zhang
- State Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Ya’an, Sichuan 625014, China
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
93
|
Raskina O, Barber JC, Nevo E, Belyayev A. Repetitive DNA and chromosomal rearrangements: speciation-related events in plant genomes. Cytogenet Genome Res 2008; 120:351-7. [PMID: 18504364 DOI: 10.1159/000121084] [Citation(s) in RCA: 182] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2007] [Indexed: 11/19/2022] Open
Abstract
Chromosomal change is one of the more hotly debated potential mechanisms of speciation. It has long been argued over whether--and to what degree--changes in chromosome structure contribute to reproductive isolation and, ultimately, speciation. In this review we do not aim to completely analyze accumulated data about chromosomal speciation but wish to draw attention to several critical points of speciation-related chromosomal change, namely: (a) interrelations between chromosomal rearrangements and repetitive DNA fraction; (b) mobility of ribosomal DNA clusters; and (c) rDNA and transposable elements as perpetual generators of genome instability.
Collapse
Affiliation(s)
- O Raskina
- Institute of Evolution, University of Haifa, Israel
| | | | | | | |
Collapse
|
94
|
Cervigni GDL, Paniego N, Pessino S, Selva JP, Díaz M, Spangenberg G, Echenique V. Gene expression in diplosporous and sexual Eragrostis curvula genotypes with differing ploidy levels. PLANT MOLECULAR BIOLOGY 2008; 67:11-23. [PMID: 18311543 DOI: 10.1007/s11103-008-9305-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Accepted: 01/31/2008] [Indexed: 05/04/2023]
Abstract
The molecular nature of gene expression during the initiation and progress of diplosporous apomixis is still unknown. Moreover, the basis of the close correlation between diplospory and polyploidy is not clarified yet. A comparative expression analysis was performed based on expressed sequence tags (ESTs) sequencing and differential display in an Eragrostis curvula diplosporous tetraploid genotype (T, 4x apo), a sexual diploid derivative obtained from tissue culture (D, 2x sex) and an artificial sexual tetraploid obtained from the diploid seeds after colchicine treatment (C, 4x sex). From a total of 8,884 unigenes sequenced from inflorescence-derived libraries, 112 (1.26%) showed significant differential expression in individuals with different ploidy level and/or variable reproductive mode. Independent comparisons between plants with different reproductive mode (same ploidy) or different ploidy level (same reproductive mode) allowed the identification of genes modulated in response to diplosporous development or polyploidization, respectively. Surprisingly, a group of genes (Group 3) were differentially expressed or silenced only in the 4x sex plant, presenting similar levels of expression in the 4x apo and the 2x sex genotypes. A group of randomly selected differential genes was validated by QR-PCR. Differential display analysis showed that in general the 4x apo and 4x sex expression profiles were more related and different from the 2x sex one, but confirmed the existence of Group 3-type genes, in both inflorescences and leaves. The possible biological significance for the occurrence of this particular group of genes is discussed. In silico mapping onto the rice genome was used to identify candidates mapping to the region syntenic to the diplospory locus.
Collapse
Affiliation(s)
- Gerardo D L Cervigni
- Centro de Recursos Naturales Renovables de la Zona Semiárida- CONICET, Camino de La Carrindanga Km 7,0, Bahia Blanca, Argentina
| | | | | | | | | | | | | |
Collapse
|
95
|
Weiss-Schneeweiss H, Tremetsberger K, Schneeweiss GM, Parker JS, Stuessy TF. Karyotype diversification and evolution in diploid and polyploid South American Hypochaeris (Asteraceae) inferred from rDNA localization and genetic fingerprint data. ANNALS OF BOTANY 2008; 101:909-18. [PMID: 18285356 PMCID: PMC2710225 DOI: 10.1093/aob/mcn023] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 01/11/2008] [Accepted: 01/21/2008] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS Changes in chromosome structure and number play an important role in plant evolution. A system well-suited to studying different modes of chromosome evolution is the genus Hypochaeris (Asteraceae) with its centre of species' diversity in South America. All South American species uniformly have a chromosome base number of x = 4 combined with variation in rDNA number and distribution, and a high frequency of polyploidy. The aim of this paper is to assess directions and mechanisms of karyotype evolution in South American species by interpreting both newly obtained and previous data concerning rDNA localization in a phylogenetic context. METHODS Eleven Hypochaeris species from 18 populations were studied using fluorescence in situ hybridization (FISH) with 35S and 5S rDNA probes. A phylogenetic framework was established from neighbour-net analysis of amplified fragment length polymorphism (AFLP) fingerprint data. KEY RESULTS A single 5S rDNA locus is invariably found on the short arm of chromosome 2. Using 35S rDNA loci, based on number (one or two) and localization (interstitial on the long arm of chromosome 2, but sometimes lacking, and terminal or interstitial on the short arm of chromosome 3, only very rarely lacking), seven karyotype groups can be distinguished; five of these include polyploids. Karyotype groups with more than one species do not form monophyletic groups. CONCLUSIONS Early evolution of Hypochaeris in South America was characterized by considerable karyotype differentiation resulting from independent derivations from an ancestral karyotype. There was marked diversification with respect to the position and evolution of the 35S rDNA locus on chromosome 3, probably involving inversions and/or transpositions, and on chromosome 2 (rarely 3) concerning inactivation and loss. Among these different karyotype assemblages, the apargioides group and its derivatives constitute by far the majority of species.
Collapse
Affiliation(s)
- Hanna Weiss-Schneeweiss
- Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria.
| | | | | | | | | |
Collapse
|
96
|
Olsen KM, Hsu SC, Small LL. Evidence on the molecular basis of the Ac/ac adaptive cyanogenesis polymorphism in white clover (Trifolium repens L). Genetics 2008; 179:517-26. [PMID: 18458107 PMCID: PMC2390629 DOI: 10.1534/genetics.107.080366] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Accepted: 02/20/2008] [Indexed: 11/18/2022] Open
Abstract
White clover is polymorphic for cyanogenesis, with both cyanogenic and acyanogenic plants occurring in nature. This chemical defense polymorphism is one of the longest-studied and best-documented examples of an adaptive polymorphism in plants. It is controlled by two independently segregating genes: Ac/ac controls the presence/absence of cyanogenic glucosides; and Li/li controls the presence/absence of their hydrolyzing enzyme, linamarase. Whereas Li is well characterized at the molecular level, Ac has remained unidentified. Here we report evidence that Ac corresponds to a gene encoding a cytochrome P450 of the CYP79D protein subfamily (CYP79D15), and we describe the apparent molecular basis of the Ac/ac polymorphism. CYP79D orthologs catalyze the first step in cyanogenic glucoside biosynthesis in other cyanogenic plant species. In white clover, Southern hybridizations indicate that CYP79D15 occurs as a single-copy gene in cyanogenic plants but is absent from the genomes of ac plants. Gene-expression analyses by RT-PCR corroborate this finding. This apparent molecular basis of the Ac/ac polymorphism parallels our previous findings for the Li/li polymorphism, which also arises through the presence/absence of a single-copy gene. The nature of these polymorphisms may reflect white clover's evolutionary origin as an allotetraploid derived from cyanogenic and acyanogenic diploid progenitors.
Collapse
Affiliation(s)
- Kenneth M Olsen
- Department of Biology, Washington University, St. Louis, MO 63130-4899, USA.
| | | | | |
Collapse
|
97
|
Tu Y, Sun J, Liu Y, Ge X, Zhao Z, Yao X, Li Z. Production and characterization of intertribal somatic hybrids of Raphanus sativus and Brassica rapa with dye and medicinal plant Isatis indigotica. PLANT CELL REPORTS 2008; 27:873-83. [PMID: 18264711 DOI: 10.1007/s00299-008-0513-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 01/03/2008] [Accepted: 01/20/2008] [Indexed: 05/15/2023]
Abstract
Intertribal somatic hybrids of Raphanus sativus (2n = 18, RR) and Brassica rapa spp. chinensis (2n = 20, AA) with the dye and medicinal plant Isatis indigotica (2n = 14, I I) were firstly obtained by polyethylene glycol-induced symmetric fusions of mesophyll protoplasts. One mature hybrid with R. sativus established in field had intermediate morphology but was totally sterile. It had the expected chromosome number (2n = 32, RRI I) and parental chromosomes were distinguished by genomic in situ hybridization (GISH) analysis, and these chromosomes were paired as 16 bivalents in pollen mother cells (PMCs) at diakinesis and mainly segregated equally as 16:16 at anaphase I (A I), but the meiotic disturbance in second division was obvious. Five mature hybrids with B. rapa established in field were morphologically intermediate but showed some differences in phenotypic traits and fertility, two were partially fertile. Cytological and GISH investigations revealed that these hybrids had 2n = 48 with AAIIII complement and their PMCs showed normal pairing of 24 bivalents and mainly equal segregation 24:24, but meiotic abnormalities of lagging chromosomes and micronuclei appeared frequently during second divisions. AFLP analysis showed that all of these hybrids had mainly the DNA banding pattern from the addition of two parents plus some alterations. Some hybrids should be used for the genetic improvement of crops and the dye and medicinal plant.
Collapse
Affiliation(s)
- Yuqin Tu
- National Center of Crop Molecular Breeding Technology, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
98
|
Guggisberg A, Baroux C, Grossniklaus U, Conti E. Genomic origin and organization of the allopolyploid Primula egaliksensis investigated by in situ hybridization. ANNALS OF BOTANY 2008; 101:919-27. [PMID: 18308718 PMCID: PMC2710232 DOI: 10.1093/aob/mcn026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 12/20/2007] [Accepted: 02/04/2008] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS Earlier studies have suggested that the tetraploid Primula egaliksensis (2n = 40) originated from hybridization between the diploids P. mistassinica (2n = 18) and P. nutans (2n = 22), which were hypothesized to be the maternal and paternal parent, respectively. The present paper is aimed at verifying the hybrid nature of P. egaliksensis using cytogenetic tools, and to investigate the extent to which the parental genomes have undergone genomic reorganization. METHODS Genomic in situ hybridization (GISH) and fluorescent in situ hybridization (FISH) with ribosomal DNA (rDNA) probes, together with sequencing of the internal transcribed spacer (ITS) region of the rDNA, were used to identify the origin of P. egaliksensis and to explore its genomic organization, particularly at rDNA loci. KEY RESULTS GISH showed that P. egaliksensis inherited all chromosomes from P. mistassinica and P. nutans and did not reveal major intergenomic rearrangements between the parental genomes (e.g. interchromosomal translocations). However, karyological comparisons and FISH experiments suggested small-scale rearrangements, particularly at rDNA sites. Primula egaliksensis lacked the ITS-bearing heterochromatic knobs characteristic of the maternal parent P. mistassinica and maintained only the rDNA loci of P. nutans. These results corroborated sequence data indicating that most ITS sequences of P. egaliksensis were of the paternal repeat type. CONCLUSIONS The lack of major rearrangements may be a consequence of the considerable genetic divergence between the putative parents, while the rapid elimination of the ITS repeats from the maternal progenitor may be explained by the subterminal location of ITS loci or a potential role of nucleolar dominance in chromosome stabilization. These small-scale rearrangements may be indicative of genome diploidization, but further investigations are needed to confirm this assumption.
Collapse
Affiliation(s)
- Alessia Guggisberg
- Institut für Systematische Botanik & Zürich-Basel Plant Science Center, Universität Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland.
| | | | | | | |
Collapse
|
99
|
Bento M, Pereira HS, Rocheta M, Gustafson P, Viegas W, Silva M. Polyploidization as a retraction force in plant genome evolution: sequence rearrangements in triticale. PLoS One 2008; 3:e1402. [PMID: 18167561 PMCID: PMC2151762 DOI: 10.1371/journal.pone.0001402] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 12/03/2007] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Polyploidization is a major evolutionary process in plants where hybridization and chromosome doubling induce enormous genomic stress and can generate genetic and epigenetic modifications. However, proper evaluation of DNA sequence restructuring events and the precise characterization of sequences involved are still sparse. METHODOLOGY/PRINCIPAL FINDINGS Inter Retrotransposons Amplified Polymorphism (IRAP), Retrotransposons Microsatellite Amplified Polymorphism (REMAP) and Inter Simple Sequence Repeat (ISSR) largely confirmed the absence of any intraspecific variation in wheat, rye and triticale. The comparative analysis of banding profiles between wheat and rye inbred lines revealed 34% of monomorphic (common to both parental species) bands for the ten different primer combinations used. The analysis of triticale plants uncovered nearly 51% of rearranged bands in the polyploid, being the majority of these modifications, due to the loss of rye bands (83%). Sequence analysis of rye fragments absent in triticale revealed for instance homology with hydroxyproline-rich glycoproteins (HRGP), a protein that belongs to a major family of inducible defence response proteins. Conversely, a wheat-specific band absent in triticale comprises a nested structure of copia-like retrotransposons elements, namely Claudia and Barbara. Sequencing of a polyploid-specific band (absent in both parents) revealed a microsatellite related sequence. Cytological studies using Fluorescent In Situ Hybridization (FISH) with REMAP products revealed a widespread distribution of retrotransposon and/or microsatellite flanking sequences on rye chromosomes, with a preferential accumulation in heterochromatic sub-telomeric domains. CONCLUSIONS/SIGNIFICANCE Here, we used PCR-based molecular marker techniques involving retrotransposons and microsatellites to uncover polyploidization induced genetic restructuring in triticale. Sequence analysis of rearranged genomic fragments either from rye or wheat origin showed these to be retrotransposon-related as well as coding sequences. Further FISH analysis revealed possible chromosome hotspots for sequence rearrangements. The role of chromatin condensation on the origin of genomic rearrangements mediated by polyploidization in triticale is also discussed.
Collapse
Affiliation(s)
- Miguel Bento
- Centro de Botânica Aplicada à Agricultura, Secção de Genética, Instituto Superior de Agronomia, Technical University of Lisbon, Tapada da Ajuda, Lisboa, Portugal
| | - H. Sofia Pereira
- Centro de Botânica Aplicada à Agricultura, Secção de Genética, Instituto Superior de Agronomia, Technical University of Lisbon, Tapada da Ajuda, Lisboa, Portugal
| | - Margarida Rocheta
- Centro de Botânica Aplicada à Agricultura, Secção de Genética, Instituto Superior de Agronomia, Technical University of Lisbon, Tapada da Ajuda, Lisboa, Portugal
| | - Perry Gustafson
- Curtis Hall, University of Missouri, Columbia, Missouri, United States of America
| | - Wanda Viegas
- Centro de Botânica Aplicada à Agricultura, Secção de Genética, Instituto Superior de Agronomia, Technical University of Lisbon, Tapada da Ajuda, Lisboa, Portugal
| | - Manuela Silva
- Centro de Botânica Aplicada à Agricultura, Secção de Genética, Instituto Superior de Agronomia, Technical University of Lisbon, Tapada da Ajuda, Lisboa, Portugal
| |
Collapse
|
100
|
Ansari HA, Ellison NW, Williams WM. Molecular and cytogenetic evidence for an allotetraploid origin of Trifolium dubium (Leguminosae). Chromosoma 2007; 117:159-67. [PMID: 18058119 DOI: 10.1007/s00412-007-0134-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Revised: 10/18/2007] [Accepted: 10/23/2007] [Indexed: 11/28/2022]
Abstract
Suckling clover, Trifolium dubium Sibth., is a European grassland legume that has spread to many parts of the world. The present work shows that it is an allotetraploid (2n = 4x = 30) combining the genomes of T. campestre Schreb. (2n = 2x = 14) and T. micranthum Viv. (2n = 2x = 16), two diploid species of similar geographic distribution. T. dubium has two nuclear ITS sequences that closely match those of T. campestre and T. micranthum. Genomic in situ hybridisation using genomic DNA of T. campestre and T. micranthum as probes has differentiated the ancestral sets of chromosomes in T. dubium cells. Comparative fluorescence in situ hybridisation analyses of 5S and 18S-26S rDNA loci were also consistent with an allotetraploid structure of the T. dubium genome. A marked preponderance of ITS repeats from T. campestre over those from T. micranthum indicated that concerted evolution has resulted in partial homogenisation of these sequences by depletion of the T. micranthum-derived 18S-26S rDNA repeats. In parallel with this, the epigenetic phenomenon of nucleolar dominance has been observed in T. dubium such that the chromatin associated with the 18S-26S rDNA loci derived from T. campestre is decondensed (transcriptionally active), whilst that from T. micranthum remains highly condensed throughout the cell cycle. T. dubium, therefore, appears to have arisen by way of hybridisation between forms of the diploid species T. campestre and T. micranthum accompanied by chromosome doubling. The observed genomic changes in rDNA resulting from interspecific hybridisation provide evidence for the process of genome diploidisation in T. dubium.
Collapse
Affiliation(s)
- Helal A Ansari
- Grasslands Research Centre, AgResearch Ltd., Palmerston North, New Zealand.
| | | | | |
Collapse
|