51
|
Kobayashi H, Yamada K, Morita S, Hiura H, Fukuda A, Kagami M, Ogata T, Hata K, Sotomaru Y, Kono T. Identification of the mouse paternally expressed imprinted gene Zdbf2 on chromosome 1 and its imprinted human homolog ZDBF2 on chromosome 2. Genomics 2009; 93:461-72. [DOI: 10.1016/j.ygeno.2008.12.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 12/30/2008] [Accepted: 12/30/2008] [Indexed: 12/20/2022]
|
52
|
Abstract
In mammals, imprinted genes are clustered and at least one gene in each imprinted cluster is a long i.e., macro non-coding (nc) RNA. Most genes in a cluster show concordant parental-specific expression but the ncRNA is the odd one out, and is expressed from the opposite parental chromosome. While reciprocal expression between imprinted macro non-coding RNAs and flanking mRNA genes is indicative of a functional role, only two of three tested macro ncRNAs have been shown to induce imprinted gene expression. The two known functional imprinted macro non-coding RNAs are both RNAPII transcripts with unusual transcriptional properties that may be functionally relevant and their analysis may shed light on the function of non-coding RNAs that have been shown to comprise the majority of the mammalian transcriptome.
Collapse
Affiliation(s)
- Paulina A Latos
- CeMM-Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | | |
Collapse
|
53
|
Abstract
Full mammalian development typically requires genomes from both the oocyte and spermatozoon. Biparental reproduction is necessary because of parent-specific epigenetic modification of the genome during gametogenesis; that is, a maternal methylation imprint imposed during the oocyte growth period and a paternal methylation imprint imposed in pregonadal gonocytes. This leads to unequivalent expression of imprinted genes from the maternal and paternal alleles in embryos and individuals. It is possible to hypothesise that the maternal methylation imprint is necessary to prevent parthenogenesis, which extinguishes the opportunity for having descendents, whereas the paternal methylation imprint prevents parthenogenesis, ensuring that a paternal contribution is obligatory for any descendants. To date, there are several lines of direct evidence that the epigenetic modifications that occur during oocyte growth have a decisive effect on mammalian development. Using bimaternal embryos with two sets of maternal genomes, the present paper illustrates how parental methylation imprints are an obstacle to the progression of parthenogenesis.
Collapse
Affiliation(s)
- Tomohiro Kono
- Department of BioScience, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan.
| |
Collapse
|
54
|
Teramura T, Onodera Y, Murakami H, Ito S, Mihara T, Takehara T, Kato H, Mitani T, Anzai M, Matsumoto K, Saeki K, Fukuda K, Sagawa N, Osoi Y. Mouse androgenetic embryonic stem cells differentiated to multiple cell lineages in three embryonic germ layers in vitro. J Reprod Dev 2009; 55:283-92. [PMID: 19305126 DOI: 10.1262/jrd.20146] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The embryos of some rodents and primates can precede early development without the process of fertilization; however, they cease to develop after implantation because of restricted expressions of imprinting genes. Asexually developed embryos are classified into parthenote/gynogenote and androgenote by their genomic origins. Embryonic stem cells (ESCs) derived from asexual origins have also been reported. To date, ESCs derived from parthenogenetic embryos (PgESCs) have been established in some species, including humans, and the possibility to be alternative sources for autologous cell transplantation in regenerative medicine has been proposed. However, some developmental characteristics, which might be important for therapeutic applications, such as multiple differentiation capacity and transplantability of the ESCs of androgenetic origin (AgESCs) are uncertain. Here, we induced differentiation of mouse AgESCs and observed derivation of neural cells, cardiomyocytes and hepatocytes in vitro. Following differentiated embryoid body (EB) transplantation in various mouse strains including the strain of origin, we found that the EBs could engraft in theoretically MHC-matched strains. Our results indicate that AgESCs possess at least two important characteristics, multiple differentiation properties in vitro and transplantability after differentiation, and suggest that they can also serve as a source of histocompatible tissues for transplantation.
Collapse
Affiliation(s)
- Takeshi Teramura
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Mie University.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Shiura H, Nakamura K, Hikichi T, Hino T, Oda K, Suzuki-Migishima R, Kohda T, Kaneko-ishino T, Ishino F. Paternal deletion of Meg1/Grb10 DMR causes maternalization of the Meg1/Grb10 cluster in mouse proximal Chromosome 11 leading to severe pre- and postnatal growth retardation. Hum Mol Genet 2009; 18:1424-38. [PMID: 19174477 DOI: 10.1093/hmg/ddp049] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Mice with maternal duplication of proximal Chromosome 11 (MatDp(prox11)), where Meg1/Grb10 is located, exhibit pre- and postnatal growth retardation. To elucidate the responsible imprinted gene for the growth abnormality, we examined the precise structure and regulatory mechanism of this imprinted region and generated novel model mice mimicking the pattern of imprinted gene expression observed in the MatDp(prox11) by deleting differentially methylated region of Meg1/Grb10 (Meg1-DMR). It was found that Cobl and Ddc, the neighboring genes of Meg1/Grb10, also comprise the imprinted region. We also found that the mouse-specific repeat sequence consisting of several CTCF-binding motifs in the Meg1-DMR functions as a silencer, suggesting that the Meg1/Grb10 imprinted region adopted a different regulatory mechanism from the H19/Igf2 region. Paternal deletion of the Meg1-DMR (+/DeltaDMR) caused both upregulation of the maternally expressed Meg1/Grb10 Type I in the whole body and Cobl in the yolk sac and loss of paternally expressed Meg1/Grb10 Type II and Ddc in the neonatal brain and heart, respectively, demonstrating maternalization of the entire Meg1/Grb10 imprinted region. We confirmed that the +/DeltaDMR mice exhibited the same growth abnormalities as the MatDp(prox11) mice. Fetal and neonatal growth was very sensitive to the expression level of Meg1/Grb10 Type I, indicating that the 2-fold increment of the Meg1/Grb10 Type I is one of the major causes of the growth retardation observed in the MatDp(prox11) and +/DeltaDMR mice. This suggests that the corresponding human GRB10 Type I plays an important role in the etiology of Silver-Russell syndrome caused by partial trisomy of 7p11-p13.
Collapse
Affiliation(s)
- Hirosuke Shiura
- Department of Epigenetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Henckel A, Feil R. [Differential epigenetic marking on imprinted genes and consequences in human diseases]. Med Sci (Paris) 2008; 24:747-52. [PMID: 18789223 DOI: 10.1051/medsci/20082489747] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
At the time of fertilisation, the parental genomes have a strikingly different organisation. Sperm DNA is packaged globally with protamines, whereas the oocyte's genome is wrapped around nucleosomes. The maternal and paternal genomes are functionally different as well, and are both required for normal uterine and postnatal development. The functional requirement of both parental genomes is a consequence of differential epigenetic marking by DNA methylation during oogenesis and spermatogenesis, on a group of genes called imprinted genes. After fertilisation, these parental marks persist throughout development and convey the allelic expression of imprinted genes. Pathological perturbation of methylation imprints, before fertilisation in the germ cells, or during development, gives rise to growth-related syndromes, and is frequently observed in cancer as well. Alteration of imprints is thought to occur early in carcinogenesis and shows similarities with the acquisition of aberrant DNA methylation at tumour suppressor genes. This suggests that similar underlying mechanisms could be involved.
Collapse
Affiliation(s)
- Amandine Henckel
- Institut de Génétique Moléculaire de Montpellier, CNRS et Université de Montpellier, 34293 Montpellier Cedex 5, France
| | | |
Collapse
|
57
|
Abstract
Genomic imprinting results in the expression of genes in a parent-of-origin-dependent manner. The mechanism and developmental consequences of genomic imprinting are most well characterized in mammals, plants, and certain insect species (e.g., sciarid flies and coccid insects). However, researchers have observed imprinting phenomena in species in which imprinting of endogenous genes is not known to exist or to be developmentally essential. In this review, I survey the known mechanisms of imprinting, focusing primarily on examples from mammals, where imprinting is relatively well characterized. Where appropriate, I draw attention to imprinting mechanisms in other organisms to compare and contrast how diverse organisms employ different strategies to perform the same process. I discuss how the various mechanisms come into play in the context of the imprint life cycle. Finally, I speculate why imprinting may be more widely prevalent than previously thought.
Collapse
Affiliation(s)
- Ky Sha
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| |
Collapse
|
58
|
Li X, Ito M, Zhou F, Youngson N, Zuo X, Leder P, Ferguson-Smith AC. A maternal-zygotic effect gene, Zfp57, maintains both maternal and paternal imprints. Dev Cell 2008; 15:547-57. [PMID: 18854139 DOI: 10.1016/j.devcel.2008.08.014] [Citation(s) in RCA: 448] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 06/20/2008] [Accepted: 08/25/2008] [Indexed: 10/21/2022]
Abstract
The mechanisms responsible for maintaining genomic methylation imprints in mouse embryos are not understood. We generated a knockout mouse in the Zfp57 locus encoding a KRAB zinc finger protein. Loss of just the zygotic function of Zfp57 causes partial neonatal lethality, whereas eliminating both the maternal and zygotic functions of Zfp57 results in a highly penetrant embryonic lethality. In oocytes, absence of Zfp57 results in failure to establish maternal methylation imprints at the Snrpn imprinted region. Intriguingly, methylation imprints are reacquired specifically at the maternally derived Snrpn imprinted region when the zygotic Zfp57 is present in embryos. This suggests that there may be DNA methylation-independent memory for genomic imprints. Zfp57 is also required for the postfertilization maintenance of maternal and paternal methylation imprints at multiple imprinted domains. The effects on genomic imprinting are consistent with the maternal-zygotic lethality of Zfp57 mutants.
Collapse
Affiliation(s)
- Xiajun Li
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
59
|
Okamura K, Wintle RF, Scherer SW. Characterization of the differentially methylated region of the Impact gene that exhibits Glires-specific imprinting. Genome Biol 2008; 9:R160. [PMID: 19014519 PMCID: PMC2614492 DOI: 10.1186/gb-2008-9-11-r160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 11/13/2008] [Indexed: 11/29/2022] Open
Abstract
Comparative genomic analysis of the Impact locus, which is imprinted in Glires but not in other mammals, reveals features required for genomic imprinting. Background Imprinted genes are exclusively expressed from one of the two parental alleles in a parent-of-origin-specific manner. In mammals, nearly 100 genes are documented to be imprinted. To understand the mechanism behind this gene regulation and to identify novel imprinted genes, common features of DNA sequences have been analyzed; however, the general features required for genomic imprinting have not yet been identified, possibly due to variability in underlying molecular mechanisms from locus to locus. Results We performed a thorough comparative genomic analysis of a single locus, Impact, which is imprinted only in Glires (rodents and lagomorphs). The fact that Glires and primates diverged from each other as recent as 70 million years ago makes comparisons between imprinted and non-imprinted orthologues relatively reliable. In species from the Glires clade, Impact bears a differentially methylated region, whereby the maternal allele is hypermethylated. Analysis of this region demonstrated that imprinting was not associated with the presence of direct tandem repeats nor with CpG dinucleotide density. In contrast, a CpG periodicity of 8 bp was observed in this region in species of the Glires clade compared to those of carnivores, artiodactyls, and primates. Conclusions We show that tandem repeats are dispensable, establishment of the differentially methylated region does not rely on G+C content and CpG density, and the CpG periodicity of 8 bp is meaningful to the imprinting. This interval has recently been reported to be optimal for de novo methylation by the Dnmt3a-Dnmt3L complex, suggesting its importance in the establishment of imprinting in Impact and other genes.
Collapse
Affiliation(s)
- Kohji Okamura
- The Centre for Applied Genomics, Program in Genetics and Genome Biology, The Hospital for Sick Children, MaRS Centre TMDT, 101 College Street, Toronto, Ontario M5G 1L7, Canada.
| | | | | |
Collapse
|
60
|
Lambertini L, Diplas AI, Lee MJ, Sperling R, Chen J, Wetmur J. A sensitive functional assay reveals frequent loss of genomic imprinting in human placenta. Epigenetics 2008; 3:261-9. [PMID: 18769151 DOI: 10.4161/epi.3.5.6755] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Loss of imprinting (LOI) is the gain of expression from the silent allele of an imprinted gene normally expressed from only one parental copy. LOI has been associated with neurodevelopmental disorders and reproductive abnormalities. The mechanisms of imprinting are varied, with DNA methylation representing only one. We have developed a functional transcriptional assay for LOI that is not limited to a single mechanism of imprinting. The method employs allele-specific PCR analysis of RT-PCR products containing common readout polymorphisms. With this method, we are able to measure LOI at the sensitivity of 1%. The method has been applied to measurement of LOI in human placentas. We found that RNA was stable in placentas stored for more than one hour at 4 degrees C following delivery. We analyzed a test panel of 26 genes known to be imprinted in the human genome. We found that 18 genes were expressed in placenta. Fourteen of the 18 expressed genes contained common readout polymorphisms in the transcripts with a minor allele frequency >20%. We found that 5 of the 14 genes were not imprinted in placenta. Using the remaining nine genes, we examined 93 heterozygosities in 27 samples. The range of LOI was 0%-96%. Among the 93 heterozygosities, we found 23 examples (25%) had LOI >3% and eight examples (9%) had LOI 1-3%. Our results indicate that LOI is common in human placentas. Because LOI in placenta is common, it may be an important new biomarker for influences on prenatal epigenetics.
Collapse
Affiliation(s)
- Luca Lambertini
- Department of Community and Preventive Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | |
Collapse
|
61
|
Lindroth AM, Park YJ, McLean CM, Dokshin GA, Persson JM, Herman H, Pasini D, Miró X, Donohoe ME, Lee JT, Helin K, Soloway PD. Antagonism between DNA and H3K27 methylation at the imprinted Rasgrf1 locus. PLoS Genet 2008; 4:e1000145. [PMID: 18670629 PMCID: PMC2475503 DOI: 10.1371/journal.pgen.1000145] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Accepted: 06/30/2008] [Indexed: 12/18/2022] Open
Abstract
At the imprinted Rasgrf1 locus in mouse, a cis-acting sequence controls DNA methylation at a differentially methylated domain (DMD). While characterizing epigenetic marks over the DMD, we observed that DNA and H3K27 trimethylation are mutually exclusive, with DNA and H3K27 methylation limited to the paternal and maternal sequences, respectively. The mutual exclusion arises because one mark prevents placement of the other. We demonstrated this in five ways: using 5-azacytidine treatments and mutations at the endogenous locus that disrupt DNA methylation; using a transgenic model in which the maternal DMD inappropriately acquired DNA methylation; and by analyzing materials from cells and embryos lacking SUZ12 and YY1. SUZ12 is part of the PRC2 complex, which is needed for placing H3K27me3, and YY1 recruits PRC2 to sites of action. Results from each experimental system consistently demonstrated antagonism between H3K27me3 and DNA methylation. When DNA methylation was lost, H3K27me3 encroached into sites where it had not been before; inappropriate acquisition of DNA methylation excluded normal placement of H3K27me3, and loss of factors needed for H3K27 methylation enabled DNA methylation to appear where it had been excluded. These data reveal the previously unknown antagonism between H3K27 and DNA methylation and identify a means by which epigenetic states may change during disease and development. Methylation of DNA and histones exert profound and inherited effects on gene expression. These occur without changes to the underlying DNA sequence and are considered epigenetic effects. Disrupting epigenetic states can cause developmental abnormalities and cancer. Very little is known about how locations in the mammalian genome are chosen to receive these chemical modifications, or how their placement is regulated. We have identified a DNA sequence that acts as a methylation programmer at the Rasgrf1 locus in mice. It is required for methylation of nearby DNA sequences and can also influence the levels of local histone methylation. The methylation programmer has different effects on paternally and maternally derived chromosomes, directing DNA methylation on the paternal allele and histone H3 lysine 27 trimethylation on the maternal allele. These two methylation marks are not only mutually exclusive; they are also mutually antagonizing, whereby one blocks the placement of the other. Manipulations that cause aberrant changes in the levels of one of these marks had the opposite effect on the other mark. These observations identify novel mechanisms that specify epigenetic states in vivo and provide a framework for understanding how pathological epigenetic changes can arise, including those emerging at tumor suppressors during carcinogenesis.
Collapse
Affiliation(s)
- Anders M. Lindroth
- Division of Nutritional Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States of America
| | - Yoon Jung Park
- Division of Nutritional Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States of America
| | - Chelsea M. McLean
- Division of Nutritional Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States of America
| | - Gregoriy A. Dokshin
- Division of Nutritional Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States of America
| | - Jenna M. Persson
- Division of Nutritional Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States of America
| | - Herry Herman
- Division of Nutritional Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States of America
- Department of Orthopaedic Surgery, School of Medicine, Padjadjaran State University–Hasan Sadikin General Hospital, Bandung, West Java, Indonesia
| | - Diego Pasini
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
- Centre for Epigenetics, University of Copenhagen, Copenhagen, Denmark
| | - Xavier Miró
- Department of Molecular Cell Biology, Max-Planck-Institute of Biophysical Chemistry, Göttingen, Germany
| | - Mary E. Donohoe
- Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Jeannie T. Lee
- Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Kristian Helin
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
- Centre for Epigenetics, University of Copenhagen, Copenhagen, Denmark
| | - Paul D. Soloway
- Division of Nutritional Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
62
|
Kato Y, Kaneda M, Hata K, Kumaki K, Hisano M, Kohara Y, Okano M, Li E, Nozaki M, Sasaki H. Role of the Dnmt3 family in de novo methylation of imprinted and repetitive sequences during male germ cell development in the mouse. Hum Mol Genet 2007; 16:2272-80. [PMID: 17616512 DOI: 10.1093/hmg/ddm179] [Citation(s) in RCA: 370] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
DNA methylation is an important epigenetic modification regulating various biological phenomena, including genomic imprinting and transposon silencing. It is known that methylation of the differentially methylated regions (DMRs) associated with paternally imprinted genes and of some repetitive elements occurs during male germ cell development in the mouse. We have performed a detailed methylation analysis of the paternally methylated DMRs (H19, Dlk1/Gtl2 and Rasgrf1), interspersed repeats [SineB1, intracisternal A particle (IAP) and Line1] and satellite repeats (major and minor) to determine the timing of this de novo methylation in male germ cells. Furthermore, we have examined the roles of the de novo methyltransferases (Dnmt3a and Dnmt3b) and related protein (Dnmt3L) in this process. We found that methylation of all DMRs and repeats occurred progressively in fetal prospermatogonia and was completed by the newborn stage. Analysis of newborn prospermatogonia from germline-specific Dnmt3a and Dnmt3b knockout mice revealed that Dnmt3a mainly methylates the H19 and Dlk1/Gtl2 DMRs and a short interspersed repeat SineB1. Both Dnmt3a and Dnmt3b were involved in the methylation of Rasgrf1 DMR and long interspersed repeats IAP and Line1. Only Dnmt3b was required for the methylation of the satellite repeats. These results indicate both common and differential target specificities of Dnmt3a and Dnmt3b in vivo. Finally, all these sequences showed moderate to severe hypomethylation in Dnmt3L-deficient prospermatogonia, indicating the critical function and broad specificity of this factor in de novo methylation.
Collapse
Affiliation(s)
- Yuzuru Kato
- Department of Integrated Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Jia D, Jurkowska RZ, Zhang X, Jeltsch A, Cheng X. Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature 2007; 449:248-51. [PMID: 17713477 PMCID: PMC2712830 DOI: 10.1038/nature06146] [Citation(s) in RCA: 600] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Accepted: 08/06/2007] [Indexed: 12/14/2022]
Abstract
Genetic imprinting, found in flowering plants and placental mammals, uses DNA methylation to yield gene expression that is dependent on the parent of origin. DNA methyltransferase 3a (Dnmt3a) and its regulatory factor, DNA methyltransferase 3-like protein (Dnmt3L), are both required for the de novo DNA methylation of imprinted genes in mammalian germ cells. Dnmt3L interacts specifically with unmethylated lysine 4 of histone H3 through its amino-terminal PHD (plant homeodomain)-like domain. Here we show, with the use of crystallography, that the carboxy-terminal domain of human Dnmt3L interacts with the catalytic domain of Dnmt3a, demonstrating that Dnmt3L has dual functions of binding the unmethylated histone tail and activating DNA methyltransferase. The complexed C-terminal domains of Dnmt3a and Dnmt3L showed further dimerization through Dnmt3a-Dnmt3a interaction, forming a tetrameric complex with two active sites. Substitution of key non-catalytic residues at the Dnmt3a-Dnmt3L interface or the Dnmt3a-Dnmt3a interface eliminated enzymatic activity. Molecular modelling of a DNA-Dnmt3a dimer indicated that the two active sites are separated by about one DNA helical turn. The C-terminal domain of Dnmt3a oligomerizes on DNA to form a nucleoprotein filament. A periodicity in the activity of Dnmt3a on long DNA revealed a correlation of methylated CpG sites at distances of eight to ten base pairs, indicating that oligomerization leads Dnmt3a to methylate DNA in a periodic pattern. A similar periodicity is observed for the frequency of CpG sites in the differentially methylated regions of 12 maternally imprinted mouse genes. These results suggest a basis for the recognition and methylation of differentially methylated regions in imprinted genes, involving the detection of both nucleosome modification and CpG spacing.
Collapse
Affiliation(s)
- Da Jia
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|
64
|
Khatib H, Zaitoun I, Kim ES. Comparative analysis of sequence characteristics of imprinted genes in human, mouse, and cattle. Mamm Genome 2007; 18:538-47. [PMID: 17653590 PMCID: PMC2000230 DOI: 10.1007/s00335-007-9039-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Accepted: 05/23/2007] [Indexed: 01/27/2023]
Abstract
Genomic imprinting is an epigenetic mechanism that results in monoallelic expression of genes depending on parent-of-origin of the allele. Although the conservation of genomic imprinting among mammalian species has been widely reported for many genes, there is accumulating evidence that some genes escape this conservation. Most known imprinted genes have been identified in the mouse and human, with few imprinted genes reported in cattle. Comparative analysis of genomic imprinting across mammalian species would provide a powerful tool for elucidating the mechanisms regulating the unique expression of imprinted genes. In this study we analyzed the imprinting of 22 genes in human, mouse, and cattle and found that in only 11 was imprinting conserved across the three species. In addition, we analyzed the occurrence of the sequence elements CpG islands, C + G content, tandem repeats, and retrotransposable elements in imprinted and in nonimprinted (control) cattle genes. We found that imprinted genes have a higher G + C content and more CpG islands and tandem repeats. Short interspersed nuclear elements (SINEs) were notably fewer in number in imprinted cattle genes compared to control genes, which is in agreement with previous reports for human and mouse imprinted regions. Long interspersed nuclear elements (LINEs) and long terminal repeats (LTRs) were found to be significantly underrepresented in imprinted genes compared to control genes, contrary to reports on human and mouse. Of considerable significance was the finding of highly conserved tandem repeats in nine of the genes imprinted in all three species.
Collapse
Affiliation(s)
- Hasan Khatib
- Department of Dairy Science, University of Wisconsin-Madison, 1675 Observatory Dr., Madison, Wisconsin, 53706, USA.
| | | | | |
Collapse
|
65
|
Edwards CA, Ferguson-Smith AC. Mechanisms regulating imprinted genes in clusters. Curr Opin Cell Biol 2007; 19:281-9. [PMID: 17467259 DOI: 10.1016/j.ceb.2007.04.013] [Citation(s) in RCA: 303] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Accepted: 04/16/2007] [Indexed: 12/20/2022]
Abstract
Clustered imprinted genes are regulated by differentially methylated imprinting control regions (ICRs) that affect gene activity and repression in cis over a large region. Although a primary imprint signal for each of these clusters is DNA methylation, different mechanisms are used to establish and maintain these marks. The majority of ICRs are methylated in the maternal germline and are usually promoters for antisense transcripts whose elongation is associated with imprinting control in the domain. In contrast, ICRs methylated in the paternal germline do not appear to act as promoters and are located between genes. At least one, at the Igf2/H19 locus, is known to function as an insulator. Analysis of ICRs suggests that maternal and paternal methylation imprints function in distinct ways.
Collapse
Affiliation(s)
- Carol A Edwards
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | | |
Collapse
|
66
|
Hiura H, Komiyama J, Shirai M, Obata Y, Ogawa H, Kono T. DNA methylation imprints on the IG-DMR of the Dlk1-Gtl2 domain in mouse male germline. FEBS Lett 2007; 581:1255-60. [PMID: 17349634 DOI: 10.1016/j.febslet.2007.02.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2006] [Revised: 02/13/2007] [Accepted: 02/13/2007] [Indexed: 11/26/2022]
Abstract
Mouse genomes show a large cluster of imprinted genes at the Dlk1-Gtl2 domain in the distal region of chromosome 12. An intergenic-differentially methylated region (IG-DMR) located between Dlk1 and Gtl2 is specifically methylated in the male germline; IG-DMR regulates the parental allele-specific expression of imprinted genes. Here, we show the resetting of IG-DMR methylation marks during male germ-cell differentiation. For parental allele-specific methylation analysis, polymorphisms were detected in a 2.6-kb IG-DMR in three mouse strains. Bisulfite methylation analysis showed erasure of the marks by E14 and re-establishment before birth. The IG-DMR methylation status was maintained in spermatogonia and spermatocytes of mature testes. The IG-DMR methylation status established before birth is thus maintained throughout the lifetime in the male germline.
Collapse
Affiliation(s)
- Hitoshi Hiura
- Department of BioScience, Tokyo University of Agriculture, 1-1-1, Sakuragaoka, Tokyo 156-8502, Japan
| | | | | | | | | | | |
Collapse
|
67
|
Delaval K, Govin J, Cerqueira F, Rousseaux S, Khochbin S, Feil R. Differential histone modifications mark mouse imprinting control regions during spermatogenesis. EMBO J 2007; 26:720-9. [PMID: 17255950 PMCID: PMC1794379 DOI: 10.1038/sj.emboj.7601513] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Accepted: 11/27/2006] [Indexed: 01/14/2023] Open
Abstract
Only some imprinting control regions (ICRs) acquire their DNA methylation in the male germ line. These imprints are protected against the global demethylation of the sperm genome following fertilisation, and are maintained throughout development. We find that in somatic cells and tissues, DNA methylation at these ICRs is associated with histone H4-lysine-20 and H3-lysine-9 trimethylation. The unmethylated allele, in contrast, has H3-lysine-4 dimethylation and H3 acetylation. These differential modifications are also detected at maternally methylated ICRs, and could be involved in the somatic maintenance of imprints. To explore whether the post-fertilisation protection of imprints relates to events during spermatogenesis, we assayed chromatin at stages preceding the global histone-to-protamine exchange. At these stages, H3-lysine-4 methylation and H3 acetylation are enriched at maternally methylated ICRs, but are absent at paternally methylated ICRs. H4 acetylation is enriched at all regions analysed. Thus, paternally and maternally methylated ICRs carry different histone modifications during the stages preceding the global histone-to-protamine exchange. These differences could influence the way ICRs are assembled into specific structures in late spermatogenesis, and may thus influence events after fertilisation.
Collapse
Affiliation(s)
- Katia Delaval
- Institute of Molecular Genetics, CNRS and University of Montpellier II, Montpellier, France
| | - Jérôme Govin
- INSERM, U309, Institut Albert Bonniot, Grenoble, France
- Université Joseph Fourier, Grenoble, France
| | - Frédérique Cerqueira
- Institute of Molecular Genetics, CNRS and University of Montpellier II, Montpellier, France
| | - Sophie Rousseaux
- INSERM, U309, Institut Albert Bonniot, Grenoble, France
- Université Joseph Fourier, Grenoble, France
| | - Saadi Khochbin
- INSERM, U309, Institut Albert Bonniot, Grenoble, France
- Université Joseph Fourier, Grenoble, France
| | - Robert Feil
- Institute of Molecular Genetics, CNRS and University of Montpellier II, Montpellier, France
| |
Collapse
|
68
|
Abstract
Imprinted genes are monoallelically expressed in a parent-of-origin-specific manner, but for many genes reported to be imprinted, the occurrence of preferential expression--where both alleles are expressed but one is expressed more strongly than the other in a parent-of-origin-specific way--has been reported. This preferential expression found in genes described as imprinted has not been thoroughly addressed in genomic imprinting studies. To study this phenomenon, 50 genes, reported to be imprinted in the mouse, were chosen for investigation. Preferential expression was observed for 21 of 27 maternally expressed genes. However, only 5 of 23 paternally expressed genes showed preferential expression. Recently, it has been reported that a remarkable proportion of non-imprinted genes show differential allelic expression. If there is overlap between non-imprinted genes that are differentially expressed and imprinted genes that are preferentially expressed, we need to set new definitions of imprinted genes that, in turn, would probably lead to reassessments of the total number of imprinted genes in mammalian species.
Collapse
Affiliation(s)
- Hasan Khatib
- Department of Dairy Science, 1675 Observatory Drive, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
69
|
Kawahara M, Wu Q, Yaguchi Y, Ferguson-Smith AC, Kono T. Complementary roles of genes regulated by two paternally methylated imprinted regions on chromosomes 7 and 12 in mouse placentation. Hum Mol Genet 2006; 15:2869-79. [PMID: 16923795 DOI: 10.1093/hmg/ddl228] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Imprinted genes have prominent effects on placentation; however, there is limited knowledge about the manner in which the genes controlled by two paternally methylated regions on chromosomes 7 and 12 contribute to placentation. In order to clarify the functions of these genes in mouse placentation, we examined transcription levels of the paternally methylated genes, tissue differentiation and development and the circulatory system in placentae derived from three types of bi-maternal conceptuses that contained genomes of non-growing (ng) and fully grown (fg) oocytes. The genetic backgrounds of the ng oocytes were as follows: one was derived from the wild-type (ngWT) and another from mutant mice carrying a 13 kb deletion in the H19 transcription unit including the germline-derived differentially methylated region (H19-DMR) on chromosome 7 (ngDeltach7). Another set of oocytes was derived from mutant mice carrying a 4.15 kb deletion in the intergenic germline-derived DMR (IG-DMR) on chromosome 12 (ngDeltach12). Although placental mass was lower in the ngWT/fg placentae compared with that in the WT placentae, it was recovered in the ngDeltach7/fg placentae, but not in the ngDeltach12/fg placentae. The ngDeltach7/fg placental growth improvement was associated with severe dysplasia such as an expanded spongiotrophoblast layer and a malformed labyrinthine zone. In contrast, the ngDeltach12/fg placentae retained the layer structures with expanded giant cells, but their total masses were smaller with a normal circulatory system in order. Our findings demonstrate that the genes controlled by the two paternally methylated regions, H19-DMR and IG-DMR, complementarily organize placentation.
Collapse
Affiliation(s)
- Manabu Kawahara
- Department of BioScience and Electron Microscope Centre, Tokyo University of Agriculture, Japan
| | | | | | | | | |
Collapse
|