51
|
Matrix Metalloproteinases in Cerebral Vasospasm following Aneurysmal Subarachnoid Hemorrhage. Neurol Res Int 2013; 2013:943761. [PMID: 23691315 PMCID: PMC3649803 DOI: 10.1155/2013/943761] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 03/09/2013] [Indexed: 12/13/2022] Open
Abstract
Delayed cerebral vasospasm is a significant cause of morbidity and mortality following aneurysmal subarachnoid hemorrhage (SAH). While the cellular mechanisms underlying vasospasm remain unclear, it is believed that inflammation may play a critical role in vasospasm. Matrix metalloproteinasees (MMPs) are a family of extracellular and membrane-bound proteases capable of degrading the blood-rain barrier (BBB). As such, MMP upregulation following SAH may result in a proinflammatory extravascular environment capable of inciting delayed cerebral vasospasm. This paper presents an overview of MMPs and describes existing data pertinent to delayed cerebral vasospasm.
Collapse
|
52
|
LI XIONG, WANG RONG, WANG XUEJIANG, XUE XIAOWEI, RAN DUAN, WANG SHUO. Relevance of IL-6 and MMP-9 to cerebral arteriovenous malformation and hemorrhage. Mol Med Rep 2013; 7:1261-6. [DOI: 10.3892/mmr.2013.1332] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 02/08/2013] [Indexed: 11/06/2022] Open
|
53
|
Thundyil J, Manzanero S, Pavlovski D, Cully TR, Lok KZ, Widiapradja A, Chunduri P, Jo DG, Naruse C, Asano M, Launikonis BS, Sobey CG, Coulthard MG, Arumugam TV. Evidence that the EphA2 receptor exacerbates ischemic brain injury. PLoS One 2013; 8:e53528. [PMID: 23308246 PMCID: PMC3538581 DOI: 10.1371/journal.pone.0053528] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 11/28/2012] [Indexed: 12/17/2022] Open
Abstract
Ephrin (Eph) signaling within the central nervous system is known to modulate axon guidance, synaptic plasticity, and to promote long-term potentiation. We investigated the potential involvement of EphA2 receptors in ischemic stroke-induced brain inflammation in a mouse model of focal stroke. Cerebral ischemia was induced in male C57Bl6/J wild-type (WT) and EphA2-deficient (EphA2−/−) mice by middle cerebral artery occlusion (MCAO; 60 min), followed by reperfusion (24 or 72 h). Brain infarction was measured using triphenyltetrazolium chloride staining. Neurological deficit scores and brain infarct volumes were significantly less in EphA2−/− mice compared with WT controls. This protection by EphA2 deletion was associated with a comparative decrease in brain edema, blood-brain barrier damage, MMP-9 expression and leukocyte infiltration, and higher expression levels of the tight junction protein, zona occludens-1. Moreover, EphA2−/− brains had significantly lower levels of the pro-apoptotic proteins, cleaved caspase-3 and BAX, and higher levels of the anti-apoptotic protein, Bcl-2 as compared to WT group. We confirmed that isolated WT cortical neurons express the EphA2 receptor and its ligands (ephrin-A1–A3). Furthermore, expression of all four proteins was increased in WT primary cortical neurons following 24 h of glucose deprivation, and in the brains of WT mice following stroke. Glucose deprivation induced less cell death in primary neurons from EphA2−/− compared with WT mice. In conclusion, our data provide the first evidence that the EphA2 receptor directly contributes to blood-brain barrier damage and neuronal death following ischemic stroke.
Collapse
Affiliation(s)
- John Thundyil
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, Australia
| | - Silvia Manzanero
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, Australia
| | - Dale Pavlovski
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, Australia
| | - Tanya R. Cully
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, Australia
| | - Ker-Zhing Lok
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, Australia
| | - Alexander Widiapradja
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, Australia
| | - Prasad Chunduri
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, Australia
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Chie Naruse
- Division of Transgenic Animal Science, Advanced Science Research Center, Kanazawa University, 13-1 Takara-machi, Kanazawa, Japan
| | - Masahide Asano
- Division of Transgenic Animal Science, Advanced Science Research Center, Kanazawa University, 13-1 Takara-machi, Kanazawa, Japan
| | - Bradley S. Launikonis
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, Australia
| | - Christopher G. Sobey
- Vascular Biology and Immunopharmacology Group, Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Mark G. Coulthard
- Academic Discipline of Paediatrics and Child Health, University of Queensland, Royal Children’s Hospital, Herston, Queensland, Australia
- Paediatric Intensive Care Unit, Royal Children's Hospital, Herston, Queensland, Australia
- Queensland Children’s Medical Research Institute, Royal Children's Hospital, Herston, Queensland, Australia
| | - Thiruma V. Arumugam
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, Australia
- * E-mail:
| |
Collapse
|
54
|
Maddahi A, Povlsen GK, Edvinsson L. Regulation of enhanced cerebrovascular expression of proinflammatory mediators in experimental subarachnoid hemorrhage via the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase pathway. J Neuroinflammation 2012; 9:274. [PMID: 23259581 PMCID: PMC3573995 DOI: 10.1186/1742-2094-9-274] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 11/29/2012] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Subarachnoid hemorrhage (SAH) is associated with high morbidity and mortality. It is suggested that the associated inflammation is mediated through activation of the mitogen-activated protein kinase (MAPK) pathway which plays a crucial role in the pathogenesis of delayed cerebral ischemia after SAH. The aim of this study was first to investigate the timecourse of altered expression of proinflammatory cytokines and matrix metalloproteinase in the cerebral arteries walls following SAH. Secondly, we investigated whether administration of a specific mitogen-activated protein kinase kinase (MEK)1/2 inhibitor, U0126, given at 6 h after SAH prevents activation of the MEK/extracellular signal-regulated kinase 1/2 pathway and the upregulation of cerebrovascular inflammatory mediators and improves neurological function. METHODS SAH was induced in rats by injection of 250 μl of autologous blood into basal cisterns. U0126 was given intracisternally using two treatment regimens: (A) treatments at 6, 12, 24 and 36 h after SAH and experiments terminated at 48 h after SAH, or (B) treatments at 6, 12, and 24 h after SAH and terminated at 72 h after SAH. Cerebral arteries were harvested and interleukin (IL)-6, IL-1β, tumor necrosis factor α (TNF)α, matrix metalloproteinase (MMP)-9 and phosphorylated ERK1/2 (pERK1/2) levels investigated by immunohistochemistry. Early activation of pERK1/2 was measured by western blot. Functional neurological outcome after SAH was also analyzed. RESULTS Expression levels of IL-1β, IL-6, MMP-9 and pERK1/2 proteins were elevated over time with an early increase at around 6 h and a late peak at 48 to 72 h post-SAH in cerebral arteries. Enhanced expression of TNFα in cerebral arteries started at 24 h and increased until 96 h. In addition, SAH induced sensorimotor and spontaneous behavior deficits in the animals. Treatment with U0126 starting at 6 h after SAH prevented activation of MEK-ERK1/2 signaling. Further, U0126 significantly decreased the upregulation of inflammation proteins at 48 and 72 h following SAH and improved neurological function. We found no differences between treatment regimens A and B. CONCLUSIONS These results show that SAH induces early activation of the MEK-ERK1/2 pathway in cerebral artery walls, which is associated with upregulation of proinflammatory cytokines and MMP-9. Inhibition of the MEK-ERK1/2 pathway by U0126 starting at 6 h post-SAH prevented upregulation of cytokines and MMP-9 in cerebral vessels, and improved neurological outcome.
Collapse
Affiliation(s)
- Aida Maddahi
- Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, Lund, Sweden.
| | | | | |
Collapse
|
56
|
Potential contribution of hypoxia-inducible factor-1α, aquaporin-4, and matrix metalloproteinase-9 to blood-brain barrier disruption and brain edema after experimental subarachnoid hemorrhage. J Mol Neurosci 2012; 48:273-80. [PMID: 22528459 DOI: 10.1007/s12031-012-9769-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 04/01/2012] [Indexed: 01/27/2023]
Abstract
The current research aimed to investigate the role of hypoxia-inducible factor-1α (HIF-1α), aquaporin-4 (AQP-4), and matrix metalloproteinase-9 (MMP-9) in blood-brain barrier (BBB) dysfunction and cerebral edema formation in a rat subarachnoid hemorrhage (SAH) model. The SAH model was induced by injection of 0.3 ml fresh arterial, non-heparinized blood into the prechiasmatic cistern in 20 s. Anti-AQP-4 antibody, minocycline (an inhibitor of MMP-9), or 2-methoxyestradiol (an inhibitor of HIF-1α), was administered intravenously at 2 and 24 h after SAH. Brain samples were extracted at 48 h after SAH and examined for protein expressions, BBB impairment, and brain edema. Following SAH, remarkable edema and BBB extravasations were observed. Compared with the control group, the SAH animals have significantly upregulated expressions of HIF-1α, AQP-4, and MMP-9, in addition to decreased amounts of laminin and tight junction proteins. Brain edema was repressed after inhibition of AQP-4, MMP-9, or HIF-1α. Although BBB permeability was also ameliorated after inhibition of either HIF-1α or MMP-9, it was not modulated after inhibition of AQP-4. Inhibition of MMP-9 reversed the loss of laminin. Finally, inhibition of HIF-1α significantly suppressed the level of AQP-4 and MMP-9, which could induce the expression of laminin and tight junction proteins. Our results suggest that HIF-1α plays a role in brain edema formation and BBB disruption via a molecular signaling pathway involving AQP-4 and MMP-9. Pharmacological intervention of this pathway in patients with SAH may provide a novel therapeutic strategy for early brain injury.
Collapse
|