51
|
Liu C, Li L, Guo D, Lv Y, Zheng X, Mo Z, Xie W. Lipoprotein lipase transporter GPIHBP1 and triglyceride-rich lipoprotein metabolism. Clin Chim Acta 2018; 487:33-40. [PMID: 30218660 DOI: 10.1016/j.cca.2018.09.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/11/2018] [Accepted: 09/11/2018] [Indexed: 02/05/2023]
Abstract
Increased plasma triglyceride serves as an independent risk factor for cardiovascular disease (CVD). Lipoprotein lipase (LPL), which hydrolyzes circulating triglyceride, plays a crucial role in normal lipid metabolism and energy balance. Hypertriglyceridemia is possibly caused by gene mutations resulting in LPL dysfunction. There are many factors that both positively and negatively interact with LPL thereby impacting TG lipolysis. Glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPIHBP1), a newly identified factor, appears essential for transporting LPL to the luminal side of the blood vessel and offering a platform for TG hydrolysis. Numerous lines of evidence indicate that GPIHBP1 exerts distinct functions and plays diverse roles in human triglyceride-rich lipoprotein (TRL) metabolism. In this review, we discuss the GPIHBP1 gene, protein, its expression and function and subsequently focus on its regulation and provide critical evidence supporting its role in TRL metabolism. Underlying mechanisms of action are highlighted, additional studies discussed and potential therapeutic targets reviewed.
Collapse
Affiliation(s)
- Chuhao Liu
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, Hunan, China; 2016 Class of Excellent Doctor, University of South China, Hengyang 421001, Hunan, China
| | - Liang Li
- Department of Pathophysiology, University of South China, Hengyang 421001, Hunan, China
| | - Dongming Guo
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, Hunan, China
| | - Yuncheng Lv
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, Hunan, China
| | - XiLong Zheng
- Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Health Sciences Center, 3330 Hospital Dr NW, Calgary T2N 4N1, Alberta, Canada; Key Laboratory of Molecular Targets & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Zhongcheng Mo
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, Hunan, China.
| | - Wei Xie
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|
52
|
Lim R, Potente M. Top-NOTCH Regulation of Cardiac Metabolism. Circulation 2018; 137:2609-2612. [PMID: 29891619 DOI: 10.1161/circulationaha.118.033669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Radiance Lim
- Angiogenesis & Metabolism Laboratory, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (R.L., M.P.)
| | - Michael Potente
- Angiogenesis & Metabolism Laboratory, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (R.L., M.P.). .,International Institute of Molecular and Cell Biology, Warsaw, Poland (M.P.). German Center for Cardiovascular Research, Berlin, Germany
| |
Collapse
|
53
|
An M, Ryu DR, Won Park J, Ha Choi J, Park EM, Eun Lee K, Woo M, Kim M. ULK1 prevents cardiac dysfunction in obesity through autophagy-meditated regulation of lipid metabolism. Cardiovasc Res 2018; 113:1137-1147. [PMID: 28430962 DOI: 10.1093/cvr/cvx064] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 03/23/2017] [Indexed: 11/14/2022] Open
Abstract
Aims Autophagy is essential to maintain tissue homeostasis, particularly in long-lived cells such as cardiomyocytes. Whereas many studies support the importance of autophagy in the mechanisms underlying obesity-related cardiac dysfunction, the role of autophagy in cardiac lipid metabolism remains unclear. In the heart, lipotoxicity is exacerbated by cardiac lipoprotein lipase (LPL), which mediates accumulation of fatty acids to the heart through intravascular triglyceride (TG) hydrolysis. Methods and results In both genetic and dietary models of obesity, we observed a substantial increase in cardiac LPL protein levels without any change in messenger ribonucleic acid (mRNA). This was accompanied by a dramatic down-regulation of autophagy in the heart, as revealed by reduced levels of unc-51 like kinase-1 (ULK1) protein. To further explore the relationship between cardiac LPL and autophagy, we generated cardiomyocyte-specific knockout mice for ulk1 (Myh6-cre/ulk1fl/fl), Lpl (Myh6-cre/Lplfl/fl), and mice with a combined deficiency (Myh6-cre/ulk1fl/flLplfl/fl). Similar to genetic and dietary models of obesity, Myh6-cre/ulk1fl/fl mice had a substantial increase in cardiac LPL levels. When these mice were fed a high-fat diet (HFD), they showed elevated cardiac TG levels and deterioration in heart function. However, with combined deletion of LPL and ULK1 in Myh6-cre/ulk1fl/flLplfl/fl mice, HFD feeding did not lead to alterations in levels of TG or diacylglycerol, or in cardiac function. To further elucidate the role of autophagy in cardiac lipid metabolism, we infused a peptide that enhanced autophagy (D-Tat-beclin1). This effectively lowered LPL levels at the coronary lumen by restoring autophagy in the genetic model of obesity. This decrease in cardiac luminal LPL was associated with a reduction in TG levels and recovery of cardiac function. Conclusion These results provide clear evidence of the critical role of modulating cardiac LPL activity through autophagy-mediated proteolytic clearance as a potential novel strategy to overcome obesity-related cardiomyopathy.
Collapse
Affiliation(s)
- Minae An
- Department of Pharmacology, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Dong-Ryeol Ryu
- Department of Internal Medicine, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Jang Won Park
- Department of Orthopedic surgery, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Ji Ha Choi
- Department of Pharmacology, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Eun-Mi Park
- Department of Pharmacology, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Kyung Eun Lee
- Department of Pharmacology, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Minna Woo
- Department of Medicine, Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Minsuk Kim
- Department of Pharmacology, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
54
|
Azim K, Akkermann R, Cantone M, Vera J, Jadasz JJ, Küry P. Transcriptional Profiling of Ligand Expression in Cell Specific Populations of the Adult Mouse Forebrain That Regulates Neurogenesis. Front Neurosci 2018; 12:220. [PMID: 29740265 PMCID: PMC5925963 DOI: 10.3389/fnins.2018.00220] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/20/2018] [Indexed: 11/16/2022] Open
Abstract
In the adult central nervous system (CNS), the subventricular zone (SVZ) of the forebrain is the largest and most active source of neural stem cells (NSCs) that generates mainly neurons and few glial cells lifelong. A large body of evidence has shed light on the distinct families of signaling ligands (i.e., morphogens, growth factors, secreted molecules that alter signaling pathways) in regulating NSC biology. However, most of the research has focused on the mRNA expression of individual or few signaling ligands and their pathway components in specific cell types of the CNS in the context of neurogenesis. A single unifying study that underlines the expression of such molecules comprehensively in different cell types in spatial contexts has not yet been reported. By using whole genome transcriptome datasets of individual purified cell specific populations of the adult CNS, the SVZ niche, NSCs, glial cells, choroid plexus, and performing a bioinformatic meta-analysis of signaling ligands, their expression in the forebrain was uncovered. Therein, we report that a large plethora of ligands are abundantly expressed in the SVZ niche, largely from the vasculature than from other sources that may regulate neurogenesis. Intriguingly, this sort of analysis revealed a number of ligands with unknown functions in neurogenesis contexts that warrants further investigations. This study therefore serves as a framework for investigators in the field for understanding the expression patterns of signaling ligands and pathways regulating neurogenesis.
Collapse
Affiliation(s)
- Kasum Azim
- Department of Neurology, Neuroregeneration, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Rainer Akkermann
- Department of Neurology, Neuroregeneration, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Martina Cantone
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Julio Vera
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Janusz J Jadasz
- Department of Neurology, Neuroregeneration, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Patrick Küry
- Department of Neurology, Neuroregeneration, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
55
|
Zhao Q, Eichten A, Parveen A, Adler C, Huang Y, Wang W, Ding Y, Adler A, Nevins T, Ni M, Wei Y, Thurston G. Single-Cell Transcriptome Analyses Reveal Endothelial Cell Heterogeneity in Tumors and Changes following Antiangiogenic Treatment. Cancer Res 2018; 78:2370-2382. [PMID: 29449267 DOI: 10.1158/0008-5472.can-17-2728] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/27/2017] [Accepted: 02/12/2018] [Indexed: 11/16/2022]
Abstract
Angiogenesis involves dynamic interactions between specialized endothelial tip and stalk cells that are believed to be regulated in part by VEGF and Dll4-Notch signaling. However, our understanding of this process is hampered by limited knowledge of the heterogeneity of endothelial cells and the role of different signaling pathways in specifying endothelial phenotypes. Here, we characterized by single-cell transcriptomics the heterogeneity of mouse endothelial cells and other stromal cells during active angiogenesis in xenograft tumors as well as from adult normal heart, following pharmacologic inhibition of VEGF and Dll4-Notch signaling. We classified tumor endothelial cells into three subpopulations that appeared to correspond with tip-like, transition, and stalk-like cells. Previously identified markers for tip and stalk cells were confirmed and several novel ones discovered. Blockade of VEGF rapidly inhibited cell-cycle genes and strongly reduced the proportion of endothelial tip cells in tumors. In contrast, blockade of Dll4 promoted endothelial proliferation as well as tip cell markers; blockade of both pathways inhibited endothelial proliferation but preserved some tip cells. We also phenotypically classified other tumor stromal cells and found that tumor-associated fibroblasts responded to antiangiogenic drug treatments by upregulating hypoxia-associated genes and producing secreted factors involved in angiogenesis. Overall, our findings better define the heterogeneity of tumor endothelial and other stromal cells and reveal the roles of VEGF and Dll4-Notch in specifying tumor endothelial phenotype, highlighting the response of stromal cells to antiangiogenic therapies.Significance: These findings provide a framework for defining subpopulations of endothelial cells and tumor-associated fibroblasts and their rapid changes in gene expression following antiangiogenic treatment. Cancer Res; 78(9); 2370-82. ©2018 AACR.
Collapse
Affiliation(s)
- Qi Zhao
- Regeneron Pharmaceuticals Inc., Tarrytown, New York
| | | | - Asma Parveen
- Regeneron Pharmaceuticals Inc., Tarrytown, New York
| | | | - Ying Huang
- Regeneron Pharmaceuticals Inc., Tarrytown, New York
| | - Wei Wang
- Regeneron Pharmaceuticals Inc., Tarrytown, New York
| | - Yueming Ding
- Regeneron Pharmaceuticals Inc., Tarrytown, New York
| | | | | | - Min Ni
- Regeneron Pharmaceuticals Inc., Tarrytown, New York
| | - Yi Wei
- Regeneron Pharmaceuticals Inc., Tarrytown, New York
| | | |
Collapse
|
56
|
Li Y, Jiang Q, Ding Z, Liu G, Yu P, Jiang G, Yu Z, Yang C, Qian J, Jiang H, Zou Y. Identification of a Common Different Gene Expression Signature in Ischemic Cardiomyopathy. Genes (Basel) 2018; 9:genes9010056. [PMID: 29361784 PMCID: PMC5793207 DOI: 10.3390/genes9010056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/09/2018] [Accepted: 01/16/2018] [Indexed: 01/25/2023] Open
Abstract
The molecular mechanisms underlying the development of ischemic cardiomyopathy (ICM) remain poorly understood. Gene expression profiling is helpful to discover the molecular changes taking place in ICM. The aim of this study was to identify the genes that are significantly changed during the development of heart failure caused by ICM. The differentially expressed genes (DEGs) were identified from 162 control samples and 227 ICM patients. PANTHER was used to perform gene ontology (GO), and Reactome for pathway enrichment analysis. A protein–protein interaction network was established using STRING and Cytoscape. A further validation was performed by real-time polymerase chain reaction (RT-PCR). A total of 255 common DEGs was found. Gene ontology, pathway enrichment, and protein–protein interaction analysis showed that nucleic acid-binding proteins, enzymes, and transcription factors accounted for a great part of the DEGs, while immune system signaling and cytokine signaling displayed the most significant changes. Furthermore, seven hub genes and nine transcription factors were identified. Interestingly, the top five upregulated DEGs were located on chromosome Y, and four of the top five downregulated DEGs were involved in immune and inflammation signaling. Further, the top DEGs were validated by RT-PCR in human samples. Our study explored the possible molecular mechanisms of heart failure caused by ischemic heart disease.
Collapse
Affiliation(s)
- Yana Li
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, 180 Fenglin Road, Shanghai 200032, China.
| | - Qiu Jiang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, 180 Fenglin Road, Shanghai 200032, China.
| | - Zhiwen Ding
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, 180 Fenglin Road, Shanghai 200032, China.
| | - Guijian Liu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, 180 Fenglin Road, Shanghai 200032, China.
| | - Peng Yu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, 180 Fenglin Road, Shanghai 200032, China.
| | - Guoliang Jiang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, 180 Fenglin Road, Shanghai 200032, China.
| | - Ziqing Yu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, 180 Fenglin Road, Shanghai 200032, China.
| | - Chunjie Yang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, 180 Fenglin Road, Shanghai 200032, China.
| | - Juying Qian
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, 180 Fenglin Road, Shanghai 200032, China.
| | - Hong Jiang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, 180 Fenglin Road, Shanghai 200032, China.
- Shanghai Institute of clinical bioinformatics, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China.
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, 180 Fenglin Road, Shanghai 200032, China.
- Institutes of Biomedical Sciences, Fudan University, 130 Dong'an Road, Shanghai 200032, China.
| |
Collapse
|
57
|
Jabs M, Rose AJ, Lehmann LH, Taylor J, Moll I, Sijmonsma TP, Herberich SE, Sauer SW, Poschet G, Federico G, Mogler C, Weis EM, Augustin HG, Yan M, Gretz N, Schmid RM, Adams RH, Gröne HJ, Hell R, Okun JG, Backs J, Nawroth PP, Herzig S, Fischer A. Inhibition of Endothelial Notch Signaling Impairs Fatty Acid Transport and Leads to Metabolic and Vascular Remodeling of the Adult Heart. Circulation 2018; 137:2592-2608. [PMID: 29353241 DOI: 10.1161/circulationaha.117.029733] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 01/08/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Nutrients are transported through endothelial cells before being metabolized in muscle cells. However, little is known about the regulation of endothelial transport processes. Notch signaling is a critical regulator of metabolism and angiogenesis during development. Here, we studied how genetic and pharmacological manipulation of endothelial Notch signaling in adult mice affects endothelial fatty acid transport, cardiac angiogenesis, and heart function. METHODS Endothelial-specific Notch inhibition was achieved by conditional genetic inactivation of Rbp-jκ in adult mice to analyze fatty acid metabolism and heart function. Wild-type mice were treated with neutralizing antibodies against the Notch ligand Delta-like 4. Fatty acid transport was studied in cultured endothelial cells and transgenic mice. RESULTS Treatment of wild-type mice with Delta-like 4 neutralizing antibodies for 8 weeks impaired fractional shortening and ejection fraction in the majority of mice. Inhibition of Notch signaling specifically in the endothelium of adult mice by genetic ablation of Rbp-jκ caused heart hypertrophy and failure. Impaired heart function was preceded by alterations in fatty acid metabolism and an increase in cardiac blood vessel density. Endothelial Notch signaling controlled the expression of endothelial lipase, Angptl4, CD36, and Fabp4, which are all needed for fatty acid transport across the vessel wall. In endothelial-specific Rbp-jκ-mutant mice, lipase activity and transendothelial transport of long-chain fatty acids to muscle cells were impaired. In turn, lipids accumulated in the plasma and liver. The attenuated supply of cardiomyocytes with long-chain fatty acids was accompanied by higher glucose uptake, increased concentration of glycolysis intermediates, and mTOR-S6K signaling. Treatment with the mTOR inhibitor rapamycin or displacing glucose as cardiac substrate by feeding a ketogenic diet prolonged the survival of endothelial-specific Rbp-jκ-deficient mice. CONCLUSIONS This study identifies Notch signaling as a novel regulator of fatty acid transport across the endothelium and as an essential repressor of angiogenesis in the adult heart. The data imply that the endothelium controls cardiomyocyte metabolism and function.
Collapse
Affiliation(s)
- Markus Jabs
- Division Vascular Signaling and Cancer (M.J., J.T., I.M., S.E.H., E.-M.W., A.F.)
| | - Adam J Rose
- Joint Division Molecular Metabolic Control, German Cancer Research Center, Heidelberg, Center for Molecular Biology, and University Hospital Heidelberg, Germany (A.J.R., T.P.S.).,Nutrient Metabolism and Signaling Lab, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia (A.J.R.)
| | - Lorenz H Lehmann
- Department of Molecular Cardiology and Epigenetics (L.H.L., J.B.).,Department of Cardiology (L.H.L.).,Center for Cardiovascular Research, Partner Site Heidelberg/Mannheim (L.H.L., J.B.)
| | - Jacqueline Taylor
- Division Vascular Signaling and Cancer (M.J., J.T., I.M., S.E.H., E.-M.W., A.F.)
| | - Iris Moll
- Division Vascular Signaling and Cancer (M.J., J.T., I.M., S.E.H., E.-M.W., A.F.)
| | - Tjeerd P Sijmonsma
- Joint Division Molecular Metabolic Control, German Cancer Research Center, Heidelberg, Center for Molecular Biology, and University Hospital Heidelberg, Germany (A.J.R., T.P.S.)
| | - Stefanie E Herberich
- Division Vascular Signaling and Cancer (M.J., J.T., I.M., S.E.H., E.-M.W., A.F.)
| | - Sven W Sauer
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital Heidelberg, Germany (S.W.S., J.G.O.)
| | | | - Giuseppina Federico
- Division Cellular and Molecular Pathology (G.F., H.-J.G), German Cancer Research Center, Heidelberg
| | | | - Eva-Maria Weis
- Division Vascular Signaling and Cancer (M.J., J.T., I.M., S.E.H., E.-M.W., A.F.)
| | - Hellmut G Augustin
- Division Vascular Oncology and Metastasis (H.G.A.).,European Center for Angioscience (H.G.A., A.F.)
| | - Minhong Yan
- Technical University of Munich, Germany. Department of Molecular Oncology, Genentech, South San Francisco, CA (M.Y.)
| | - Norbert Gretz
- Medical Research Center Mannheim (N.G.), University of Heidelberg, Germany
| | - Roland M Schmid
- Department of Medicine II, Klinikum rechts der Isar (R.M.S.)
| | - Ralf H Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Faculty of Medicine, University of Münster, Germany (R.H.A.)
| | - Hermann-Joseph Gröne
- Division Cellular and Molecular Pathology (G.F., H.-J.G), German Cancer Research Center, Heidelberg
| | | | - Jürgen G Okun
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital Heidelberg, Germany (S.W.S., J.G.O.)
| | - Johannes Backs
- Department of Molecular Cardiology and Epigenetics (L.H.L., J.B.).,Center for Cardiovascular Research, Partner Site Heidelberg/Mannheim (L.H.L., J.B.)
| | - Peter P Nawroth
- Department of Endocrinology and Clinical Chemistry (P.P.N., A.F.), University Hospital Heidelberg, Germany
| | - Stephan Herzig
- Institute for Diabetes and Cancer (IDC), Joint Heidelberg-IDC Translational Diabetes Program, Helmholtz Center Munich, Neuherberg, Germany (S.H.)
| | - Andreas Fischer
- Division Vascular Signaling and Cancer (M.J., J.T., I.M., S.E.H., E.-M.W., A.F.) .,Department of Endocrinology and Clinical Chemistry (P.P.N., A.F.), University Hospital Heidelberg, Germany.,European Center for Angioscience (H.G.A., A.F.)
| |
Collapse
|
58
|
Lother A, Bergemann S, Deng L, Moser M, Bode C, Hein L. Cardiac Endothelial Cell Transcriptome. Arterioscler Thromb Vasc Biol 2018; 38:566-574. [PMID: 29301788 DOI: 10.1161/atvbaha.117.310549] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 12/19/2017] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Endothelial cells (ECs) are a highly specialized cell type with marked diversity between different organs or vascular beds. Cardiac ECs are an important player in cardiac physiology and pathophysiology but are not sufficiently characterized yet. Thus, the aim of the present study was to analyze the cardiac EC transcriptome. APPROACH AND RESULTS We applied fluorescence-assisted cell sorting to isolate pure ECs from adult mouse hearts. RNAseq revealed 1288 genes predominantly expressed in cardiac ECs versus heart tissue including several transcription factors. We found an overrepresentation of corresponding transcription factor binding motifs within the promotor region of EC-enriched genes, suggesting that they control the EC transcriptome. Cardiac ECs exhibit a distinct gene expression profile when compared with renal, cerebral, or pulmonary ECs. For example, we found the Meox2/Tcf15, Fabp4, and Cd36 signaling cascade higher expressed in cardiac ECs which is a key regulator of fatty acid uptake and involved in the development of atherosclerosis. CONCLUSIONS The results from this study provide a comprehensive resource of gene expression and transcriptional control in cardiac ECs. The cardiac EC transcriptome exhibits distinct differences in gene expression compared with other cardiac cell types and ECs from other organs. We identified new candidate genes that have not been investigated in ECs yet as promising targets for future evaluation.
Collapse
Affiliation(s)
- Achim Lother
- From the Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine (A.L., S.B., L.D., L.H.), Heart Center Freiburg University, Department of Cardiology and Angiology I, Faculty of Medicine (A.L., M.M., C.B.), and BIOSS Centre for Biological Signaling Studies (L.H.), University of Freiburg, Germany.
| | - Stella Bergemann
- From the Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine (A.L., S.B., L.D., L.H.), Heart Center Freiburg University, Department of Cardiology and Angiology I, Faculty of Medicine (A.L., M.M., C.B.), and BIOSS Centre for Biological Signaling Studies (L.H.), University of Freiburg, Germany
| | - Lisa Deng
- From the Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine (A.L., S.B., L.D., L.H.), Heart Center Freiburg University, Department of Cardiology and Angiology I, Faculty of Medicine (A.L., M.M., C.B.), and BIOSS Centre for Biological Signaling Studies (L.H.), University of Freiburg, Germany
| | - Martin Moser
- From the Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine (A.L., S.B., L.D., L.H.), Heart Center Freiburg University, Department of Cardiology and Angiology I, Faculty of Medicine (A.L., M.M., C.B.), and BIOSS Centre for Biological Signaling Studies (L.H.), University of Freiburg, Germany
| | - Christoph Bode
- From the Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine (A.L., S.B., L.D., L.H.), Heart Center Freiburg University, Department of Cardiology and Angiology I, Faculty of Medicine (A.L., M.M., C.B.), and BIOSS Centre for Biological Signaling Studies (L.H.), University of Freiburg, Germany
| | - Lutz Hein
- From the Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine (A.L., S.B., L.D., L.H.), Heart Center Freiburg University, Department of Cardiology and Angiology I, Faculty of Medicine (A.L., M.M., C.B.), and BIOSS Centre for Biological Signaling Studies (L.H.), University of Freiburg, Germany
| |
Collapse
|
59
|
Chiu APL, Bierende D, Lal N, Wang F, Wan A, Vlodavsky I, Hussein B, Rodrigues B. Dual effects of hyperglycemia on endothelial cells and cardiomyocytes to enhance coronary LPL activity. Am J Physiol Heart Circ Physiol 2018; 314:H82-H94. [DOI: 10.1152/ajpheart.00372.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the diabetic heart, there is excessive dependence on fatty acid (FA) utilization to generate ATP. Lipoprotein lipase (LPL)-mediated hydrolysis of circulating triglycerides is suggested to be the predominant source of FA for cardiac utilization during diabetes. In the heart, the majority of LPL is synthesized in cardiomyocytes and secreted onto cell surface heparan sulfate proteoglycan (HSPG), where an endothelial cell (EC)-releasable β-endoglycosidase, heparanase cleaves the side chains of HSPG to liberate LPL for its onward movement across the EC. EC glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPIHBP1) captures this released enzyme at its basolateral side and shuttles it across to its luminal side. We tested whether the diabetes-induced increase of transforming growth factor-β (TGF-β) can influence the myocyte and EC to help transfer LPL to the vascular lumen to generate triglyceride-FA. In response to high glucose and EC heparanase secretion, this endoglycosidase is taken up by the cardiomyocyte (Wang Y, Chiu AP, Neumaier K, Wang F, Zhang D, Hussein B, Lal N, Wan A, Liu G, Vlodavsky I, Rodrigues B. Diabetes 63: 2643–2655, 2014) to stimulate matrix metalloproteinase-9 expression and the conversion of latent to active TGF-β. In the cardiomyocyte, TGF-β activation of RhoA enhances actin cytoskeleton rearrangement to promote LPL trafficking and secretion onto cell surface HSPG. In the EC, TGF-β signaling promotes mesodermal homeobox 2 translocation to the nucleus, which increases the expression of GPIHBP1, which facilitates movement of LPL to the vascular lumen. Collectively, our data suggest that in the diabetic heart, TGF-β actions on the cardiomyocyte promotes movement of LPL, whereas its action on the EC facilitates LPL shuttling. NEW & NOTEWORTHY Endothelial cells, as first responders to hyperglycemia, release heparanase, whose subsequent uptake by cardiomyocytes amplifies matrix metalloproteinase-9 expression and activation of transforming growth factor-β. Transforming growth factor-β increases lipoprotein lipase secretion from cardiomyocytes and promotes mesodermal homeobox 2 to enhance glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1-dependent transfer of lipoprotein lipase across endothelial cells, mechanisms that accelerate fatty acid utilization by the diabetic heart.
Collapse
Affiliation(s)
- Amy Pei-Ling Chiu
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Denise Bierende
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Nathaniel Lal
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Fulong Wang
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrea Wan
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Bahira Hussein
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian Rodrigues
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
60
|
Eelen G, de Zeeuw P, Treps L, Harjes U, Wong BW, Carmeliet P. Endothelial Cell Metabolism. Physiol Rev 2018; 98:3-58. [PMID: 29167330 PMCID: PMC5866357 DOI: 10.1152/physrev.00001.2017] [Citation(s) in RCA: 346] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 06/19/2017] [Accepted: 06/22/2017] [Indexed: 02/06/2023] Open
Abstract
Endothelial cells (ECs) are more than inert blood vessel lining material. Instead, they are active players in the formation of new blood vessels (angiogenesis) both in health and (life-threatening) diseases. Recently, a new concept arose by which EC metabolism drives angiogenesis in parallel to well-established angiogenic growth factors (e.g., vascular endothelial growth factor). 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3-driven glycolysis generates energy to sustain competitive behavior of the ECs at the tip of a growing vessel sprout, whereas carnitine palmitoyltransferase 1a-controlled fatty acid oxidation regulates nucleotide synthesis and proliferation of ECs in the stalk of the sprout. To maintain vascular homeostasis, ECs rely on an intricate metabolic wiring characterized by intracellular compartmentalization, use metabolites for epigenetic regulation of EC subtype differentiation, crosstalk through metabolite release with other cell types, and exhibit EC subtype-specific metabolic traits. Importantly, maladaptation of EC metabolism contributes to vascular disorders, through EC dysfunction or excess angiogenesis, and presents new opportunities for anti-angiogenic strategies. Here we provide a comprehensive overview of established as well as newly uncovered aspects of EC metabolism.
Collapse
Affiliation(s)
- Guy Eelen
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Pauline de Zeeuw
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Lucas Treps
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Ulrike Harjes
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Brian W Wong
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| |
Collapse
|
61
|
Giacomelli E, Bellin M, Sala L, van Meer BJ, Tertoolen LGJ, Orlova VV, Mummery CL. Three-dimensional cardiac microtissues composed of cardiomyocytes and endothelial cells co-differentiated from human pluripotent stem cells. Development 2017; 144:1008-1017. [PMID: 28279973 PMCID: PMC5358113 DOI: 10.1242/dev.143438] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 12/29/2016] [Indexed: 12/14/2022]
Abstract
Cardiomyocytes and endothelial cells in the heart are in close proximity and in constant dialogue. Endothelium regulates the size of the heart, supplies oxygen to the myocardium and secretes factors that support cardiomyocyte function. Robust and predictive cardiac disease models that faithfully recapitulate native human physiology in vitro would therefore ideally incorporate this cardiomyocyte-endothelium crosstalk. Here, we have generated and characterized human cardiac microtissues in vitro that integrate both cell types in complex 3D structures. We established conditions for simultaneous differentiation of cardiomyocytes and endothelial cells from human pluripotent stem cells following initial cardiac mesoderm induction. The endothelial cells expressed cardiac markers that were also present in primary cardiac microvasculature, suggesting cardiac endothelium identity. These cell populations were further enriched based on surface markers expression, then recombined allowing development of beating 3D structures termed cardiac microtissues. This in vitro model was robustly reproducible in both embryonic and induced pluripotent stem cells. It thus represents an advanced human stem cell-based platform for cardiovascular disease modelling and testing of relevant drugs. Summary: Co-differentiation of endothelial cells and cardiomyocytes from human pluripotent stem cells provides a cardiac microtissue model with potential applications for disease modelling and drug discovery.
Collapse
Affiliation(s)
- Elisa Giacomelli
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden 2333ZC, The Netherlands
| | - Milena Bellin
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden 2333ZC, The Netherlands
| | - Luca Sala
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden 2333ZC, The Netherlands
| | - Berend J van Meer
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden 2333ZC, The Netherlands
| | - Leon G J Tertoolen
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden 2333ZC, The Netherlands
| | - Valeria V Orlova
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden 2333ZC, The Netherlands
| | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden 2333ZC, The Netherlands .,Department of Applied Stem Cell Technologies, University of Twente, Enschede 7500AE, The Netherlands
| |
Collapse
|
62
|
Northcott JM, Czubryt MP, Wigle JT. Vascular senescence and ageing: a role for the MEOX proteins in promoting endothelial dysfunction. Can J Physiol Pharmacol 2017; 95:1067-1077. [PMID: 28727928 DOI: 10.1139/cjpp-2017-0149] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In the vascular system, ageing is accompanied by the accrual of senescent cells and is associated with an increased risk of vascular disease. Endothelial cell (EC) dysfunction is a hallmark of vascular disease and is characterized by decreased angiogenic potential, reduced nitric oxide bioavailability, impaired vasodilation, increased production of ROS, and enhanced inflammation. In ECs, the major producer of nitric oxide is the endothelial nitric oxide synthase (eNOS) enzyme that is encoded by the NOS3 gene. NOS3/eNOS function is tightly regulated at both the transcriptional and post-transcriptional levels to maintain normal vascular function. A key transcriptional regulator of eNOS expression is p53, which has been shown to play a central role in mediating cellular senescence and thereby vascular dysfunction. Herein, we show that, in ECs, the MEOX homeodomain transcription factors decrease the expression of genes involved in angiogenesis, repress eNOS expression at the mRNA and protein levels, and increase the expression of p53. These findings support a role for the MEOX proteins in promoting endothelial dysfunction.
Collapse
Affiliation(s)
- Josette M Northcott
- a Institute of Cardiovascular Sciences, St. Boniface Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada.,b Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Michael P Czubryt
- a Institute of Cardiovascular Sciences, St. Boniface Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada.,c Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Jeffrey T Wigle
- a Institute of Cardiovascular Sciences, St. Boniface Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada.,b Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
63
|
Vascular heterogeneity and specialization in development and disease. Nat Rev Mol Cell Biol 2017; 18:477-494. [PMID: 28537573 DOI: 10.1038/nrm.2017.36] [Citation(s) in RCA: 394] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Blood and lymphatic vessels pervade almost all body tissues and have numerous essential roles in physiology and disease. The inner lining of these networks is formed by a single layer of endothelial cells, which is specialized according to the needs of the tissue that it supplies. Whereas the general mechanisms of blood and lymphatic vessel development are being defined with increasing molecular precision, studies of the processes of endothelial specialization remain mostly descriptive. Recent insights from genetic animal models illuminate how endothelial cells interact with each other and with their tissue environment, providing paradigms for vessel type- and organ-specific endothelial differentiation. Delineating these governing principles will be crucial for understanding how tissues develop and maintain, and how their function becomes abnormal in disease.
Collapse
|
64
|
Bierhansl L, Conradi LC, Treps L, Dewerchin M, Carmeliet P. Central Role of Metabolism in Endothelial Cell Function and Vascular Disease. Physiology (Bethesda) 2017; 32:126-140. [PMID: 28202623 PMCID: PMC5337830 DOI: 10.1152/physiol.00031.2016] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The importance of endothelial cell (EC) metabolism and its regulatory role in the angiogenic behavior of ECs during vessel formation and in the function of different EC subtypes determined by different vascular beds has been recognized only in the last few years. Even more importantly, apart from a role of nitric oxide and reactive oxygen species in EC dysfunction, deregulations of EC metabolism in disease only recently received increasing attention. Although comprehensive metabolic characterization of ECs still needs further investigation, the concept of targeting EC metabolism to treat vascular disease is emerging. In this overview, we summarize EC-specific metabolic pathways, describe the current knowledge on their deregulation in vascular diseases, and give an outlook on how vascular endothelial metabolism can serve as a target to normalize deregulated endothelium.
Collapse
Affiliation(s)
- Laura Bierhansl
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, Leuven, Belgium; and
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, University of Leuven, Leuven, Belgium
| | - Lena-Christin Conradi
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, Leuven, Belgium; and
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, University of Leuven, Leuven, Belgium
| | - Lucas Treps
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, Leuven, Belgium; and
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, University of Leuven, Leuven, Belgium
| | - Mieke Dewerchin
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, Leuven, Belgium; and
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, University of Leuven, Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, Leuven, Belgium; and
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, University of Leuven, Leuven, Belgium
| |
Collapse
|
65
|
Gohn CR, Blue EK, Sheehan BM, Varberg KM, Haneline LS. Mesenchyme Homeobox 2 Enhances Migration of Endothelial Colony Forming Cells Exposed to Intrauterine Diabetes Mellitus. J Cell Physiol 2017; 232:1885-1892. [PMID: 27966787 DOI: 10.1002/jcp.25734] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/13/2016] [Indexed: 12/31/2022]
Abstract
Diabetes mellitus (DM) during pregnancy has long-lasting implications for the fetus, including cardiovascular morbidity. Previously, we showed that endothelial colony forming cells (ECFCs) from DM human pregnancies have decreased vasculogenic potential. Here, we evaluate whether the molecular mechanism responsible for this phenotype involves the transcription factor, Mesenchyme Homeobox 2 (MEOX2). In human umbilical vein endothelial cells, MEOX2 upregulates cyclin-dependent kinase inhibitor expression, resulting in increased senescence and decreased proliferation. We hypothesized that dysregulated MEOX2 expression in neonatal ECFCs from DM pregnancies decreases network formation through increased senescence and altered cell cycle progression. Our studies show that nuclear MEOX2 is increased in ECFCs from DM pregnancies. To determine if MEOX2 is sufficient and/or required to induce impaired network formation, MEOX2 was overexpressed and depleted in ECFCs from control and DM pregnancies, respectively. Surprisingly, MEOX2 overexpression in control ECFCs resulted in increased network formation, altered cell cycle progression, and increased senescence. In contrast, MEOX2 knockdown in ECFCs from DM pregnancies led to decreased network formation, while cell cycle progression and senescence were unaffected. Importantly, migration studies demonstrated that MEOX2 overexpression increased migration, while MEOX2 knockdown decreased migration. Taken together, these data suggest that altered migration may be mediating the impaired vasculogenesis of ECFCs from DM pregnancies. While initially believed to be maladaptive, these data suggest that MEOX2 may serve a protective role, enabling increased vessel formation despite exposure to a DM intrauterine environment. J. Cell. Physiol. 232: 1885-1892, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Cassandra R Gohn
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana.,Herman B Wells Center for Pediatric Research, Indianapolis, Indiana
| | - Emily K Blue
- Herman B Wells Center for Pediatric Research, Indianapolis, Indiana.,Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - BreAnn M Sheehan
- Herman B Wells Center for Pediatric Research, Indianapolis, Indiana.,Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kaela M Varberg
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana.,Herman B Wells Center for Pediatric Research, Indianapolis, Indiana
| | - Laura S Haneline
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana.,Herman B Wells Center for Pediatric Research, Indianapolis, Indiana.,Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
66
|
Zhou P, Gu F, Zhang L, Akerberg BN, Ma Q, Li K, He A, Lin Z, Stevens SM, Zhou B, Pu WT. Mapping cell type-specific transcriptional enhancers using high affinity, lineage-specific Ep300 bioChIP-seq. eLife 2017; 6:22039. [PMID: 28121289 PMCID: PMC5295818 DOI: 10.7554/elife.22039] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 01/23/2017] [Indexed: 12/31/2022] Open
Abstract
Understanding the mechanisms that regulate cell type-specific transcriptional programs requires developing a lexicon of their genomic regulatory elements. We developed a lineage-selective method to map transcriptional enhancers, regulatory genomic regions that activate transcription, in mice. Since most tissue-specific enhancers are bound by the transcriptional co-activator Ep300, we used Cre-directed, lineage-specific Ep300 biotinylation and pulldown on immobilized streptavidin followed by next generation sequencing of co-precipitated DNA to identify lineage-specific enhancers. By driving this system with lineage-specific Cre transgenes, we mapped enhancers active in embryonic endothelial cells/blood or skeletal muscle. Analysis of these enhancers identified new transcription factor heterodimer motifs that likely regulate transcription in these lineages. Furthermore, we identified candidate enhancers that regulate adult heart- or lung- specific endothelial cell specialization. Our strategy for tissue-specific protein biotinylation opens new avenues for studying lineage-specific protein-DNA and protein-protein interactions.
Collapse
Affiliation(s)
- Pingzhu Zhou
- Department of Cardiology, Boston Children's Hospital, Boston, United States
| | - Fei Gu
- Department of Cardiology, Boston Children's Hospital, Boston, United States
| | - Lina Zhang
- Department of Biochemistry, Institute of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Brynn N Akerberg
- Department of Cardiology, Boston Children's Hospital, Boston, United States
| | - Qing Ma
- Department of Cardiology, Boston Children's Hospital, Boston, United States
| | - Kai Li
- Department of Cardiology, Boston Children's Hospital, Boston, United States
| | - Aibin He
- Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Zhiqiang Lin
- Department of Cardiology, Boston Children's Hospital, Boston, United States
| | - Sean M Stevens
- Department of Cardiology, Boston Children's Hospital, Boston, United States
| | - Bin Zhou
- State Key Laboratory of Cell Biology, CAS center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - William T Pu
- Department of Cardiology, Boston Children's Hospital, Boston, United States.,Harvard Stem Cell Institute, Harvard University, Cambridge, United States
| |
Collapse
|
67
|
De Keulenaer GW, Segers VFM, Zannad F, Brutsaert DL. The future of pleiotropic therapy in heart failure. Lessons from the benefits of exercise training on endothelial function. Eur J Heart Fail 2017; 19:603-614. [PMID: 28105791 DOI: 10.1002/ejhf.735] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/15/2016] [Accepted: 11/24/2016] [Indexed: 12/14/2022] Open
Abstract
A novel generation of drugs is introduced in the treatment of heart failure (HF). These drugs, including phosphodiesterase-5 inhibitors, guanylate cyclase stimulators and activators, share the feature that their action is either endothelial-mediated or substitutes for endothelial pathways, in particular the nitric oxide-cyclic guanosine monophosphate pathway, thereby influencing homeostatic balances in virtually each organ system in a pleiotropic fashion. Unfortunately, recent clinical trials with some of these drugs have shown disappointing results, at least in the setting of HF with a preserved ejection fraction. This suggests that their clinical use may require approaches that diverge from traditional pharmacological approaches, the latter often titrated on the effects of drugs on haemodynamic parameters or single biomarkers. In this paper we preconize that HF drugs with an endothelial profile should be applied conform to principles of endothelial physiology and systems pharmacology. This type of drug therapy should be viewed as a systems physio-pharmacological intervention and its clinical use accustomed to systems pharmacological principles, comparable to the systemic endothelial-mediated benefits induced by exercise training in HF. We will review the actions of these drugs and define criteria to which trials with these drugs should comply in order to increase chances of success.
Collapse
Affiliation(s)
- Gilles W De Keulenaer
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium.,Department of Cardiology, Middelheim Hospital, Antwerp, Belgium
| | - Vincent F M Segers
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium.,Department of Cardiology, University Hospital Antwerp, Edegem, Belgium
| | - Faiez Zannad
- CHU Nancy, Pôle de Cardiologie, Institut Lorrain du Cœur et des Vaisseaux, Vandoeuvre-lès-Nancy, France
| | - Dirk L Brutsaert
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium.,Department of Cardiology, University Hospital Antwerp, Edegem, Belgium
| |
Collapse
|
68
|
The role of CD36 in the regulation of myocardial lipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1450-60. [DOI: 10.1016/j.bbalip.2016.03.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/12/2016] [Accepted: 03/14/2016] [Indexed: 12/29/2022]
|
69
|
Chanda D, Luiken JJFP, Glatz JFC. Signaling pathways involved in cardiac energy metabolism. FEBS Lett 2016; 590:2364-74. [PMID: 27403883 DOI: 10.1002/1873-3468.12297] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/09/2016] [Accepted: 07/11/2016] [Indexed: 11/09/2022]
Abstract
Various signaling pathways coordinate energy metabolism and contractile function in the heart. Myocardial uptake of long-chain fatty acids largely occurs by facilitated diffusion, involving the membrane-associated protein, CD36. Glucose uptake, the rate-limiting step in glucose utilization, is mediated predominantly by the glucose transporter protein, GLUT4. Insulin and contraction-mediated AMPK signaling each are implicated in tightly regulating these myocardial 'gate-keepers' of energy balance, that is, CD36 and GLUT4. The insulin and AMPK signaling cascades are complex and their cross-talk is only beginning to be understood. Moreover, transcriptional regulation of the CD36 and GLUT4 is significantly understudied. This review focuses on recent advances on the role of these signaling pathways and transcription factors involved in the regulation of CD36 and GLUT4.
Collapse
Affiliation(s)
- Dipanjan Chanda
- Department of Genetics and Cell Biology, CARIM School of Cardiovascular Diseases, Maastricht University, The Netherlands
| | - Joost J F P Luiken
- Department of Genetics and Cell Biology, CARIM School of Cardiovascular Diseases, Maastricht University, The Netherlands
| | - Jan F C Glatz
- Department of Genetics and Cell Biology, CARIM School of Cardiovascular Diseases, Maastricht University, The Netherlands
| |
Collapse
|
70
|
Wan A, Rodrigues B. Endothelial cell-cardiomyocyte crosstalk in diabetic cardiomyopathy. Cardiovasc Res 2016; 111:172-83. [PMID: 27288009 DOI: 10.1093/cvr/cvw159] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 05/21/2016] [Indexed: 12/19/2022] Open
Abstract
The incidence of diabetes is increasing globally, with cardiovascular disease accounting for a substantial number of diabetes-related deaths. Although atherosclerotic vascular disease is a primary reason for this cardiovascular dysfunction, heart failure in patients with diabetes might also be an outcome of an intrinsic heart muscle malfunction, labelled diabetic cardiomyopathy. Changes in cardiomyocyte metabolism, which encompasses a shift to exclusive fatty acid utilization, are considered a leading stimulus for this cardiomyopathy. In addition to cardiomyocytes, endothelial cells (ECs) make up a significant proportion of the heart, with the majority of ATP generation in these cells provided by glucose. In this review, we will discuss the metabolic machinery that drives energy metabolism in the cardiomyocyte and EC, its breakdown following diabetes, and the research direction necessary to assist in devising novel therapeutic strategies to prevent or delay diabetic heart disease.
Collapse
Affiliation(s)
- Andrea Wan
- Faculty of Pharmaceutical Sciences, The University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC, Canada V6T 1Z3
| | - Brian Rodrigues
- Faculty of Pharmaceutical Sciences, The University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC, Canada V6T 1Z3
| |
Collapse
|
71
|
Abstract
PURPOSE OF REVIEW A major step in energy metabolism is hydrolysis of triacylglycerol-rich lipoproteins (TRLs) to release fatty acids that can be used or stored. This is accomplished by lipoprotein lipase (LPL) at 'binding lipolysis sites' at the vascular endothelium. A multitude of interactions are involved in this seemingly simple reaction. Recent advances in the understanding of some of these factors will be discussed in an attempt to build a comprehensive picture. RECENT FINDINGS The first event in catabolism of TRLs is that they dock at the vascular endothelium. This requires LPL and GPIHBP1, the endothelial transporter of LPL.Kinetic studies in rats with labeled chylomicrons showed that once a chylomicron has docked in the heart it stays for minutes and a large number of triacylglycerol molecules are split. The distribution of binding between tissues reflects the amount of LPL, as evident from studies with mutant mice.Clearance of TRLs is often slowed down in metabolic disease, as was demonstrated both in mice and men. In mice, this was directly connected to decreased amounts of endothelial LPL. SUMMARY The LPL system is central in energy metabolism and results from interplay between several factors. Rapid and exciting progress is being made.
Collapse
Affiliation(s)
- Gunilla Olivecrona
- Department of Medical Biosciences/Physiological Chemistry, Umeå University, Umeå, Sweden
| |
Collapse
|
72
|
Chiu APL, Wan A, Rodrigues B. Cardiomyocyte-endothelial cell control of lipoprotein lipase. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1434-41. [PMID: 26995461 DOI: 10.1016/j.bbalip.2016.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 01/17/2023]
Abstract
In people with diabetes, inadequate pharmaceutical management predisposes the patient to heart failure, which is the leading cause of diabetes related death. One instigator for this cardiac dysfunction is change in fuel utilization by the heart. Thus, following diabetes, when cardiac glucose utilization is impaired, the heart undergoes metabolic transformation wherein it switches to using fats as an exclusive source of energy. Although this switching is geared to help the heart initially, in the long term, this has detrimental effects on cardiac function. These include the generation of noxious byproducts, which damage the cardiomyocytes, and ultimately result in increased morbidity and mortality. A key perpetrator that may be responsible for organizing this metabolic disequilibrium is lipoprotein lipase (LPL), the enzyme responsible for providing fat to the hearts. Either exaggeration or reduction in its activity following diabetes could lead to heart dysfunction. Given the disturbing news that diabetes is rampant across the globe, gaining more insight into the mechanism(s) by which cardiac LPL is regulated may assist other researchers in devising new therapeutic strategies to restore metabolic equilibrium, to help prevent or delay heart disease seen during diabetes. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.
Collapse
Affiliation(s)
- Amy Pei-Ling Chiu
- Pharmaceutical Sciences, The University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Andrea Wan
- Pharmaceutical Sciences, The University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Brian Rodrigues
- Pharmaceutical Sciences, The University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
73
|
Pascual F, Coleman RA. Fuel availability and fate in cardiac metabolism: A tale of two substrates. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1425-33. [PMID: 26993579 DOI: 10.1016/j.bbalip.2016.03.014] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 12/12/2022]
Abstract
The heart's extraordinary metabolic flexibility allows it to adapt to normal changes in physiology in order to preserve its function. Alterations in the metabolic profile of the heart have also been attributed to pathological conditions such as ischemia and hypertrophy; however, research during the past decade has established that cardiac metabolic adaptations can precede the onset of pathologies. It is therefore critical to understand how changes in cardiac substrate availability and use trigger events that ultimately result in heart dysfunction. This review examines the mechanisms by which the heart obtains fuels from the circulation or from mobilization of intracellular stores. We next describe experimental models that exhibit either an increase in glucose use or a decrease in FA oxidation, and how these aberrant conditions affect cardiac metabolism and function. Finally, we highlight the importance of alternative, relatively under-investigated strategies for the treatment of heart failure. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.
Collapse
Affiliation(s)
- Florencia Pascual
- Department of Nutrition, University of North Carolina at Chapel Hill, 27599, USA.
| | - Rosalind A Coleman
- Department of Nutrition, University of North Carolina at Chapel Hill, 27599, USA.
| |
Collapse
|
74
|
Chiu APL, Wan A, Lal N, Zhang D, Wang F, Vlodavsky I, Hussein B, Rodrigues B. Cardiomyocyte VEGF Regulates Endothelial Cell GPIHBP1 to Relocate Lipoprotein Lipase to the Coronary Lumen During Diabetes Mellitus. Arterioscler Thromb Vasc Biol 2016; 36:145-55. [DOI: 10.1161/atvbaha.115.306774] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 11/04/2015] [Indexed: 02/05/2023]
Abstract
Objective—
Lipoprotein lipase (LPL)–mediated triglyceride hydrolysis is the major source of fatty acid for cardiac energy. LPL, synthesized in cardiomyocytes, is translocated across endothelial cells (EC) by its transporter glycosylphosphatidylinositol-anchored high-density lipoprotein–binding protein 1 (GPIHBP1). Previously, we have reported an augmentation in coronary LPL, which was linked to an increased expression of GPIHBP1 following moderate diabetes mellitus. We examined the potential mechanism by which hyperglycemia amplifies GPIHBP1.
Approach and Results—
Exposure of rat aortic EC to high glucose induced GPIHBP1 expression and amplified LPL shuttling across these cells. This effect coincided with an elevated secretion of heparanase. Incubation of EC with high glucose or latent heparanase resulted in secretion of vascular endothelial growth factor (VEGF). Primary cardiomyocytes, being a rich source of VEGF, when cocultured with EC, restored EC GPIHBP1 that is lost because of cell passaging. Furthermore, recombinant VEGF induced EC GPIHBP1 mRNA and protein expression within 24 hours, an effect that could be prevented by a VEGF neutralizing antibody. This VEGF-induced increase in GPIHBP1 was through Notch signaling that encompassed Delta-like ligand 4 augmentation and nuclear translocation of the Notch intracellular domain. Finally, cardiomyocytes from severely diabetic animals exhibiting attenuation of VEGF were unable to increase EC GPIHBP1 expression and had lower LPL activity at the vascular lumen in perfused hearts.
Conclusion—
EC, as the first responders to hyperglycemia, can release heparanase to liberate myocyte VEGF. This growth factor, by activating EC Notch signaling, is responsible for facilitating GPIHBP1-mediated translocation of LPL across EC and regulating LPL-derived fatty acid delivery to the cardiomyocytes.
Collapse
Affiliation(s)
- Amy Pei-Ling Chiu
- From the Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada (A.P.-L.C., A.W., N.L., D.Z., F.W., B.H., B.R.); and Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel (I.V.)
| | - Andrea Wan
- From the Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada (A.P.-L.C., A.W., N.L., D.Z., F.W., B.H., B.R.); and Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel (I.V.)
| | - Nathaniel Lal
- From the Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada (A.P.-L.C., A.W., N.L., D.Z., F.W., B.H., B.R.); and Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel (I.V.)
| | - Dahai Zhang
- From the Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada (A.P.-L.C., A.W., N.L., D.Z., F.W., B.H., B.R.); and Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel (I.V.)
| | - Fulong Wang
- From the Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada (A.P.-L.C., A.W., N.L., D.Z., F.W., B.H., B.R.); and Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel (I.V.)
| | - Israel Vlodavsky
- From the Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada (A.P.-L.C., A.W., N.L., D.Z., F.W., B.H., B.R.); and Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel (I.V.)
| | - Bahira Hussein
- From the Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada (A.P.-L.C., A.W., N.L., D.Z., F.W., B.H., B.R.); and Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel (I.V.)
| | - Brian Rodrigues
- From the Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada (A.P.-L.C., A.W., N.L., D.Z., F.W., B.H., B.R.); and Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel (I.V.)
| |
Collapse
|
75
|
Harjes U, Kalucka J, Carmeliet P. Targeting fatty acid metabolism in cancer and endothelial cells. Crit Rev Oncol Hematol 2016; 97:15-21. [DOI: 10.1016/j.critrevonc.2015.10.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 09/03/2015] [Accepted: 10/27/2015] [Indexed: 12/15/2022] Open
|
76
|
Coronary risk in relation to genetic variation in MEOX2 and TCF15 in a Flemish population. BMC Genet 2015; 16:116. [PMID: 26428460 PMCID: PMC4591634 DOI: 10.1186/s12863-015-0272-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 09/11/2015] [Indexed: 01/07/2023] Open
Abstract
Background In mice MEOX2/TCF15 heterodimers are highly expressed in heart endothelial cells and are involved in the transcriptional regulation of lipid transport. In a general population, we investigated whether genetic variation in these genes predicted coronary heart disease (CHD). Results In 2027 participants randomly recruited from a Flemish population (51.0 % women; mean age 43.6 years), we genotyped six SNPs in MEOX2 and four in TCF15. Over 15.2 years (median), CHD, myocardial infarction, coronary revascularisation and ischaemic cardiomyopathy occurred in 106, 53, 78 and 22 participants. For SNPs, we contrasted CHD risk in minor-allele heterozygotes and homozygotes (variant) vs. major-allele homozygotes (reference) and for haplotypes carriers (variant) vs. non-carriers. In multivariable-adjusted analyses with correction for multiple testing, CHD risk was associated with MEOX2 SNPs (P ≤ 0.049), but not with TCF15 SNPs (P ≥ 0.29). The MEOX2 GTCCGC haplotype (frequency 16.5 %) was associated with the sex- and age-standardised CHD incidence (5.26 vs. 3.03 events per 1000 person-years; P = 0.036); the multivariable-adjusted hazard ratio [HR] of CHD was 1.78 (95 % confidence interval, 1.25–2.56; P = 0.0054). For myocardial infarction, coronary revascularisation, and ischaemic cardiomyopathy, the corresponding HRs were 1.96 (1.16–3.31), 1.87 (1.20–2.91) and 3.16 (1.41–7.09), respectively. The MEOX2 GTCCGC haplotype significantly improved the prediction of CHD over and beyond traditional risk factors and was associated with similar population-attributable risk as smoking (18.7 % vs. 16.2 %). Conclusions Genetic variation in MEOX2, but not TCF15, is a strong predictor of CHD. Further experimental studies should elucidate the underlying molecular mechanisms. Electronic supplementary material The online version of this article (doi:10.1186/s12863-015-0272-2) contains supplementary material, which is available to authorized users.
Collapse
|
77
|
Vandenbriele C, Kauskot A, Vandersmissen I, Criel M, Geenens R, Craps S, Luttun A, Janssens S, Hoylaerts MF, Verhamme P. Platelet endothelial aggregation receptor-1: a novel modifier of neoangiogenesis. Cardiovasc Res 2015; 108:124-38. [DOI: 10.1093/cvr/cvv193] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 06/26/2015] [Indexed: 01/23/2023] Open
|