51
|
Abstract
Cardiac stress leads to remodelling of cardiac tissue, which often progresses to heart failure and death. Part of the remodelling process is the formation of fibrotic tissue, which is caused by exaggerated activity of cardiac fibroblasts leading to excessive extracellular matrix production within the myocardium. Noncoding RNAs (ncRNAs) are a diverse group of endogenous RNA-based molecules, which include short (∼22 nucleotides) microRNAs and long ncRNAs (of >200 nucleotides). These ncRNAs can regulate important functions in many cardiovascular cells types. This Review focuses on the role of ncRNAs in cardiac fibrosis; specifically, ncRNAs as therapeutic targets, factors for direct fibroblast transdifferentation, their use as diagnostic and prognostic markers, and their potential to function as paracrine modulators of cardiac fibrosis and remodelling.
Collapse
Affiliation(s)
- Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl Neuberg Strasse 1, 30625 Hannover, Germany
| |
Collapse
|
52
|
Zacchigna S, Zentilin L, Giacca M. Adeno-associated virus vectors as therapeutic and investigational tools in the cardiovascular system. Circ Res 2014; 114:1827-46. [PMID: 24855205 DOI: 10.1161/circresaha.114.302331] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The use of vectors based on the small parvovirus adeno-associated virus has gained significant momentum during the past decade. Their high efficiency of transduction of postmitotic tissues in vivo, such as heart, brain, and retina, renders these vectors extremely attractive for several gene therapy applications affecting these organs. Besides functional correction of different monogenic diseases, the possibility to drive efficient and persistent transgene expression in the heart offers the possibility to develop innovative therapies for prevalent conditions, such as ischemic cardiomyopathy and heart failure. Therapeutic genes are not only restricted to protein-coding complementary DNAs but also include short hairpin RNAs and microRNA genes, thus broadening the spectrum of possible applications. In addition, several spontaneous or engineered variants in the virus capsid have recently improved vector efficiency and expanded their tropism. Apart from their therapeutic potential, adeno-associated virus vectors also represent outstanding investigational tools to explore the function of individual genes or gene combinations in vivo, thus providing information that is conceptually similar to that obtained from genetically modified animals. Finally, their single-stranded DNA genome can drive homology-directed gene repair at high efficiency. Here, we review the main molecular characteristics of adeno-associated virus vectors, with a particular view to their applications in the cardiovascular field.
Collapse
Affiliation(s)
- Serena Zacchigna
- From the Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy (S.Z., L.Z., M.G.); and Department of Medical, Surgical, and Health Sciences, University of Trieste, Trieste, Italy (S.Z., M.G.)
| | - Lorena Zentilin
- From the Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy (S.Z., L.Z., M.G.); and Department of Medical, Surgical, and Health Sciences, University of Trieste, Trieste, Italy (S.Z., M.G.)
| | - Mauro Giacca
- From the Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy (S.Z., L.Z., M.G.); and Department of Medical, Surgical, and Health Sciences, University of Trieste, Trieste, Italy (S.Z., M.G.).
| |
Collapse
|
53
|
Alexander MS, Casar JC, Motohashi N, Vieira NM, Eisenberg I, Marshall JL, Gasperini MJ, Lek A, Myers JA, Estrella EA, Kang PB, Shapiro F, Rahimov F, Kawahara G, Widrick JJ, Kunkel LM. MicroRNA-486-dependent modulation of DOCK3/PTEN/AKT signaling pathways improves muscular dystrophy-associated symptoms. J Clin Invest 2014; 124:2651-67. [PMID: 24789910 DOI: 10.1172/jci73579] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by mutations in the gene encoding dystrophin, which results in dysfunctional signaling pathways within muscle. Previously, we identified microRNA-486 (miR-486) as a muscle-enriched microRNA that is markedly reduced in the muscles of dystrophin-deficient mice (Dmdmdx-5Cv mice) and in DMD patient muscles. Here, we determined that muscle-specific transgenic overexpression of miR-486 in muscle of Dmdmdx-5Cv mice results in reduced serum creatine kinase levels, improved sarcolemmal integrity, fewer centralized myonuclei, increased myofiber size, and improved muscle physiology and performance. Additionally, we identified dedicator of cytokinesis 3 (DOCK3) as a miR-486 target in skeletal muscle and determined that DOCK3 expression is induced in dystrophic muscles. DOCK3 overexpression in human myotubes modulated PTEN/AKT signaling, which regulates muscle hypertrophy and growth, and induced apoptosis. Furthermore, several components of the PTEN/AKT pathway were markedly modulated by miR-486 in dystrophin-deficient muscle. Skeletal muscle-specific miR-486 overexpression in Dmdmdx-5Cv animals decreased levels of DOCK3, reduced PTEN expression, and subsequently increased levels of phosphorylated AKT, which resulted in an overall beneficial effect. Together, these studies demonstrate that stable overexpression of miR-486 ameliorates the disease progression of dystrophin-deficient skeletal muscle.
Collapse
MESH Headings
- Animals
- Base Sequence
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Line
- Guanine Nucleotide Exchange Factors/genetics
- Guanine Nucleotide Exchange Factors/metabolism
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Mice, Transgenic
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Animal/genetics
- Muscular Dystrophy, Animal/metabolism
- Muscular Dystrophy, Animal/pathology
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- PTEN Phosphohydrolase/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Sequence Homology, Nucleic Acid
- Signal Transduction
- Up-Regulation
Collapse
|
54
|
Berardi E, Annibali D, Cassano M, Crippa S, Sampaolesi M. Molecular and cell-based therapies for muscle degenerations: a road under construction. Front Physiol 2014; 5:119. [PMID: 24782779 PMCID: PMC3986550 DOI: 10.3389/fphys.2014.00119] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 03/12/2014] [Indexed: 12/25/2022] Open
Abstract
Despite the advances achieved in understanding the molecular biology of muscle cells in the past decades, there is still need for effective treatments of muscular degeneration caused by muscular dystrophies and for counteracting the muscle wasting caused by cachexia or sarcopenia. The corticosteroid medications currently in use for dystrophic patients merely help to control the inflammatory state and only slightly delay the progression of the disease. Unfortunately, walkers and wheel chairs are the only options for such patients to maintain independence and walking capabilities until the respiratory muscles become weak and the mechanical ventilation is needed. On the other hand, myostatin inhibition, IL-6 antagonism and synthetic ghrelin administration are examples of promising treatments in cachexia animal models. In both dystrophies and cachectic syndrome the muscular degeneration is extremely relevant and the translational therapeutic attempts to find a possible cure are well defined. In particular, molecular-based therapies are common options to be explored in order to exploit beneficial treatments for cachexia, while gene/cell therapies are mostly used in the attempt to induce a substantial improvement of the dystrophic muscular phenotype. This review focuses on the description of the use of molecular administrations and gene/stem cell therapy to treat muscular degenerations. It reviews previous trials using cell delivery protocols in mice and patients starting with the use of donor myoblasts, outlining the likely causes for their poor results and briefly focusing on satellite cell studies that raise new hope. Then it proceeds to describe recently identified stem/progenitor cells, including pluripotent stem cells and in relationship to their ability to home within a dystrophic muscle and to differentiate into skeletal muscle cells. Different known features of various stem cells are compared in this perspective, and the few available examples of their use in animal models of muscular degeneration are reported. Since non coding RNAs, including microRNAs (miRNAs), are emerging as prominent players in the regulation of stem cell fates we also provides an outline of the role of microRNAs in the control of myogenic commitment. Finally, based on our current knowledge and the rapid advance in stem cell biology, a prediction of clinical translation for cell therapy protocols combined with molecular treatments is discussed.
Collapse
Affiliation(s)
- Emanuele Berardi
- Translational Cardiomyology Laboratory, Department of Development and Reproduction, KUL University of Leuven Leuven, Belgium ; Interuniversity Institute of Myology Italy
| | - Daniela Annibali
- Laboratory of Cell Metabolism and Proliferation, Vesalius Research Center, Vlaamse Institute voor Biotechnologie Leuven, Belgium
| | - Marco Cassano
- Interuniversity Institute of Myology Italy ; School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Stefania Crippa
- Interuniversity Institute of Myology Italy ; Department of Medicine, University of Lausanne Medical School Lausanne, Switzerland
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Department of Development and Reproduction, KUL University of Leuven Leuven, Belgium ; Interuniversity Institute of Myology Italy ; Division of Human Anatomy, Department of Public Health, Experimental and Forensic Medicine, University of Pavia Pavia, Italy
| |
Collapse
|
55
|
Luo Y, Liu Y, Liu M, Wei J, Zhang Y, Hou J, Huang W, Wang T, Li X, He Y, Ding F, Yuan L, Cai J, Zheng F, Yang JY. Sfmbt2 10th intron-hosted miR-466(a/e)-3p are important epigenetic regulators of Nfat5 signaling, osmoregulation and urine concentration in mice. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:97-106. [PMID: 24389345 DOI: 10.1016/j.bbagrm.2013.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 12/13/2013] [Accepted: 12/18/2013] [Indexed: 10/25/2022]
Abstract
Sfmbt2-hosted miR-466a-3p and its close relatives are often among the most significantly up-regulated or down-regulated miRNAs in responses to numerous deleterious environmental stimuli. The exact roles of these miRNAs in cellular stress responses, however, are not clear. Here we showed that many Sfmbt2-hosted miRNAs were highly hypertonic stress responsive in vitro and in vivo. In renal medulla, water deprivation induced alterations in the expression of miR-466(a/b/c/e/p)-3p in a pattern similar to that of miR-200b-3p, a known regulator of osmoresponsive transcription factor Nfat5. Remarkably, exposure of mIMCD3 cells to an arginine vasopressin analog time-dependently down-regulated the expression of miR-466(a/b/c/e/p)-3p and miR-200b-3p, which provides a novel regulatory mechanism for these osmoresponsive miRNAs. In cultured mIMCD3 cells we further demonstrated that miR-466a-3p and miR-466g were capable of targeting Nfat5 by interacting with its 3'UTR. In transgenic mice overexpressing miR-466a-3p, significant down-regulation of Nfat5 and many other osmoregulation-related genes was observed in both the renal cortex and medulla. Moreover, sustained transgenic over-expression of miR-466a-3p was found to be associated with polydipsia, polyuria and disturbed ion homeostasis and kidney morphology. Since the mature sequence of miR-466a-3p is completely equivalent to that of miR-466e-3p and that the seed sequence of miR-466a-3p is completely equivalent to that of miR-297(a/b/c)-3p, miR-466d-3p, miR-467g and miR-669d-3p, and that miR-466a-3p differs from miR-466(b/c/p)-3p only in a 5' nucleotide, we propose that miR-466a-3p and many of its close relatives are important epigenetic regulators of renal Nfat5 signaling, osmoregulation and urine concentration in mice.
Collapse
Affiliation(s)
- Yu Luo
- School of Nursing, The Third Military Medical University, Chongqing 400038, China; State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiang'an, Xiamen 361102, China
| | - Ying Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiang'an, Xiamen 361102, China
| | - Meng Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiang'an, Xiamen 361102, China
| | - Jie Wei
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiang'an, Xiamen 361102, China
| | - Yunyun Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiang'an, Xiamen 361102, China
| | - Jinpao Hou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiang'an, Xiamen 361102, China
| | - Weifeng Huang
- The First Affiliated Hospital of Xiamen University, Xiamen 361005, China
| | - Tao Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiang'an, Xiamen 361102, China
| | - Xun Li
- The First Affiliated Hospital of Xiamen University, Xiamen 361005, China
| | - Ying He
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiang'an, Xiamen 361102, China; Fujian Provincial Transgenic Core, Xiamen University Laboratory Animal Center, Xiang'an, Xiamen 361102, China
| | - Feng Ding
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiang'an, Xiamen 361102, China; Fujian Provincial Transgenic Core, Xiamen University Laboratory Animal Center, Xiang'an, Xiamen 361102, China
| | - Li Yuan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiang'an, Xiamen 361102, China
| | - Jianchun Cai
- Zhongshan Hospital, Xiamen University, Xiamen 361005, China
| | - Feng Zheng
- Department of Nephrology and Basic Science Laboratory, Union Hospital, Fujian Medical University, Fuzhou 350001, China
| | - James Y Yang
- School of Nursing, The Third Military Medical University, Chongqing 400038, China; Fujian Provincial Transgenic Core, Xiamen University Laboratory Animal Center, Xiang'an, Xiamen 361102, China.
| |
Collapse
|