51
|
He Y, Chen X, Guo X, Yin H, Ma N, Tang M, Liu H, Mei J. Th17/Treg Ratio in Serum Predicts Onset of Postoperative Atrial Fibrillation After Off-Pump Coronary Artery Bypass Graft Surgery. Heart Lung Circ 2017; 27:1467-1475. [PMID: 28993118 DOI: 10.1016/j.hlc.2017.08.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 05/31/2017] [Accepted: 08/07/2017] [Indexed: 01/13/2023]
Abstract
BACKGROUND The aim of this study is to identify whether the balance between T helper 17 (Th17) cells and CD4+CD25+Foxp3+ regulatory T (Treg) cells could predict the postoperative atrial fibrillation (POAF) after coronary artery bypass graft surgery (CABG). METHODS We enrolled 88 patients from Xinhua Hospital who received off-pump CABG (OPCABG) surgery. The baseline characteristics of patients were recorded. The preoperative variables C-reactive protein (CRP) level, left atrial (LA) volume, EuroSCORE I score, CHADS2 score, and CHA2DS2-VASc score were calculated at enrolment. Circulating Th17 and Treg cell frequencies were determined by flow cytometry, and expressions of Th17- and Treg-related cytokines were measured by enzyme-linked immunosorbent assay (ELISA). RESULTS Compared to patients without POAF, the CRP level and peripheral circulating Th17 cell were significantly increased in POAF patients. Th17/Treg ratio was positively correlated with CRP level, LA volume, CHADS2 score, and CHA2DS2-VASc score. The areas under the receiver-operating characteristic (AUC) curves of Th17/Treg ratio for predicting POAF occurrence was higher than that of CRP level, LA volume, CHADS2 score and CHA2DS2-VASc score. Th17/Treg ratio combined with CRP level has the highest AUC and a greater balance between sensitivity and specificity for predicting POAF. CONCLUSIONS Our data suggest that a Th17/Treg imbalance due to a Th17 shift, representing a pro-inflammatory tendency, participates in the development of POAF. Combining the Th17/Treg ratio with CRP level may provide a more accurate, sensitive, and specific indicator for prediction of POAF.
Collapse
Affiliation(s)
- Yi He
- Department of Cardiothoracic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xi Chen
- Department of Respiratory Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xuejun Guo
- Department of Respiratory Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Hang Yin
- Department of Cardiothoracic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Nan Ma
- Department of Cardiothoracic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Min Tang
- Department of Cardiothoracic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Hao Liu
- Department of Cardiothoracic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Ju Mei
- Department of Cardiothoracic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
52
|
Azilsartan ameliorates diabetic cardiomyopathy in young db/db mice through the modulation of ACE-2/ANG 1-7/Mas receptor cascade. Biochem Pharmacol 2017; 144:90-99. [PMID: 28789938 DOI: 10.1016/j.bcp.2017.07.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/28/2017] [Indexed: 12/12/2022]
Abstract
Hyperglycemia up-regulates intracellular angiotensin II (ANG-II) production in cardiac myocytes. This study investigated the hemodynamic and metabolic effects of azilsartan (AZL) treatment in a mouse model of diabetic cardiomyopathy and whether the cardioprotective effects of AZL are mediated by the angiotensin converting enzyme (ACE)-2/ANG 1-7/Mas receptor (R) cascade. Control db/+ and db/db mice (n=5 per group) were treated with vehicle or AZL (1 or 3mg/kg/d oral gavage) from the age of 8 to 16weeks. Echocardiography was then performed and myocardial protein levels of ACE-2, Mas R, AT1R, AT2R, osteopontin, connective tissue growth factor (CTGF), atrial natriuretic peptide (ANP) and nitrotyrosine were measured by Western blotting. Oxidative DNA damage and inflammatory markers were assessed by immunofluorescence of 8-hydroxy-2'-deoxyguanosine (8-OHdG), tumor necrosis factor (TNF)-α and interleukin 6 (IL-6). Compared with db/+ mice, the vehicle-treated db/db mice developed obesity, hyperglycemia, hyperinsulinemia and diastolic dysfunction along with cardiac hypertrophy and fibrosis. AZL treatment lowered blood pressure, fasting blood glucose and reduced peak plasma glucose during an oral glucose tolerance test. AZL-3 treatment resulted in a significant decrease in the expression of cytokines, oxidative DNA damage and cardiac dysfunction. Moreover, AZL-3 treatment significantly abrogated the downregulation of ACE-2 and Mas R protein levels in db/db mice. Furthermore, AZL treatment significantly reduced cardiac fibrosis, hypertrophy and their marker molecules (osteopontin, CTGF, TGF-β1 and ANP). Short-term treatment with AZL-3 reversed abnormal cardiac structural remodeling and partially improved glucose metabolism in db/db mice by modulating the ACE-2/ANG 1-7/Mas R pathway.
Collapse
|
53
|
Han Y, Wang Q, Fan X, Chu J, Peng J, Zhu Y, Li Y, Li X, Shen L, Asenso J, Li S. Epigallocatechin gallate attenuates overload‑induced cardiac ECM remodeling via restoring T cell homeostasis. Mol Med Rep 2017; 16:3542-3550. [PMID: 28713936 DOI: 10.3892/mmr.2017.7018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 07/11/2017] [Indexed: 11/05/2022] Open
Abstract
It has previously been demonstrated that Epigallocatechin gallate (EGCG) has regulatory effects on cellular immunity. The present study explored whether EGCG inhibits the overload‑induced cardiac extracellular matrix (ECM) remodeling through targeting the balance of T cell subpopulations. Sprague‑Dawley rats were subjected to either transverse aortic constriction (TAC) or sham operation. TAC rats were treated with EGCG or valsartan (Val) for 6 weeks. The administration of EGCG or Val ameliorated the overproduction of cardiac collagen, inhibited matrix metalloproteinase (MMP) activity, decreased the expression of tissue inhibitor of MMP‑2, atrial natriuretic peptide and brain natriuretic peptide. EGCG regulated the population of effector T cells and naïve T cells, restored the balance of T helper (Th) cell 17/regulatory T cells, via modulating the downstream regulator signal transducer and activator of transcription (STAT3) and STAT5. Furthermore, the ratio of interferon‑γ/interleukin (IL)‑10 which indicates the balance of Th1/Th2, was restored by the treatments at varying degrees. EGCG and Val administration rescued IL‑7 production, and decreased the level of IL‑15 in TAC rats. EGCG has positive therapeutic potential in inhibiting cardiac ECM remodeling. Regulation of the balance of T lymphocyte subsets may be one of the underlying mechanisms responsible for this effect.
Collapse
Affiliation(s)
- Yongsheng Han
- Emergency Center, Affiliated Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Qingtong Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti‑inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, P.R. China
| | - Xizhen Fan
- Emergency Center, Affiliated Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Jun Chu
- Department of Cardiology, Affiliated Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Junfu Peng
- Emergency Center, Affiliated Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Yousheng Zhu
- Emergency Center, Affiliated Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Yan Li
- Emergency Center, Affiliated Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Xiaojing Li
- Emergency Center, Affiliated Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Lei Shen
- Emergency Center, Affiliated Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - James Asenso
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti‑inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, P.R. China
| | - Shanfeng Li
- Emergency Center, Affiliated Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui 230001, P.R. China
| |
Collapse
|
54
|
Hesse J, Leberling S, Boden E, Friebe D, Schmidt T, Ding Z, Dieterich P, Deussen A, Roderigo C, Rose CR, Floss DM, Scheller J, Schrader J. CD73-derived adenosine and tenascin-C control cytokine production by epicardium-derived cells formed after myocardial infarction. FASEB J 2017; 31:3040-3053. [PMID: 28363952 DOI: 10.1096/fj.201601307r] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/13/2017] [Indexed: 01/29/2023]
Abstract
Epicardium-derived cells (EPDCs) play a fundamental role in embryonic cardiac development and are reactivated in the adult heart in response to myocardial infarction (MI). In this study, EPDCs from post-MI rat hearts highly expressed the ectoenzyme CD73 and secreted the profibrotic matricellular protein tenascin-C (TNC). CD73 on EPDCs extensively generated adenosine from both extracellular ATP and NAD. This in turn stimulated the release of additional nucleotides from a Brefeldin A-sensitive intracellular pool via adenosine-A2BR signaling, forming a positive-feedback loop. A2BR activation, in addition, strongly promoted the release of major regulatory cytokines, such as IL-6, IL-11, and VEGF. TNC was found to stimulate EPDC migration and, together with ATP-P2X7R signaling, to activate inflammasomes in EPDCs via TLR4. Our results demonstrate that EPDCs are an important source of various proinflammatory factors in the post-MI heart controlled by purinergic and TNC signaling.-Hesse, J., Leberling, S., Boden, E., Friebe, D., Schmidt, T., Ding, Z., Dieterich, P., Deussen, A., Roderigo, C., Rose, C. R., Floss, D. M., Scheller, J., Schrader, J. CD73-derived adenosine and tenascin-C control cytokine production by epicardium-derived cells formed after myocardial infarction.
Collapse
Affiliation(s)
- Julia Hesse
- Department of Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stella Leberling
- Department of Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Elisabeth Boden
- Department of Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Daniela Friebe
- Department of Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Timo Schmidt
- Department of Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Zhaoping Ding
- Department of Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Peter Dieterich
- Institute of Physiology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Andreas Deussen
- Institute of Physiology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Claudia Roderigo
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christine R Rose
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Doreen M Floss
- Institute of Biochemistry and Molecular Biology II, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jürgen Schrader
- Department of Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany;
| |
Collapse
|
55
|
Chimenti C, Verardo R, Scopelliti F, Grande C, Petrosillo N, Piselli P, De Paulis R, Frustaci A. Myocardial expression of Toll-like receptor 4 predicts the response to immunosuppressive therapy in patients with virus-negative chronic inflammatory cardiomyopathy. Eur J Heart Fail 2017; 19:915-925. [DOI: 10.1002/ejhf.796] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 01/22/2017] [Accepted: 01/30/2017] [Indexed: 12/21/2022] Open
Affiliation(s)
- Cristina Chimenti
- Cardiovascular, Respiratory, Nephrologic, Anesthesiologic and Geriatric Sciences; La Sapienza University; Rome Italy
- Cellular and Molecular Cardiology Laboratory, IRCCS INMI L. Spallanzani; Rome Italy
| | - Romina Verardo
- Cellular and Molecular Cardiology Laboratory, IRCCS INMI L. Spallanzani; Rome Italy
| | | | - Claudia Grande
- Cardiovascular, Respiratory, Nephrologic, Anesthesiologic and Geriatric Sciences; La Sapienza University; Rome Italy
| | - Nicola Petrosillo
- Clinical and Research Department, IRCCS INMI L. Spallanzani; Rome Italy
| | - Pierluca Piselli
- Unit of Clinical Epidemiology, IRCCS INMI L. Spallanzani; Rome Italy
| | | | - Andrea Frustaci
- Cardiovascular, Respiratory, Nephrologic, Anesthesiologic and Geriatric Sciences; La Sapienza University; Rome Italy
- Cellular and Molecular Cardiology Laboratory, IRCCS INMI L. Spallanzani; Rome Italy
| |
Collapse
|
56
|
Asimakopoulos F, Hope C, Johnson MG, Pagenkopf A, Gromek K, Nagel B. Extracellular matrix and the myeloid-in-myeloma compartment: balancing tolerogenic and immunogenic inflammation in the myeloma niche. J Leukoc Biol 2017; 102:265-275. [PMID: 28254840 DOI: 10.1189/jlb.3mr1116-468r] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/06/2017] [Accepted: 02/09/2017] [Indexed: 12/14/2022] Open
Abstract
The last 10-15 years have witnessed a revolution in treating multiple myeloma, an incurable cancer of Ab-producing plasma cells. Advances in myeloma therapy were ushered in by novel agents that remodel the myeloma immune microenvironment. The first generation of novel agents included immunomodulatory drugs (thalidomide analogs) and proteasome inhibitors that target crucial pathways that regulate immunity and inflammation, such as NF-κB. This paradigm continued with the recent regulatory approval of mAbs (elotuzumab, daratumumab) that impact both tumor cells and associated immune cells. Moreover, recent clinical data support checkpoint inhibition immunotherapy in myeloma. With the success of these agents has come the growing realization that the myeloid infiltrate in myeloma lesions-what we collectively call the myeloid-in-myeloma compartment-variably sustains or deters tumor cells by shaping the inflammatory milieu of the myeloma niche and by promoting or antagonizing immune-modulating therapies. The myeloid-in-myeloma compartment includes myeloma-associated macrophages and granulocytes, dendritic cells, and myeloid-derived-suppressor cells. These cell types reflect variable states of differentiation and activation of tumor-infiltrating cells derived from resident myeloid progenitors in the bone marrow-the canonical myeloma niche-or myeloid cells that seed both canonical and extramedullary, noncanonical niches. Myeloma-infiltrating myeloid cells engage in crosstalk with extracellular matrix components, stromal cells, and tumor cells. This complex regulation determines the composition, activation state, and maturation of the myeloid-in-myeloma compartment as well as the balance between immunogenic and tolerogenic inflammation in the niche. Redressing this balance may be a crucial determinant for the success of antimyeloma immunotherapies.
Collapse
Affiliation(s)
- Fotis Asimakopoulos
- Department of Medicine, Division of Hematology/Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA; .,University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
| | - Chelsea Hope
- Department of Medicine, Division of Hematology/Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA.,University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
| | - Michael G Johnson
- Department of Medicine, Division of Hematology/Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA.,University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
| | - Adam Pagenkopf
- Department of Medicine, Division of Hematology/Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA.,University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
| | - Kimberly Gromek
- Department of Medicine, Division of Hematology/Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA.,University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
| | - Bradley Nagel
- Department of Medicine, Division of Hematology/Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA.,University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
| |
Collapse
|
57
|
Effects of Tenascin-C Knockout on Cerebral Vasospasm After Experimental Subarachnoid Hemorrhage in Mice. Mol Neurobiol 2017; 55:1951-1958. [DOI: 10.1007/s12035-017-0466-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 02/20/2017] [Indexed: 12/20/2022]
|
58
|
Momčilović M, Stamenković V, Jovanović M, Andjus PR, Jakovčevski I, Schachner M, Miljković Đ. Tenascin-C deficiency protects mice from experimental autoimmune encephalomyelitis. J Neuroimmunol 2017; 302:1-6. [PMID: 27974153 DOI: 10.1016/j.jneuroim.2016.12.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/27/2016] [Accepted: 12/01/2016] [Indexed: 02/05/2023]
Abstract
The extracellular matrix glycoprotein tenascin-C (TnC) has been increasingly appreciated as a molecule susceptibly reacting to abnormalities in the mammalian immune system. TnC expression is elevated in inflamed tissues outside the immune system, but also in lymphoid organs. It participates in the promotion of inflammatory responses. Here, the role of TnC in a paradigm of CNS autoimmunity was investigated. Experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis, was induced in mice deficient in TnC (TnC-/- mice). Amelioration of EAE was observed in these mice in comparison to their wild-type (TnC+/+) littermates. Since T helper (Th)1 and Th17 cells play a dominant role in the pathogenesis of EAE, these cells were investigated in addition to analyzing locomotor functions and pro-inflammatory cytokine levels. Smaller numbers of interferon-gamma-producing Th1 cells and reduced ability of Th17 cells to produce interleukin-17 were observed in spleens of TnC-/- mice challenged by immunization with the myelin associated glycoprotein (MOG) when compared to TnC+/+ mice. There was no difference in Th1 and Th17 responses in non-immunized TnC-/- and TnC+/+ mice, thus excluding generalized immunosuppression in TnC-/- mice. These results show that TnC is important for the pathogenesis of CNS autoimmunity and that its deficiency interferes with Th1 and Th17 encephalitogenic potentials.
Collapse
Affiliation(s)
- Miljana Momčilović
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Serbia
| | - Vera Stamenković
- Department of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Serbia
| | - Miloš Jovanović
- Department of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Serbia
| | - Pavle R Andjus
- Department of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Serbia
| | - Igor Jakovčevski
- Experimental Neurophysiology, German Center for Neurodegenerative Diseases, Bonn, Germany; Institute for Molecular and Behavioral Neuroscience, University of Cologne, Cologne, Germany; Zentrum für Molekulare Neurobiologie, Universitätskrankenhaus Hamburg-Eppendorf, Universität Hamburg, Martinistr. 52, D-20246 Hamburg, Germany
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA; Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou 515041, P.R. China
| | - Đorđe Miljković
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Serbia.
| |
Collapse
|
59
|
Myers JM, Cooper LT, Kem DC, Stavrakis S, Kosanke SD, Shevach EM, Fairweather D, Stoner JA, Cox CJ, Cunningham MW. Cardiac myosin-Th17 responses promote heart failure in human myocarditis. JCI Insight 2016; 1:85851. [PMID: 27366791 PMCID: PMC4924810 DOI: 10.1172/jci.insight.85851] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In human myocarditis and its sequela dilated cardiomyopathy (DCM), the mechanisms and immune phenotype governing disease and subsequent heart failure are not known. Here, we identified a Th17 cell immunophenotype of human myocarditis/DCM with elevated CD4+IL17+ T cells and Th17-promoting cytokines IL-6, TGF-β, and IL-23 as well as GM-CSF-secreting CD4+ T cells. The Th17 phenotype was linked with the effects of cardiac myosin on CD14+ monocytes, TLR2, and heart failure. Persistent heart failure was associated with high percentages of IL-17-producing T cells and IL-17-promoting cytokines, and the myocarditis/DCM phenotype included significantly low percentages of FOXP3+ Tregs, which may contribute to disease severity. We demonstrate a potentially novel mechanism in human myocarditis/DCM in which TLR2 peptide ligands from human cardiac myosin stimulated exaggerated Th17-related cytokines including TGF-β, IL-6, and IL-23 from myocarditic CD14+ monocytes in vitro, and an anti-TLR2 antibody abrogated the cytokine response. Our translational study explains how an immune phenotype may be initiated by cardiac myosin TLR ligand stimulation of monocytes to generate Th17-promoting cytokines and development of pathogenic Th17 cells in human myocarditis and heart failure, and provides a rationale for targeting IL-17A as a therapeutic option.
Collapse
Affiliation(s)
- Jennifer M Myers
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Leslie T Cooper
- Department of Cardiovascular Diseases, Mayo Clinic, Jacksonville, Florida, USA
| | | | | | - Stanley D Kosanke
- Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Ethan M Shevach
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - DeLisa Fairweather
- Department of Cardiovascular Diseases, Mayo Clinic, Jacksonville, Florida, USA.,Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Julie A Stoner
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Carol J Cox
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Madeleine W Cunningham
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
60
|
Bhattacharyya S, Wang W, Morales-Nebreda L, Feng G, Wu M, Zhou X, Lafyatis R, Lee J, Hinchcliff M, Feghali-Bostwick C, Lakota K, Budinger GRS, Raparia K, Tamaki Z, Varga J. Tenascin-C drives persistence of organ fibrosis. Nat Commun 2016; 7:11703. [PMID: 27256716 PMCID: PMC4895803 DOI: 10.1038/ncomms11703] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 04/20/2016] [Indexed: 02/07/2023] Open
Abstract
The factors responsible for maintaining persistent organ fibrosis in systemic sclerosis (SSc) are not known but emerging evidence implicates toll-like receptors (TLRs) in the pathogenesis of SSc. Here we show the expression, mechanism of action and pathogenic role of endogenous TLR activators in skin from patients with SSc, skin fibroblasts, and in mouse models of organ fibrosis. Levels of tenascin-C are elevated in SSc skin biopsy samples, and serum and SSc fibroblasts, and in fibrotic skin tissues from mice. Exogenous tenascin-C stimulates collagen gene expression and myofibroblast transformation via TLR4 signalling. Mice lacking tenascin-C show attenuation of skin and lung fibrosis, and accelerated fibrosis resolution. These results identify tenascin-C as an endogenous danger signal that is upregulated in SSc and drives TLR4-dependent fibroblast activation, and by its persistence impedes fibrosis resolution. Disrupting this fibrosis amplification loop might be a viable strategy for the treatment of SSc.
Collapse
Affiliation(s)
- Swati Bhattacharyya
- Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Wenxia Wang
- Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | - Gang Feng
- Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Minghua Wu
- University of Texas Medical School at Houston, Houston, Texas 77030, USA
| | - Xiaodong Zhou
- University of Texas Medical School at Houston, Houston, Texas 77030, USA
| | - Robert Lafyatis
- Boston University School of Medicine, Boston, Massachusetts 02215, USA
| | - Jungwha Lee
- Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Monique Hinchcliff
- Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | - Katja Lakota
- Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - G. R. Scott Budinger
- Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Kirtee Raparia
- Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Zenshiro Tamaki
- Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - John Varga
- Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| |
Collapse
|
61
|
Yang Y, Lv J, Jiang S, Ma Z, Wang D, Hu W, Deng C, Fan C, Di S, Sun Y, Yi W. The emerging role of Toll-like receptor 4 in myocardial inflammation. Cell Death Dis 2016; 7:e2234. [PMID: 27228349 PMCID: PMC4917669 DOI: 10.1038/cddis.2016.140] [Citation(s) in RCA: 237] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 03/25/2016] [Accepted: 04/12/2016] [Indexed: 12/17/2022]
Abstract
Toll-like receptors (TLRs) are a family of pattern recognition receptors involved in cardiovascular diseases. Notably, numerous studies have demonstrated that TLR4 activates the expression of several of pro-inflammatory cytokine genes that play pivotal roles in myocardial inflammation, particularly myocarditis, myocardial infarction, ischemia-reperfusion injury, and heart failure. In addition, TLR4 is an emerging target for anti-inflammatory therapies. Given the significance of TLR4, it would be useful to summarize the current literature on the molecular mechanisms and roles of TLR4 in myocardial inflammation. Thus, in this review, we first introduce the basic knowledge of the TLR4 gene and describe the activation and signaling pathways of TLR4 in myocardial inflammation. Moreover, we highlight the recent progress of research on the involvement of TLR4 in myocardial inflammation. The information reviewed here may be useful to further experimental research and to increase the potential of TLR4 as a therapeutic target.
Collapse
Affiliation(s)
- Y Yang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - J Lv
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - S Jiang
- Department of Aerospace Medicine, The Fourth Military Medical University, Xi'an 710032, China
| | - Z Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - D Wang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China
| | - W Hu
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - C Deng
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - C Fan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - S Di
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Y Sun
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - W Yi
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| |
Collapse
|
62
|
Rienks M, Papageorgiou AP. Novel regulators of cardiac inflammation: Matricellular proteins expand their repertoire. J Mol Cell Cardiol 2016; 91:172-8. [DOI: 10.1016/j.yjmcc.2016.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/08/2016] [Accepted: 01/10/2016] [Indexed: 12/15/2022]
|
63
|
Shankar SP, Griffith M, Forrester JV, Kuffová L. Dendritic cells and the extracellular matrix: A challenge for maintaining tolerance/homeostasis. World J Immunol 2015; 5:113-130. [DOI: 10.5411/wji.v5.i3.113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/18/2015] [Accepted: 11/11/2015] [Indexed: 02/05/2023] Open
Abstract
The importance of the extracellular matrix (ECM) in contributing to structural, mechanical, functional and tissue-specific features in the body is well appreciated. While the ECM was previously considered to be a passive bystander, it is now evident that it plays active, dynamic and flexible roles in shaping cell survival, differentiation, migration and death to varying extents depending on the specific site in the body. Dendritic cells (DCs) are recognized as potent antigen presenting cells present in many tissues and in blood, continuously scrutinizing the microenvironment for antigens and mounting local and systemic host responses against harmful agents. DCs also play pivotal roles in maintaining homeostasis to harmless self-antigens, critical for preventing autoimmunity. What is less understood are the complex interactions between DCs and the ECM in maintaining this balance between steady-state tissue residence and DC activation during inflammation. DCs are finely tuned to inflammation-induced variations in fragment length, accessible epitopes and post-translational modifications of individual ECM components and correspondingly interpret these changes appropriately by adjusting their profiles of cognate binding receptors and downstream immune activation. The successful design and composition of novel ECM-based mimetics in regenerative medicine and other applications rely on our improved understanding of DC-ECM interplay in homeostasis and the challenges involved in maintaining it.
Collapse
|