51
|
Bujakowska K, Audo I, Mohand-Saïd S, Lancelot ME, Antonio A, Germain A, Léveillard T, Letexier M, Saraiva JP, Lonjou C, Carpentier W, Sahel JA, Bhattacharya SS, Zeitz C. CRB1 mutations in inherited retinal dystrophies. Hum Mutat 2011; 33:306-15. [PMID: 22065545 DOI: 10.1002/humu.21653] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 10/26/2011] [Indexed: 02/06/2023]
Abstract
Mutations in the CRB1 gene are associated with variable phenotypes of severe retinal dystrophies, ranging from leber congenital amaurosis (LCA) to rod-cone dystrophy, also called retinitis pigmentosa (RP). Moreover, retinal dystrophies resulting from CRB1 mutations may be accompanied by specific fundus features: preservation of the para-arteriolar retinal pigment epithelium (PPRPE) and retinal telangiectasia with exudation (also referred to as Coats-like vasculopathy). In this publication, we report seven novel mutations and classify over 150 reported CRB1 sequence variants that were found in more that 240 patients. The data from previous reports were used to analyze a potential correlation between CRB1 variants and the clinical features of respective patients. This meta-analysis suggests that the differential phenotype of patients with CRB1 mutations is due to additional modifying factors rather than particular mutant allele combination.
Collapse
|
52
|
González-del Pozo M, Borrego S, Barragán I, Pieras JI, Santoyo J, Matamala N, Naranjo B, Dopazo J, Antiñolo G. Mutation screening of multiple genes in Spanish patients with autosomal recessive retinitis pigmentosa by targeted resequencing. PLoS One 2011; 6:e27894. [PMID: 22164218 PMCID: PMC3229495 DOI: 10.1371/journal.pone.0027894] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 10/27/2011] [Indexed: 01/22/2023] Open
Abstract
Retinitis Pigmentosa (RP) is a heterogeneous group of inherited retinal dystrophies characterised ultimately by the loss of photoreceptor cells. RP is the leading cause of visual loss in individuals younger than 60 years, with a prevalence of about 1 in 4000. The molecular genetic diagnosis of autosomal recessive RP (arRP) is challenging due to the large genetic and clinical heterogeneity. Traditional methods for sequencing arRP genes are often laborious and not easily available and a screening technique that enables the rapid detection of the genetic cause would be very helpful in the clinical practice. The goal of this study was to develop and apply microarray-based resequencing technology capable of detecting both known and novel mutations on a single high-throughput platform. Hence, the coding regions and exon/intron boundaries of 16 arRP genes were resequenced using microarrays in 102 Spanish patients with clinical diagnosis of arRP. All the detected variations were confirmed by direct sequencing and potential pathogenicity was assessed by functional predictions and frequency in controls. For validation purposes 4 positive controls for variants consisting of previously identified changes were hybridized on the array. As a result of the screening, we detected 44 variants, of which 15 are very likely pathogenic detected in 14 arRP families (14%). Finally, the design of this array can easily be transformed in an equivalent diagnostic system based on targeted enrichment followed by next generation sequencing.
Collapse
Affiliation(s)
- María González-del Pozo
- Unidad de Gestión Clínica de Genética, Reproducción y Medicina Fetal, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Sevilla, Spain
| | - Salud Borrego
- Unidad de Gestión Clínica de Genética, Reproducción y Medicina Fetal, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Sevilla, Spain
| | - Isabel Barragán
- Unidad de Gestión Clínica de Genética, Reproducción y Medicina Fetal, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Sevilla, Spain
| | - Juan I. Pieras
- Unidad de Gestión Clínica de Genética, Reproducción y Medicina Fetal, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Sevilla, Spain
| | - Javier Santoyo
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Sevilla, Spain
- Medical Genome Project, Andalusian Center for Human Genomic Sequencing, Sevilla, Spain
- Departamento de Bioinformática y Genómica, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Nerea Matamala
- Unidad de Gestión Clínica de Genética, Reproducción y Medicina Fetal, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Medical Genome Project, Andalusian Center for Human Genomic Sequencing, Sevilla, Spain
| | - Belén Naranjo
- Unidad de Gestión Clínica de Genética, Reproducción y Medicina Fetal, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Joaquín Dopazo
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Sevilla, Spain
- Medical Genome Project, Andalusian Center for Human Genomic Sequencing, Sevilla, Spain
- Departamento de Bioinformática y Genómica, Centro de Investigación Príncipe Felipe, Valencia, Spain
- Functional Genomics Node (INB), Valencia, Spain
- * E-mail: (JD); (GA)
| | - Guillermo Antiñolo
- Unidad de Gestión Clínica de Genética, Reproducción y Medicina Fetal, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Sevilla, Spain
- Medical Genome Project, Andalusian Center for Human Genomic Sequencing, Sevilla, Spain
- * E-mail: (JD); (GA)
| |
Collapse
|
53
|
Li L, Xiao X, Li S, Jia X, Wang P, Guo X, Jiao X, Zhang Q, Hejtmancik JF. Detection of variants in 15 genes in 87 unrelated Chinese patients with Leber congenital amaurosis. PLoS One 2011; 6:e19458. [PMID: 21602930 PMCID: PMC3094346 DOI: 10.1371/journal.pone.0019458] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 03/30/2011] [Indexed: 11/18/2022] Open
Abstract
Background Leber congenital amaurosis (LCA) is the earliest onset and most severe form of hereditary retinal dystrophy. So far, full spectrum of variations in the 15 genes known to cause LCA has not been systemically evaluated in East Asians. Therefore, we performed comprehensive detection of variants in these 15 genes in 87 unrelated Han Chinese patients with LCA. Methodology/Principal Findings The 51 most frequently mutated exons and introns in the 15 genes were selected for an initial scan using cycle sequencing. All the remaining exons in 11 of the 15 genes were subsequently sequenced. Fifty-three different variants were identified in 44 of the 87 patients (50.6%), involving 78 of the 88 alleles (11 homozygous and 56 heterozygous variants). Of the 53 variants, 35 (66%) were novel pathogenic mutations. In these Chinese patients, variants in GUCY2D are the most common cause of LCA (16.1% cases), followed by CRB1 (11.5%), RPGRIP1 (8%), RPE65 (5.7%), SPATA7 (4.6%), CEP290 (4.6%), CRX (3.4%), LCA5 (2.3%), MERTK (2.3%), AIPL1 (1.1%), and RDH12 (1.1%). This differs from the variation spectrum described in other populations. An initial scan of 55 of 215 PCR amplicons, including 214 exons and 1 intron, detected 83.3% (65/78) of the mutant alleles ultimately found in these 87 patients. In addition, sequencing only 9 exons would detect over 50% of the identified variants and require less than 5% of the labor and cost of comprehensive sequencing for all exons. Conclusions/Significance Our results suggest that specific difference in the variation spectrum found in LCA patients from the Han Chinese and other populations are related by ethnicity. Sequencing exons in order of decreasing risk is a cost-effective way to identify causative mutations responsible for LCA, especially in the context of genetic counseling for individual patients in a clinical setting.
Collapse
Affiliation(s)
- Lin Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Xueshan Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shiqiang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiaoyun Jia
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Panfeng Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiangming Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiaodong Jiao
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
- * E-mail:
| | - J. Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
54
|
Coppieters F, Casteels I, Meire F, De Jaegere S, Hooghe S, van Regemorter N, Van Esch H, Matuleviciene A, Nunes L, Meersschaut V, Walraedt S, Standaert L, Coucke P, Hoeben H, Kroes HY, Vande Walle J, de Ravel T, Leroy BP, De Baere E. Genetic screening of LCA in Belgium: predominance of CEP290 and identification of potential modifier alleles in AHI1 of CEP290-related phenotypes. Hum Mutat 2011; 31:E1709-66. [PMID: 20683928 PMCID: PMC3048164 DOI: 10.1002/humu.21336] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Leber Congenital Amaurosis (LCA), the most severe inherited retinal dystrophy, is genetically heterogeneous, with 14 genes accounting for 70% of patients. Here, 91 LCA probands underwent LCA chip analysis and subsequent sequencing of 6 genes (CEP290, CRB1, RPE65, GUCY2D, AIPL1and CRX), revealing mutations in 69% of the cohort, with major involvement of CEP290 (30%). In addition, 11 patients with early-onset retinal dystrophy (EORD) and 13 patients with Senior-Loken syndrome (SLS), LCA-Joubert syndrome (LCA-JS) or cerebello-oculo-renal syndrome (CORS) were included. Exhaustive re-inspection of the overall phenotypes in our LCA cohort revealed novel insights mainly regarding the CEP290-related phenotype. The AHI1 gene was screened as a candidate modifier gene in three patients with the same CEP290 genotype but different neurological involvement. Interestingly, a heterozygous novel AHI1 mutation, p.Asn811Lys, was found in the most severely affected patient. Moreover, AHI1 screening in five other patients with CEP290-related disease and neurological involvement revealed a second novel missense variant, p.His758Pro, in one LCA patient with mild mental retardation and autism. These two AHI1 mutations might thus represent neurological modifiers of CEP290-related disease. © 2010 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Frauke Coppieters
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Ayuso C, Millan JM. Retinitis pigmentosa and allied conditions today: a paradigm of translational research. Genome Med 2010; 2:34. [PMID: 20519033 PMCID: PMC2887078 DOI: 10.1186/gm155] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Monogenic human retinal dystrophies are a group of disorders characterized by progressive loss of photoreceptor cells leading to visual handicap. Retinitis pigmentosa is a type of retinal dystrophy where degeneration of rod photoreceptors occurs at the early stages. At present, there are no available effective therapies to maintain or improve vision in patients affected with retinitis pigmentosa, but post-genomic studies are allowing the development of potential therapeutic approaches. This review summarizes current knowledge on genes that have been identified to be responsible for retinitis pigmentosa, the involvement of these genes in the different forms of the disorder, the role of the proteins encoded by these genes in retinal function, the utility of genotyping, and current efforts to develop novel therapies.
Collapse
Affiliation(s)
- Carmen Ayuso
- Department of Medical Genetics, IIS-Fundación Jiménez Díaz/CIBERER, Av/Reyes Católicos no, 2; 28040, Madrid, Spain.
| | | |
Collapse
|
56
|
Hunt DM, Buch P, Michaelides M. Guanylate cyclases and associated activator proteins in retinal disease. Mol Cell Biochem 2009; 334:157-68. [PMID: 19941038 DOI: 10.1007/s11010-009-0331-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Accepted: 11/04/2009] [Indexed: 01/15/2023]
Abstract
Two isoforms of guanylate cyclase, GC1 and GC2 encoded by GUCY2D and GUCY2F, are responsible for the replenishment of cGMP in photoreceptors after exposure to light. Both are required for the normal kinetics of photoreceptor sensitivity and recovery, although disease mutations are restricted to GUCY2D. Recessive mutations in this gene cause the severe early-onset blinding disorder Leber congenital amaurosis whereas dominant mutations result in a later onset less severe cone-rod dystrophy. Cyclase activity is regulated by Ca(2+) which binds to the GC-associated proteins, GCAP1 and GCAP2 encoded by GUCA1A and GUCA1B, respectively. No recessive mutations in either of these genes have been reported. Dominant missense mutations are largely confined to the Ca(2+)-binding EF hands of the proteins. In a similar fashion to the disease mechanism for the dominant GUCY2D mutations, these mutations generally alter the sensitivity of the cyclase to inhibition as Ca(2+) levels rise following a light flash.
Collapse
Affiliation(s)
- David M Hunt
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK.
| | | | | |
Collapse
|
57
|
Tosi J, Tsui I, Lima LH, Wang NK, Tsang SH. Case report: autofluorescence imaging and phenotypic variance in a sibling pair with early-onset retinal dystrophy due to defective CRB1 function. Curr Eye Res 2009; 34:395-400. [PMID: 19401883 PMCID: PMC2717950 DOI: 10.1080/02713680902859639] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE To phenotype two siblings with autosomal recessive early-onset retinal dystrophy due to CRB1 mutations. METHODS Autofluorescence (AF) imaging, high resolution optical coherence tomography (OCT), and full-field electroretinography (ERG) were performed. The results of DNA sequencing from polymerase chain reaction (PCR) products of the CRB1 gene were obtained from hospital records. RESULTS Two siblings, 14 years old and 17 years old, were compound heterozygotes for 749 del Ser and C948Y mutations in the gene encoding CRB1. AF imaging documented the preservation of retinal pigment epithelium (RPE) along the arterioles. High-resolution OCT showed abnormally thick retinae with increased lamination. CONCLUSION Leber congenital amaurosis caused by CRB1 is a unique form of early-onset retinal dystrophy because it spares the para-arteriolar RPE and causes abnormal retinal lamination with thickening. These findings, detectable with AF imaging and high-resolution OCT, can be combined with electrophysiology and genetic testing to molecularly classify retinal degenerations efficiently.
Collapse
Affiliation(s)
- Joaquin Tosi
- Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, New York, USA
| | | | | | | | | |
Collapse
|
58
|
den Hollander AI, Roepman R, Koenekoop RK, Cremers FPM. Leber congenital amaurosis: genes, proteins and disease mechanisms. Prog Retin Eye Res 2008; 27:391-419. [PMID: 18632300 DOI: 10.1016/j.preteyeres.2008.05.003] [Citation(s) in RCA: 588] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Leber congenital amaurosis (LCA) is the most severe retinal dystrophy causing blindness or severe visual impairment before the age of 1 year. Linkage analysis, homozygosity mapping and candidate gene analysis facilitated the identification of 14 genes mutated in patients with LCA and juvenile retinal degeneration, which together explain approximately 70% of the cases. Several of these genes have also been implicated in other non-syndromic or syndromic retinal diseases, such as retinitis pigmentosa and Joubert syndrome, respectively. CEP290 (15%), GUCY2D (12%), and CRB1 (10%) are the most frequently mutated LCA genes; one intronic CEP290 mutation (p.Cys998X) is found in approximately 20% of all LCA patients from north-western Europe, although this frequency is lower in other populations. Despite the large degree of genetic and allelic heterogeneity, it is possible to identify the causative mutations in approximately 55% of LCA patients by employing a microarray-based, allele-specific primer extension analysis of all known DNA variants. The LCA genes encode proteins with a wide variety of retinal functions, such as photoreceptor morphogenesis (CRB1, CRX), phototransduction (AIPL1, GUCY2D), vitamin A cycling (LRAT, RDH12, RPE65), guanine synthesis (IMPDH1), and outer segment phagocytosis (MERTK). Recently, several defects were identified that are likely to affect intra-photoreceptor ciliary transport processes (CEP290, LCA5, RPGRIP1, TULP1). As the eye represents an accessible and immune-privileged organ, it appears to be uniquely suitable for human gene replacement therapy. Rodent (Crb1, Lrat, Mertk, Rpe65, Rpgrip1), avian (Gucy2D) and canine (Rpe65) models for LCA and profound visual impairment have been successfully corrected employing adeno-associated virus or lentivirus-based gene therapy. Moreover, phase 1 clinical trials have been carried out in humans with RPE65 deficiencies. Apart from ethical considerations inherently linked to treating children, major obstacles for the treatment of LCA could be the putative developmental deficiencies in the visual cortex in persons blind from birth (amblyopia), the absence of sufficient numbers of viable photoreceptor or RPE cells in LCA patients, and the unknown and possibly toxic effects of overexpression of transduced genes. Future LCA research will focus on the identification of the remaining causal genes, the elucidation of the molecular mechanisms of disease in the retina, and the development of gene therapy approaches for different genetic subtypes of LCA.
Collapse
Affiliation(s)
- Anneke I den Hollander
- Department of Human Genetics & Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | |
Collapse
|