51
|
Loteprednol Etabonate (Submicron) Ophthalmic Gel 0.38%: A Review in Post-Operative Inflammation and Pain Following Ocular Surgery. Clin Drug Investig 2020; 40:387-394. [PMID: 32172521 PMCID: PMC7736007 DOI: 10.1007/s40261-020-00899-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Loteprednol etabonate ophthalmic gel 0.38% (Lotemax® SM; hereafter referred to as loteprednol etabonate gel 0.38%) is a topical ophthalmic corticosteroid approved in the USA for the treatment of post-operative inflammation and pain following ocular surgery. This formulation provides improved drug delivery compared with loteprednol etabonate micronized gel 0.5%, with a smaller drug particle size (in the submicron range) to improve dissolution and penetration into ocular tissues, meaning less loteprednol etabonate is required to exert therapeutic effect. In two multicentre, randomized phase III trials, significantly more loteprednol etabonate gel 0.38% than vehicle recipients displayed complete resolution of ocular inflammation and ocular pain at day 8 post cataract surgery. Complete resolution of pain was seen as early as post-operative day 3. Treatment-related ocular adverse events in the loteprednol etabonate gel 0.38% group occurred in < 1% of subjects and included one incidence each of photophobia, cystoid macular oedema, eyelid oedema and instillation site pain. Treatment with loteprednol etabonate gel 0.38% had no meaningful impact on intraocular pressure (IOP) or visual acuity. Thus, loteprednol etabonate gel 0.38% extends the treatment options available in resolving post-operative inflammation and pain in patients who have undergone ocular surgery.
Collapse
|
52
|
Kim SH, Kwon D, Lee S, Son SW, Kwon JT, Kim PJ, Lee YH, Jung YS. Concentration- and Time-Dependent Effects of Benzalkonium Chloride in Human Lung Epithelial Cells: Necrosis, Apoptosis, or Epithelial Mesenchymal Transition. TOXICS 2020; 8:toxics8010017. [PMID: 32121658 PMCID: PMC7151738 DOI: 10.3390/toxics8010017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 02/06/2023]
Abstract
Benzalkonium chloride (BAC), an antimicrobial agent in inhalable medications and household sprays, has been reported to be toxic to pulmonary organs. Although cell membrane damage has been considered as the main cytotoxic mechanism of BAC, its concentration- and time-dependent cellular effects on lung epithelium have not been fully understood. In the present study, human lung epithelial (H358) cells were exposed to 0.2–40 μg/mL of BAC for 30 min or 21 days. Cell membranes were rapidly disrupted by 30 min exposure, but 24 h incubation of BAC (4–40 μg/mL) predominantly caused apoptosis rather than necrosis. BAC (2–4 μg/mL) induced mitochondrial depolarization, which may be associated with increased expression of pro-apoptotic proteins (caspase-3, PARP, Bax, p53, and p21), and decreased levels of the anti-apoptotic protein Bcl-2. The protein expression levels of IRE1α, BiP, CHOP, and p-JNK were also elevated by BAC (2–4 μg/mL) suggesting the possible involvement of endoplasmic reticulum stress in inducing apoptosis. Long-term (7–21 days) incubation with BAC (0.2–0.6 μg/mL) did not affect cell viability but led to epithelial-mesenchymal transition (EMT) as shown by the decrease of E-cadherin and the increase of N-cadherin, fibronectin, and vimentin, caused by the upregulation of EMT transcription factors, such as Snail, Slug, Twist1, Zeb1, and Zeb2. Therefore, we conclude that apoptosis could be an important mechanism of acute BAC cytotoxicity in lung epithelial cells, and chronic exposure to BAC even at sub-lethal doses can promote pulmonary EMT.
Collapse
Affiliation(s)
- Sou Hyun Kim
- Lab of Molecular Toxicology, College of Pharmacy, Pusan National University, Busan 46241, Korea
| | - Doyoung Kwon
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Seunghyun Lee
- Lab of Molecular Toxicology, College of Pharmacy, Pusan National University, Busan 46241, Korea
| | - Seung Won Son
- Lab of Molecular Toxicology, College of Pharmacy, Pusan National University, Busan 46241, Korea
| | - Jung-Taek Kwon
- Risk Assessment Division, Environmental Health Research Department, National Institute of Environmental Research, Incheon 22689, Korea
| | - Pil-Je Kim
- Risk Assessment Division, Environmental Health Research Department, National Institute of Environmental Research, Incheon 22689, Korea
| | - Yun-Hee Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
- Correspondence: (Y.-H.L.); (Y.-S.J.); Tel.: +82-2-880-2139 (Y.-H.L.); 82-51-510-2816 (Y.-S.J.)
| | - Young-Suk Jung
- Lab of Molecular Toxicology, College of Pharmacy, Pusan National University, Busan 46241, Korea
- Correspondence: (Y.-H.L.); (Y.-S.J.); Tel.: +82-2-880-2139 (Y.-H.L.); 82-51-510-2816 (Y.-S.J.)
| |
Collapse
|
53
|
Abstract
Cosmetic products are used in large quantities across the world. An increasing number of chemical compounds are being added to the formulation of cosmetic products as additives, fragrances, preservatives, stabilizers, surfactants, dye and shine to potentiate their quality, property and shelf life. Owing to their widespread use, active residues of cosmetic products are continuously introduced into the environment in several ways. Many of these chemicals are bioactive and are characterized by potential bioaccumulation ability and environmental persistence, thus exerting a major risk to humans and the health of ecosystems. Hence, the indiscriminate consumption of cosmetics may present a looming issue with significant adverse impacts on public health. This review intends to spotlight a current overview of toxic ingredients used in formulating cosmetics such as parabens, triclosan, benzalkonium chloride, 1,4-dioxane, plastic microbeads, formaldehyde, diazolidinyl urea, imidazolidinyl urea, sunscreen elements (organic and inorganic UV filters) and trace metals. Specific focus is given to illustrate the biological risks of these substances on human health and aquatic system in terms of genotoxicity, cytotoxicity, neurotoxicity mutagenicity, and estrogenicity. In addition to conclusive remarks, future directions are also suggested.
Collapse
|
54
|
Erichev VP, Petrov SY, Volzhanin AV, Ghazaryan SA. [Continuous anti-glaucoma drug therapy as a risk factor of dry eye]. Vestn Oftalmol 2020; 135:117-123. [PMID: 32015316 DOI: 10.17116/oftalma2019135061117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A preservative is a mandatory component of the eye drops designed to prevent microbial contamination in an opened bottle. Most of the preservative agents are either detergents, or oxidants; the most widely used and well-studied preservative - benzalkonium chloride - is a detergent. Due to regular usage of glaucoma eye drops, cytotoxic impact of the preservatives on anterior eye surface is considered the principal cause of its pathology, which leads to a decrease in quality of life. The high cost of preservative-free pharmacological forms and the complicated process of developing new preservatives make the usage of eye drops with minimal required concentration of preservative agent and a moistening component a good compromise. The most commonly utilized moistening component is polyvinyl alcohol - synthetic polymeric hydrogel, which is also used in artificial tears and bioengineering.
Collapse
Affiliation(s)
- V P Erichev
- Research Institute of Eye Diseases, 11A Rossolimo St., Moscow, Russian Federation, 119021
| | - S Yu Petrov
- Research Institute of Eye Diseases, 11A Rossolimo St., Moscow, Russian Federation, 119021
| | - A V Volzhanin
- Research Institute of Eye Diseases, 11A Rossolimo St., Moscow, Russian Federation, 119021
| | - S A Ghazaryan
- Yerevan State Medical University after Mkhitar Heratsi, 2 Koryuna St., Erevan, Republic of Armenia, 0025
| |
Collapse
|
55
|
Mitochondrial Dysfunctions May Be One of the Major Causative Factors Underlying Detrimental Effects of Benzalkonium Chloride. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8956504. [PMID: 32104543 PMCID: PMC7035552 DOI: 10.1155/2020/8956504] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/23/2019] [Accepted: 01/10/2020] [Indexed: 02/06/2023]
Abstract
Benzalkonium chloride (BAC) is currently the most commonly used antimicrobial preservative in ophthalmic solutions, nasal sprays, and cosmetics. However, a large number of clinical and experimental investigations showed that the topical administration of BAC-containing eye drops could cause a variety of ocular surface changes, from ocular discomfort to potential risk for future glaucoma surgery. BAC-containing albuterol may increase the risk of albuterol-related systemic adverse effects. BAC, commonly present in personal care products, in cosmetic products can induce irritation and dose-dependent changes in the cell morphology. The cationic nature of BAC (it is a quaternary ammonium) suggests that one of the major targets of BAC in the cell may be mitochondria, the only intracellular compartment charged negatively. However, the influence of BAC on mitochondria has not been clearly understood. Here, the effects of BAC on energy parameters of rat liver mitochondria as well as on yeast cells were examined. BAC, being a "weaker" uncoupler, potently inhibited respiration in state 3, diminished the mitochondrial membrane potential, caused opening of the Ca2+/Pi-dependent pore, blocked ATP synthesis, and promoted H2O2 production by mitochondria. BAC triggered oxidative stress and mitochondrial fragmentation in yeast cells. BAC-induced oxidative stress in mitochondria and yeast cells was almost totally prevented by the mitochondria-targeted antioxidant SkQ1; the protective effect of SkQ1 on mitochondrial fragmentation was only partial. Collectively, these data showed that BAC acts adversely on cell bioenergetics (especially on ATP synthesis) and mitochondrial dynamics and that its prooxidant effect can be partially prevented by the mitochondria-targeted antioxidant SkQ1.
Collapse
|
56
|
Mehran NA, Sinha S, Razeghinejad R. New glaucoma medications: latanoprostene bunod, netarsudil, and fixed combination netarsudil-latanoprost. Eye (Lond) 2020; 34:72-88. [PMID: 31695162 PMCID: PMC7002400 DOI: 10.1038/s41433-019-0671-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/08/2019] [Accepted: 10/14/2019] [Indexed: 12/19/2022] Open
Abstract
Reduction of intraocular pressure is the only proven method to treat glaucoma. Initial treatment of glaucoma commonly involves using anti-glaucoma medications either as monotherapy or combination therapy. Studies on aqueous humour dynamics have contributed to our understanding of aqueous outflow mechanisms that have led to the discovery of new drugs. Three new drugs (latanoprostene bunod 0.24%, netarsudil 0.02%, and fixed combination netarsudil 0.02% -latanoprost 0.005%) have been introduced recently in the market with novel mechanisms of action. Latanoprostene bunod 0.024% is a nitric oxide-donating prostaglandin F2α analogue which increases the aqueous outflow both by uveoscleral and trabecular pathways. Netarsudil 0.02% is a potent Rho kinase/norepinephrine transporter inhibitor acting by increasing the trabecular outflow, decreasing the aqueous production, and possibly decreasing the episcleral venous pressure. This review highlights the role of these drugs in the management of glaucoma, with an overview of the major clinical trials on their efficacy, safety, and tolerability.
Collapse
Affiliation(s)
- Nikki A Mehran
- Glaucoma Service, Wills Eye Hospital, Philadelphia, PA, United States
| | - Sapna Sinha
- Glaucoma Service, Wills Eye Hospital, Philadelphia, PA, United States
| | - Reza Razeghinejad
- Glaucoma Service, Wills Eye Hospital, Philadelphia, PA, United States.
| |
Collapse
|
57
|
Zhang R, Park M, Richardson A, Tedla N, Pandzic E, de Paiva CS, Watson S, Wakefield D, Di Girolamo N. Dose-dependent benzalkonium chloride toxicity imparts ocular surface epithelial changes with features of dry eye disease. Ocul Surf 2019; 18:158-169. [PMID: 31740391 DOI: 10.1016/j.jtos.2019.11.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/15/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE Inclusion of the preservative benzalkonium chloride (BAC) in ophthalmic solutions is prevalent, despite the noted potential for exacerbating dry eye disease (DED). Whilst studies incorporating BAC have assessed its' effects as a mouse model of DED, the impact on limbal epithelia is under-studied. Our investigation aimed to comprehensively assess the impact of different BAC dosing regimens and their suitability as a mouse model of DED. METHODS C57BL/6J mice (n = 72) were administered topical BAC (0.05-0.2%) over 7 days. Fluorescein staining, corneal smoothness index, and immuno-histological analyses were applied to determine architectural and cellular changes on the ocular surface following BAC treatment. The effect of BAC (0.0001-0.01%) on cultivated primary mouse corneo-limbal epithelial cells (CLECs) (n = 6) was examined using morphological and functional assays. RESULTS Whilst 0.2% BAC induced severe corneal epithelial defects, 0.1% BAC dispensed once daily over 7 days, induced punctate fluorescein staining without detriment to corneal smoothness. Histochemical staining revealed disorganized basal corneal epithelial cells with enlarged cytoplasmic halos. Furthermore, PAS+ goblet cells were decreased. BAC treatment also modulated K14 expression and distribution within the limbus. In cultured CLEC, BAC triggered cell contraction and vacuolation, increased LDH release and elevated cell necrosis by 4.1-fold. Concentrations of BAC as low as 0.0001% decreased colony formation. CONCLUSIONS This study describes how exposing C57BL/6 mice to BAC induce some clinicopathological features of DED seen in humans, and therefore provides the foundations to explore the consequences on the ocular surface, particularly on limbal epithelia and its' stem cells.
Collapse
Affiliation(s)
- Richard Zhang
- Mechanisms of Disease and Translational Research, School of Medical Sciences, Faculty of Medicine, University of NSW, Sydney, NSW, 2052, Australia
| | - Mijeong Park
- Mechanisms of Disease and Translational Research, School of Medical Sciences, Faculty of Medicine, University of NSW, Sydney, NSW, 2052, Australia
| | - Alexander Richardson
- Mechanisms of Disease and Translational Research, School of Medical Sciences, Faculty of Medicine, University of NSW, Sydney, NSW, 2052, Australia
| | - Nicodemus Tedla
- Mechanisms of Disease and Translational Research, School of Medical Sciences, Faculty of Medicine, University of NSW, Sydney, NSW, 2052, Australia
| | - Elvis Pandzic
- Biomedical Imaging Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Cintia S de Paiva
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, 77030, United States
| | - Stephanie Watson
- Save Sight Institute, Discipline of Ophthalmology, Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Denis Wakefield
- Mechanisms of Disease and Translational Research, School of Medical Sciences, Faculty of Medicine, University of NSW, Sydney, NSW, 2052, Australia
| | - Nick Di Girolamo
- Mechanisms of Disease and Translational Research, School of Medical Sciences, Faculty of Medicine, University of NSW, Sydney, NSW, 2052, Australia.
| |
Collapse
|
58
|
Destruel PL, Zeng N, Seguin J, Douat S, Rosa F, Brignole-Baudouin F, Dufaÿ S, Dufaÿ-Wojcicki A, Maury M, Mignet N, Boudy V. Novel in situ gelling ophthalmic drug delivery system based on gellan gum and hydroxyethylcellulose: Innovative rheological characterization, in vitro and in vivo evidence of a sustained precorneal retention time. Int J Pharm 2019; 574:118734. [PMID: 31705970 DOI: 10.1016/j.ijpharm.2019.118734] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 12/15/2022]
Abstract
Achieving drug delivery at the ocular level encounters many challenges and obstacles. In situ gelling delivery systems are now widely used for topical ocular administration and recognized as a promising strategy to improve the treatment of a wide range of ocular diseases. The present work describes the formulation and evaluation of a mucoadhesive and ion-activated in situ gelling delivery system based on gellan gum and hydroxyethylcellulose for the delivery of phenylephrine and tropicamide. First, physico-chemical characteristics were assessed to ensure suitable properties regarding ocular administration. Then, rheological properties such as viscosity and gelation capacity were determined. Gelation capacity of the formulations and the effect of hydroxyethylcellulose on viscosity were demonstrated. A new rheological method was developed to assess the gel resistance under simulated eye blinking. Afterward, mucoadhesion was evaluated using tensile strength test and rheological synergism method in both rotational and oscillatory mode allowing mucoadhesive properties of hydroxyethylcellulose to be point out. Finally, residence time on the ocular surface was investigated in vivo, using cyanine 5.5 dye as a fluorescent marker entrapped in the in situ gelling delivery systems. Residence performance was studied by non-invasive optical imaging on vigilant rabbits, allowing eye blinking and nasolacrimal drainage to occur physiologically. Fluorescence intensity profiles pointed out a prolonged residence time on the ocular surface region for the developed formulations compared to conventional eye drops, suggesting in vitro / in vivo correlations between rheological properties and in vivo residence performances.
Collapse
Affiliation(s)
- Pierre-Louis Destruel
- Unither Développement Bordeaux, ZA Tech Espace, av Toussaint Catros, Le Haillan 33185, France; Département Recherche et Développement Pharmaceutique, Agence Générale des Equipements et Produits de Santé (AGEPS), AP-HP, 7 rue du fer à moulin, Paris 75005, France; Université de Paris, UTCBS, CNRS, INSERM, Faculté de Pharmacie, 4 av de l'observatoire, Paris 75006, France(1)
| | - Ni Zeng
- Unither Pharmaceuticals, 3-5 rue St-Georges, Paris 75009, France
| | - Johanne Seguin
- Université de Paris, UTCBS, CNRS, INSERM, Faculté de Pharmacie, 4 av de l'observatoire, Paris 75006, France(1)
| | - Sophie Douat
- Département Recherche et Développement Pharmaceutique, Agence Générale des Equipements et Produits de Santé (AGEPS), AP-HP, 7 rue du fer à moulin, Paris 75005, France
| | - Frédéric Rosa
- Département Recherche et Développement Pharmaceutique, Agence Générale des Equipements et Produits de Santé (AGEPS), AP-HP, 7 rue du fer à moulin, Paris 75005, France
| | - Françoise Brignole-Baudouin
- UMR CNRS 8638 - Chimie Toxicologie Analytique et Cellulaire, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie de Paris, 4 Avenue de l'Observatoire, Paris 75006, France; CNRS UMR 7210 - Inserm UMR_S 968, Institut de la Vision, Paris, 75012, France; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DHOS, CIC 503, Paris, 75012, France
| | - Sophie Dufaÿ
- Département Recherche et Développement Pharmaceutique, Agence Générale des Equipements et Produits de Santé (AGEPS), AP-HP, 7 rue du fer à moulin, Paris 75005, France
| | - Amélie Dufaÿ-Wojcicki
- Département Recherche et Développement Pharmaceutique, Agence Générale des Equipements et Produits de Santé (AGEPS), AP-HP, 7 rue du fer à moulin, Paris 75005, France
| | - Marc Maury
- Unither Pharmaceuticals, 3-5 rue St-Georges, Paris 75009, France
| | - Nathalie Mignet
- Université de Paris, UTCBS, CNRS, INSERM, Faculté de Pharmacie, 4 av de l'observatoire, Paris 75006, France(1)
| | - Vincent Boudy
- Département Recherche et Développement Pharmaceutique, Agence Générale des Equipements et Produits de Santé (AGEPS), AP-HP, 7 rue du fer à moulin, Paris 75005, France; Université de Paris, UTCBS, CNRS, INSERM, Faculté de Pharmacie, 4 av de l'observatoire, Paris 75006, France(1).
| |
Collapse
|
59
|
Gifford KL, Richdale K, Kang P, Aller TA, Lam CS, Liu YM, Michaud L, Mulder J, Orr JB, Rose KA, Saunders KJ, Seidel D, Tideman JWL, Sankaridurg P. IMI - Clinical Management Guidelines Report. Invest Ophthalmol Vis Sci 2019; 60:M184-M203. [PMID: 30817832 DOI: 10.1167/iovs.18-25977] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Best practice clinical guidelines for myopia control involve an understanding of the epidemiology of myopia, risk factors, visual environment interventions, and optical and pharmacologic treatments, as well as skills to translate the risks and benefits of a given myopia control treatment into lay language for both the patient and their parent or caregiver. This report details evidence-based best practice management of the pre-, stable, and the progressing myope, including risk factor identification, examination, selection of treatment strategies, and guidelines for ongoing management. Practitioner considerations such as informed consent, prescribing off-label treatment, and guides for patient and parent communication are detailed. The future research directions of myopia interventions and treatments are discussed, along with the provision of clinical references, resources, and recommendations for continuing professional education in this growing area of clinical practice.
Collapse
Affiliation(s)
- Kate L Gifford
- Private Practice and Queensland University of Technology, Brisbane, Queensland, Australia
| | | | - Pauline Kang
- University of New South Wales, Sydney, New South Wales, Australia
| | - Thomas A Aller
- Private Practice and University of California, Berkeley, United States
| | - Carly S Lam
- The Hong Kong Polytechnic University, Hong Kong
| | - Y Maria Liu
- University of California, Berkeley, California, United States
| | | | - Jeroen Mulder
- University of Applied Sciences Utrecht, Utrecht, The Netherlands
| | - Janis B Orr
- Aston University, Birmingham, United Kingdom
| | - Kathryn A Rose
- University of Technology Sydney, New South Wales, Australia
| | | | - Dirk Seidel
- Glasgow Caledonian University, Glasgow, United Kingdom
| | | | | |
Collapse
|
60
|
Medical devices biocompatibility assessment on HCE: Evidences of delayed cytotoxicity of preserved compared to preservative free eye drops. Regul Toxicol Pharmacol 2019; 106:81-89. [DOI: 10.1016/j.yrtph.2019.04.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/16/2019] [Accepted: 04/26/2019] [Indexed: 11/21/2022]
|
61
|
Exploring optimized methoxy poly(ethylene glycol)-block-poly(ε-caprolactone) crystalline cored micelles in anti-glaucoma pharmacotherapy. Int J Pharm 2019; 566:573-584. [DOI: 10.1016/j.ijpharm.2019.06.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 01/01/2023]
|
62
|
Inhalation toxicity of benzalkonium chloride and triethylene glycol mixture in rats. Toxicol Appl Pharmacol 2019; 378:114609. [PMID: 31173787 DOI: 10.1016/j.taap.2019.114609] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023]
Abstract
Benzalkonium chloride (BAC), a disinfectant, and triethylene glycol (TEG), an organic solvent/sanitizer, are frequently combined in commercially available household sprays. To assess the respiratory effect of this combination, Sprague-Dawley rats were exposed to an aerosol containing BAC (0.5%, w/v) and TEG (10%, w/v) for up to 2 weeks in a whole-body inhalation chamber. BAC (4.1-4.5 mg/m3, sprayed from 0.5% solution) promoted pulmonary cell damage and inflammation as depicted by the increase in total protein, lactate dehydrogenase, polymorphonuclear leukocytes, and macrophage inflammatory protein-2 in the bronchoalveolar lavage fluid, whereas TEG (85.3-94.5 mg/m3, sprayed from 10% solution) did not affect the lung. Rats exposed to the BAC/TEG mixture for 2 weeks showed severe respiratory symptoms (sneezing, wheezing, breath shortness, and chest tightness), but no lung damage or inflammation was observed. However, significant ulceration and degenerative necrosis were observed in the nasal cavities of rats repeatedly exposed to the BAC/TEG mixture. The mass median aerodynamic diameters of the aqueous, BAC, TEG and BAC/TEG aerosols were 1.24, 1.27, 3.11 and 3.24 μm, respectively, indicating that TEG-containing aerosols have larger particles than those of the aqueous and BAC alone aerosols. These results suggest that the toxic effects of BAC and BAC/TEG aerosols on the different respiratory organs may be associated with the difference in particle diameter, since particle size is important in determining the deposition site of inhaled materials.
Collapse
|
63
|
Kwon D, Lim Y, Kwon J, Shim I, Kim E, Lee D, Yoon B, Kim P, Kim H. Evaluation of pulmonary toxicity of benzalkonium chloride and triethylene glycol mixtures using in vitro and in vivo systems. ENVIRONMENTAL TOXICOLOGY 2019; 34:561-572. [PMID: 30786124 PMCID: PMC6594094 DOI: 10.1002/tox.22722] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/10/2019] [Accepted: 01/14/2019] [Indexed: 05/25/2023]
Abstract
Benzalkonium chloride (BAC) is a widely used disinfectant/preservative, and respiratory exposure to this compound has been reported to be highly toxic. Spray-form household products have been known to contain BAC together with triethylene glycol (TEG) in their solutions. The purpose of this study was to estimate the toxicity of BAC and TEG mixtures to pulmonary organs using in vitro and in vivo experiments. Human alveolar epithelial (A549) cells incubated with BAC (1-10 μg/mL) for 24 hours showed significant cytotoxicity, while TEG (up to 1000 μg/mL) did not affect cell viability. However, TEG in combination with BAC aggravated cell damage and inhibited colony formation as compared to BAC alone. TEG also exacerbated BAC-promoted production of reactive oxygen species (ROS) and reduction of glutathione (GSH) level in A549 cells. However, pretreatment of the cells with N-acetylcysteine (NAC) alleviated the cytotoxicity, indicating oxidative stress could be a mechanism of the toxicity. Quantification of intracellular BAC by LC/MS/MS showed that cellular distribution/absorption of BAC was enhanced in A549 cells when it was exposed together with TEG. Intratracheal instillation of BAC (400 μg/kg) in rats was toxic to the pulmonary tissues while that of TEG (up to 1000 μg/kg) did not show any harmful effect. A combination of nontoxic doses of BAC (200 μg/kg) and TEG (1000 μg/kg) promoted significant lung injury in rats, as shown by increased protein content and lactate dehydrogenase (LDH) activity in bronchoalveolar lavage fluids (BALF). Moreover, BAC/TEG mixture recruited inflammatory cells, polymorphonuclear leukocytes (PMNs), in terminal bronchioles and elevated cytokine levels, tumor necrosis factor α (TNF-α), and interleukin 6 (IL-6) in BALF. These results suggest that TEG can potentiate BAC-induced pulmonary toxicity and inflammation, and thus respiratory exposure to the air mist from spray-form products containing this chemical combination is potentially harmful to humans.
Collapse
Affiliation(s)
- Doyoung Kwon
- Risk Assessment Division, Environmental Health Research DepartmentNational Institute of Environmental ResearchIncheonRepublic of Korea
| | - Yeon‐Mi Lim
- Risk Assessment Division, Environmental Health Research DepartmentNational Institute of Environmental ResearchIncheonRepublic of Korea
| | - Jung‐Taek Kwon
- Risk Assessment Division, Environmental Health Research DepartmentNational Institute of Environmental ResearchIncheonRepublic of Korea
| | - Ilseob Shim
- Risk Assessment Division, Environmental Health Research DepartmentNational Institute of Environmental ResearchIncheonRepublic of Korea
| | - Eunji Kim
- Risk Assessment Division, Environmental Health Research DepartmentNational Institute of Environmental ResearchIncheonRepublic of Korea
| | - Doo‐Hee Lee
- Environmental Measurement & Analysis CenterNational Institute of Environmental ResearchIncheonRepublic of Korea
| | - Byung‐Il Yoon
- College of Veterinary MedicineKangwon National UniversityChuncheon‐siGangwon‐doRepublic of Korea
| | - Pilje Kim
- Risk Assessment Division, Environmental Health Research DepartmentNational Institute of Environmental ResearchIncheonRepublic of Korea
| | - Hyun‐Mi Kim
- Risk Assessment Division, Environmental Health Research DepartmentNational Institute of Environmental ResearchIncheonRepublic of Korea
| |
Collapse
|
64
|
Oh DJ, Chen JL, Vajaranant TS, Dikopf MS. Brimonidine tartrate for the treatment of glaucoma. Expert Opin Pharmacother 2018; 20:115-122. [DOI: 10.1080/14656566.2018.1544241] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Daniel J. Oh
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Judy L. Chen
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Thasarat S. Vajaranant
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Mark S. Dikopf
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
65
|
Singh RS, Kaur N, Sharma R, Rana V. Carbamoylethyl pullulan: QbD based synthesis, characterization and corneal wound healing potential. Int J Biol Macromol 2018; 118:2245-2255. [DOI: 10.1016/j.ijbiomac.2018.07.107] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/11/2018] [Accepted: 07/16/2018] [Indexed: 12/19/2022]
|
66
|
Kogachi K, Ter-Zakarian A, Asanad S, Sadun A, Karanjia R. Toxic medications in Leber's hereditary optic neuropathy. Mitochondrion 2018; 46:270-277. [PMID: 30081212 DOI: 10.1016/j.mito.2018.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/23/2018] [Accepted: 07/31/2018] [Indexed: 12/18/2022]
Abstract
Leber's hereditary optic neuropathy (LHON) is a maternally inherited mitochondrial disorder characterized by acute bilateral vision loss. The pathophysiology involves reactive oxygen species (ROS), which can be affected by medications. This article reviews the evidence for medications with demonstrated and theoretical effects on mitochondrial function, specifically in relation to increased ROS production. The data reviewed provides guidance when selecting medications for individuals with LHON mutations (carriers) and are susceptible to conversion to affected. However, as with all medications, the proven benefits of these therapies must be weighed against, in some cases, purely theoretical risks for this unique patient population.
Collapse
Affiliation(s)
- Kaitlin Kogachi
- Doheny Eye Institute, 1355 San Pablo Street, Los Angeles, CA 90033, USA.
| | - Anna Ter-Zakarian
- Doheny Eye Institute, 1355 San Pablo Street, Los Angeles, CA 90033, USA
| | - Samuel Asanad
- Doheny Eye Institute, 1355 San Pablo Street, Los Angeles, CA 90033, USA; Doheny Eye Center, Department of Ophthalmology, David Geffen School of Medicine at UCLA, 800 South Fairmount Avenue, Suite 215, Pasadena, CA 91105, USA
| | - Alfredo Sadun
- Doheny Eye Institute, 1355 San Pablo Street, Los Angeles, CA 90033, USA; Doheny Eye Center, Department of Ophthalmology, David Geffen School of Medicine at UCLA, 800 South Fairmount Avenue, Suite 215, Pasadena, CA 91105, USA
| | - Rustum Karanjia
- Doheny Eye Institute, 1355 San Pablo Street, Los Angeles, CA 90033, USA; Doheny Eye Center, Department of Ophthalmology, David Geffen School of Medicine at UCLA, 800 South Fairmount Avenue, Suite 215, Pasadena, CA 91105, USA; The Ottawa Eye Institute, University of Ottawa, 501 Smyth Rd, Ottawa, ON K1H 8M2, Canada; Ottawa Hospital Research Institute, 1053 Carling Avenue, Ottawa, ON K1Y 4E9, Canada
| |
Collapse
|
67
|
Hwang HB, Kim SY. The Effect of Prostaglandin Analogues on the Ciliary Zonular Fibers of the Rabbit Crystalline Lens. Curr Eye Res 2018; 43:1357-1361. [PMID: 30015523 DOI: 10.1080/02713683.2018.1501073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
PURPOSE To evaluate the influence of prostaglandin (PG) analogues on the ciliary zonular fibers of the crystalline lens using scanning electron microscopy (SEM) of rabbit eyes, and to measure the matrix metalloproteinase (MMP) and tissue inhibitor of metalloproteinase (TIMP) levels of the aqueous humor and crystalline lens treated with topical PG analogues Methods: Fifty eyes from 25 New Zealand white rabbits were divided into five groups of five rabbits each. In the control group, balanced salt solution was administered via the topical route once a day to the eyes. The benzalkonium chloride (BAC) group was treated with 0.02% BAC, the Latanoprost group with 0.005% latanoprost, the Travoprost group with 0.004% Travoprost, and the Bimatoprost group with 0.03% Bimatoprost for 10 months. We examined the ciliary zonular fibers using SEM. We also measured the MMP and TIMP levels of the aqueous humor and crystalline lens. RESULTS SEM revealed some splitting of zonular fibers in eyes treated with topical PG analogues when compared with the control and BAC groups. The MMP-1 and TIMP-1 levels after treatment with the PG analogues did not differ significantly from the control and BAC groups (P > 0.05). There was no significant difference in MMP-1, MMP-3, TIMP-1, and MMP-1/TIMP-1 levels in the lens among all five groups. CONCLUSIONS PG analogues may induce zonular change in rabbits microscopically. There was no association between zonular changes and the levels of certain types of MMP or TIMP in the aqueous humor or crystalline lens after topical treatment with PG analogues.
Collapse
Affiliation(s)
- Hyung Bin Hwang
- a Department of Ophthalmology, Incheon St. Mary's Hospital, College of Medicine , The Catholic University of Korea , Seoul , Republic of Korea
| | - Su-Young Kim
- b Department of Ophthalmology, Uijeongbu St. Mary's Hospital, College of Medicine , The Catholic University of Korea , Seoul , Korea
| |
Collapse
|
68
|
López-Gallardo E, Emperador S, Hernández-Ainsa C, Montoya J, Bayona-Bafaluy MP, Ruiz-Pesini E. Food derived respiratory complex I inhibitors modify the effect of Leber hereditary optic neuropathy mutations. Food Chem Toxicol 2018; 120:89-97. [PMID: 29991444 DOI: 10.1016/j.fct.2018.07.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/21/2018] [Accepted: 07/05/2018] [Indexed: 01/14/2023]
Abstract
Mitochondrial DNA mutations in genes encoding respiratory complex I polypeptides can cause Leber hereditary optic neuropathy. Toxics affecting oxidative phosphorylation system can also cause mitochondrial optic neuropathy. Some complex I inhibitors found in edible plants might differentially interact with these pathologic mutations and modify their penetrance. To analyze this interaction, we have compared the effect of rotenone, capsaicin and rolliniastatin-1 on cybrids harboring the most frequent Leber hereditary optic neuropathy mutations and found that m.3460G > A mutation increases rotenone resistance but capsaicin and rolliniastatin-1 susceptibility. Thus, to explain the pathogenicity of mitochondrial diseases due to mitochondrial DNA mutations, their potential interactions with environment factors will have to be considered.
Collapse
Affiliation(s)
- Ester López-Gallardo
- Departamento de Bioquímica, Biología Molecular y Celular. Universidad de Zaragoza, Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain; Centro de Investigaciones Biomédicas En Red de Enfermedades Raras (CIBERER), Zaragoza, Spain.
| | - Sonia Emperador
- Departamento de Bioquímica, Biología Molecular y Celular. Universidad de Zaragoza, Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain; Centro de Investigaciones Biomédicas En Red de Enfermedades Raras (CIBERER), Zaragoza, Spain.
| | - Carmen Hernández-Ainsa
- Departamento de Bioquímica, Biología Molecular y Celular. Universidad de Zaragoza, Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain.
| | - Julio Montoya
- Departamento de Bioquímica, Biología Molecular y Celular. Universidad de Zaragoza, Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain; Centro de Investigaciones Biomédicas En Red de Enfermedades Raras (CIBERER), Zaragoza, Spain.
| | - M Pilar Bayona-Bafaluy
- Departamento de Bioquímica, Biología Molecular y Celular. Universidad de Zaragoza, Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain; Centro de Investigaciones Biomédicas En Red de Enfermedades Raras (CIBERER), Zaragoza, Spain.
| | - Eduardo Ruiz-Pesini
- Departamento de Bioquímica, Biología Molecular y Celular. Universidad de Zaragoza, Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain; Centro de Investigaciones Biomédicas En Red de Enfermedades Raras (CIBERER), Zaragoza, Spain; Fundación ARAID, Zaragoza, Spain.
| |
Collapse
|
69
|
Sanidad KZ, Yang H, Wang W, Ozay EI, Yang J, Gu M, Karner E, Zhang J, Kim D, Minter LM, Xiao H, Zhang G. Effects of Consumer Antimicrobials Benzalkonium Chloride, Benzethonium Chloride, and Chloroxylenol on Colonic Inflammation and Colitis-Associated Colon Tumorigenesis in Mice. Toxicol Sci 2018. [DOI: 10.1093/toxsci/kfy045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Katherine Z Sanidad
- Molecular and Cellular Biology Graduate Program
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003
| | - Haixia Yang
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003
- Department of Nutrition and Food Safety, College of Public Health, Xi’an Jiaotong University, Xi’an, Shaanxi, China 710061
| | - Weicang Wang
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003
| | - E Ilker Ozay
- Molecular and Cellular Biology Graduate Program
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003
| | - Jun Yang
- Department of Entomology and Nematology, University of California, Davis, California 95616
| | - Min Gu
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003
| | - Emmet Karner
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003
| | - Jianan Zhang
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003
| | - Daeyoung Kim
- Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003
| | - Lisa M Minter
- Molecular and Cellular Biology Graduate Program
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003
| | - Hang Xiao
- Molecular and Cellular Biology Graduate Program
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003
| | - Guodong Zhang
- Molecular and Cellular Biology Graduate Program
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003
| |
Collapse
|
70
|
Le Basle Y, Chennell P, Sautou V. A Sorption Study between Ophthalmic Drugs and Multi Dose Eyedroppers in Simulated Use Conditions. PHARMACEUTICAL TECHNOLOGY IN HOSPITAL PHARMACY 2017. [DOI: 10.1515/pthp-2017-0026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractPreservative free ophthalmic formulations need to be packaged either as single doses, or using specially designed sterility preserving multidose eyedroppers. Our objective was to evaluate potential sorption phenomena between a device with a silicone sterility preserving membrane and the delivered drops of several ophthalmic solutions. Cyclosporine, rifamycin, latanoprost, timolol and norfloxacin were used as model drugs. Quantification of the active substance in delivered drops (1 to 4 drops per day) from low density polyethylene (LDPE) bottles without any sterility preserving device and from LDPE bottles with a sterility preserving silicone membrane (LDPE-Si) was performed for 14 days (n≥3), using validated HPLC methods. For cyclosporine, mean concentrations did not vary by more than 10 % from reference concentrations for either LDPE or LDPE-Si eyedroppers, but for LDPE-Si, the concentrations of the 1 mg.ml-1 cyclosporine micellar solution were found to be significantly lower than for those from LDPE eyedroppers (p=0.0127). For LDPE-Si, rifamycin mean concentrations decreased by 11.2 % throughout the 14 day study period, but didn’t vary by more than 10 % for LDPE and glass eyedroppers. However, rifamycin concentrations from LDPE-Si were not significantly different from those from LDPE eyedroppers. For latanoprost, whilst mean concentrations did not vary by more than 10 % from reference concentration for LDPE eyedroppers, for LDPE-Si eyedroppers concentrations decreased by 76.4 % at their lowest concentration and never returned to their initial level. For timolol and norfloxacin, mean concentrations did not vary by more than 10 % for either LDPE or LDPE-Si eyedroppers and no significant difference was found between the 2 eyedroppers concentrations. Our results are in favor of an absence of significant sorption between LDPE-Si eyedroppers for timolol or norfloxacin ophthalmic solutions. Further studies should be performed on cyclosporine ophthalmic micellar solutions and rifamycin ophthalmic solutions before any definite conclusions can be made. Finally, our results show that latanoprost ophthalmic solutions shouldn’t be used with LDPE-Si eyedroppers as the loss of active substance would cause a sever under-dosing.
Collapse
|
71
|
O'Callaghan J, Cassidy PS, Humphries P. Open-angle glaucoma: therapeutically targeting the extracellular matrix of the conventional outflow pathway. Expert Opin Ther Targets 2017; 21:1037-1050. [PMID: 28952395 DOI: 10.1080/14728222.2017.1386174] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
INTRODUCTION Ocular hypertension in open-angle glaucoma is caused by a reduced rate of removal of aqueous humour (AH) from the eye, with the majority of AH draining from the anterior chamber through the conventional outflow pathway, comprising the trabecular meshwork (TM) and Schlemm's Canal. Resistance to outflow is generated, in part, by the extracellular matrix (ECM) of the outflow tissues. Current pressure-lowering topical medications largely suppress AH production, or enhance its clearance through the unconventional pathway. However, therapies targeting the ECM of the conventional pathway in order to decrease intraocular pressure have become a recent focus of attention. Areas covered: We discuss the role of ECM of the TM in outflow homeostasis and its relevance as a target for glaucoma therapy, including progress in development of topical eye formulations, together with gene therapy approaches based on inducible, virally-mediated expression of matrix metalloproteinases to enhance aqueous outflow. Expert opinion: There remains a need for improved glaucoma medications that more specifically act upon sites causative to glaucoma pathogenesis. Emerging strategies targeting the ECM of the conventional outflow pathway, or associated components of the cytoskeleton of TM cells, involving new pharmacological formulations or genetically-based therapies, are promising avenues of future glaucoma treatment.
Collapse
Affiliation(s)
- Jeffrey O'Callaghan
- a Ocular Genetics Unit, Smurfit Institute of Genetics , University of Dublin, Trinity College , Dublin , Ireland
| | - Paul S Cassidy
- a Ocular Genetics Unit, Smurfit Institute of Genetics , University of Dublin, Trinity College , Dublin , Ireland
| | - Pete Humphries
- a Ocular Genetics Unit, Smurfit Institute of Genetics , University of Dublin, Trinity College , Dublin , Ireland
| |
Collapse
|
72
|
Datta S, He G, Tomilov A, Sahdeo S, Denison MS, Cortopassi G. In Vitro Evaluation of Mitochondrial Function and Estrogen Signaling in Cell Lines Exposed to the Antiseptic Cetylpyridinium Chloride. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:087015. [PMID: 28885978 PMCID: PMC5783672 DOI: 10.1289/ehp1404] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 05/04/2017] [Accepted: 05/09/2017] [Indexed: 05/15/2023]
Abstract
BACKGROUND Quaternary ammonium salts (QUATS), such as cetylpyridinium chloride (CPC) and benzalkonium chloride (BAK), are frequently used in antiseptic formulations, including toothpastes, mouthwashes, lozenges, throat and nasal sprays, and as biocides. Although in a recent ruling, the U.S. Food and Drug Administration (FDA) banned CPC from certain products and requested more data on BAK's efficacy and safety profile, QUATS, in general, and CPC and BAK, in particular, continue to be used in personal health care, food, and pharmaceutical and cleaning industries. OBJECTIVES We aimed to assess CPC's effects on mitochondrial toxicity and endocrine disruption in vitro. METHOD Mitochondrial O2 consumption and adenosine triphosphate (ATP) synthesis rates of osteosarcoma cybrid cells were measured before and after CPC and BAK treatment. Antiestrogenic effects of the compounds were measured by a luciferase-based assay using recombinant human breast carcinoma cells (VM7Luc4E2, ERalpha-positive). RESULTS CPC inhibited both mitochondrial O2 consumption [half maximal inhibitory concentration (IC50): 3.8μM] and ATP synthesis (IC50: 0.9μM), and additional findings supported inhibition of mitochondrial complex 1 as the underlying mechanism for these effects. In addition, CPC showed concentration-dependent antiestrogenic activity half maximal effective concentration [(EC50): 4.5μM)]. BAK, another antimicrobial QUATS that is structurally similar to CPC, and the pesticide rotenone, a known complex 1 inhibitor, also showed mitochondrial inhibitory and antiestrogenic effects. In all three cases, there was overlap of the antiestrogenic activity with the mitochondrial inhibitory activity. CONCLUSIONS Mitochondrial inhibition in vitro occurred at a CPC concentration that may be relevant to human exposures. The antiestrogenic activity of CPC, BAK, rotenone, and triclosan may be related to their mitochondrial inhibitory activity. Our findings support the need for additional research on the mitochondrial inhibitory and antiestrogenic effects of QUATS, including CPC and BAK. https://doi.org/10.1289/EHP1404.
Collapse
Affiliation(s)
- Sandipan Datta
- Department of Molecular Bioscience, School of Veterinary Medicine, University of California , Davis, Davis, California, USA
| | - Guochun He
- Department of Environmental Toxicology, University of California , Davis, Davis, California, USA
| | - Alexey Tomilov
- Department of Molecular Bioscience, School of Veterinary Medicine, University of California , Davis, Davis, California, USA
| | - Sunil Sahdeo
- Department of Molecular Bioscience, School of Veterinary Medicine, University of California , Davis, Davis, California, USA
| | - Michael S Denison
- Department of Environmental Toxicology, University of California , Davis, Davis, California, USA
| | - Gino Cortopassi
- Department of Molecular Bioscience, School of Veterinary Medicine, University of California , Davis, Davis, California, USA
| |
Collapse
|