51
|
Demirci H, Durmus H, Toksoy G, Uslu A, Parman Y, Hanagasi H. Cognition of the mothers of patients with Duchenne muscular dystrophy. Muscle Nerve 2020; 62:710-716. [PMID: 32893363 DOI: 10.1002/mus.27057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 08/27/2020] [Accepted: 08/29/2020] [Indexed: 12/22/2022]
Abstract
Duchenne muscular dystrophy (DMD) has been found to be associated with cognitive impairment. However, few studies have addressed cognitive impairment among mothers of children with DMD. In the present study, the neuropsychological profiles of both carrier mothers (C-Ms) and noncarrier mothers (NC-Ms) were examined, and the findings were compared with healthy control mothers (HC-Ms). There were 90 participants, consisting of 31 C-Ms, 24 NC-Ms, and 35 HC-Ms, each of whom completed a neuropsychological test battery. C-Ms had poorer cognition performance in attention, working memory, immediate verbal memory, visuospatial skills, and executive functions than NC-Ms, and HC-Ms. This study provides evidence that there may be cognitive impairment in mothers of patients with DMD. The cognitive impairment of C-Ms has similarities to that seen in children with DMD.
Collapse
Affiliation(s)
- Hasan Demirci
- Department of Psychiatry, Sisli Hamidiye Etfal Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Hacer Durmus
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Guven Toksoy
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Atilla Uslu
- Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Yesim Parman
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Hasmet Hanagasi
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
52
|
Korolkova OY, Widatalla SE, Williams SD, Whalen DS, Beasley HK, Ochieng J, Grewal T, Sakwe AM. Diverse Roles of Annexin A6 in Triple-Negative Breast Cancer Diagnosis, Prognosis and EGFR-Targeted Therapies. Cells 2020; 9:E1855. [PMID: 32784650 PMCID: PMC7465958 DOI: 10.3390/cells9081855] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/20/2022] Open
Abstract
The calcium (Ca2+)-dependent membrane-binding Annexin A6 (AnxA6), is a multifunctional, predominantly intracellular scaffolding protein, now known to play relevant roles in different cancer types through diverse, often cell-type-specific mechanisms. AnxA6 is differentially expressed in various stages/subtypes of several cancers, and its expression in certain tumor cells is also induced by a variety of pharmacological drugs. Together with the secretion of AnxA6 as a component of extracellular vesicles, this suggests that AnxA6 mediates distinct tumor progression patterns via extracellular and/or intracellular activities. Although it lacks enzymatic activity, some of the AnxA6-mediated functions involving membrane, nucleotide and cholesterol binding as well as the scaffolding of specific proteins or multifactorial protein complexes, suggest its potential utility in the diagnosis, prognosis and therapeutic strategies for various cancers. In breast cancer, the low AnxA6 expression levels in the more aggressive basal-like triple-negative breast cancer (TNBC) subtype correlate with its tumor suppressor activity and the poor overall survival of basal-like TNBC patients. In this review, we highlight the potential tumor suppressor function of AnxA6 in TNBC progression and metastasis, the relevance of AnxA6 in the diagnosis and prognosis of several cancers and discuss the concept of therapy-induced expression of AnxA6 as a novel mechanism for acquired resistance of TNBC to tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Olga Y. Korolkova
- Department of Biochemistry and Cancer Biology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA; (O.Y.K.); (S.E.W.); (S.D.W.); (D.S.W.); (H.K.B.); (J.O.)
| | - Sarrah E. Widatalla
- Department of Biochemistry and Cancer Biology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA; (O.Y.K.); (S.E.W.); (S.D.W.); (D.S.W.); (H.K.B.); (J.O.)
| | - Stephen D. Williams
- Department of Biochemistry and Cancer Biology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA; (O.Y.K.); (S.E.W.); (S.D.W.); (D.S.W.); (H.K.B.); (J.O.)
| | - Diva S. Whalen
- Department of Biochemistry and Cancer Biology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA; (O.Y.K.); (S.E.W.); (S.D.W.); (D.S.W.); (H.K.B.); (J.O.)
| | - Heather K. Beasley
- Department of Biochemistry and Cancer Biology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA; (O.Y.K.); (S.E.W.); (S.D.W.); (D.S.W.); (H.K.B.); (J.O.)
| | - Josiah Ochieng
- Department of Biochemistry and Cancer Biology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA; (O.Y.K.); (S.E.W.); (S.D.W.); (D.S.W.); (H.K.B.); (J.O.)
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia;
| | - Amos M. Sakwe
- Department of Biochemistry and Cancer Biology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA; (O.Y.K.); (S.E.W.); (S.D.W.); (D.S.W.); (H.K.B.); (J.O.)
| |
Collapse
|
53
|
Croissant C, Gounou C, Bouvet F, Tan S, Bouter A. Annexin-A6 in Membrane Repair of Human Skeletal Muscle Cell: A Role in the Cap Subdomain. Cells 2020; 9:E1742. [PMID: 32708200 PMCID: PMC7409186 DOI: 10.3390/cells9071742] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/01/2020] [Accepted: 07/17/2020] [Indexed: 12/13/2022] Open
Abstract
Defects in membrane repair contribute to the development of some muscular dystrophies, highlighting the importance to decipher the membrane repair mechanisms in human skeletal muscle. In murine myofibers, the formation of a cap subdomain composed notably by annexins (Anx) is critical for membrane repair. We applied membrane damage by laser ablation to human skeletal muscle cells and assessed the behavior of annexin-A6 (AnxA6) tagged with GFP by correlative light and electron microscopy (CLEM). We show that AnxA6 was recruited to the site of membrane injury within a few seconds after membrane injury. In addition, we show that the deficiency in AnxA6 compromises human sarcolemma repair, demonstrating the crucial role played by AnxA6 in this process. An AnxA6-containing cap-subdomain was formed in damaged human myotubes in about one minute. Through transmission electron microscopy (TEM), we observed that extension of the sarcolemma occurred during membrane resealing, which participated in forming a dense lipid structure in order to plug the hole. By properties of membrane folding and curvature, AnxA6 helped in the formation of this tight structure. The compaction of intracellular membranes-which are used for membrane resealing and engulfed in extensions of the sarcolemma-may also facilitate elimination of the excess of lipid and protein material once cell membrane has been repaired. These data reinforce the role played by AnxA6 and the cap subdomain in membrane repair of skeletal muscle cells.
Collapse
Affiliation(s)
- Coralie Croissant
- Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, CNRS, University of Bordeaux, IPB, F-33600 Pessac, France
| | - Céline Gounou
- Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, CNRS, University of Bordeaux, IPB, F-33600 Pessac, France
| | - Flora Bouvet
- Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, CNRS, University of Bordeaux, IPB, F-33600 Pessac, France
| | - Sisareuth Tan
- Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, CNRS, University of Bordeaux, IPB, F-33600 Pessac, France
| | - Anthony Bouter
- Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, CNRS, University of Bordeaux, IPB, F-33600 Pessac, France
| |
Collapse
|