51
|
Eldred JA, Dawes LJ, Wormstone IM. The lens as a model for fibrotic disease. Philos Trans R Soc Lond B Biol Sci 2011; 366:1301-19. [PMID: 21402588 DOI: 10.1098/rstb.2010.0341] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Fibrosis affects multiple organs and is associated with hyperproliferation, cell transdifferentiation, matrix modification and contraction. It is therefore essential to discover the key drivers of fibrotic events, which in turn will facilitate the development of appropriate therapeutic strategies. The lens is an elegant experimental model to study the processes that give rise to fibrosis. The molecular and cellular organization of the lens is well defined and consequently modifications associated with fibrosis can be clearly assessed. Moreover, the avascular and non-innervated properties of the lens allow effective in vitro studies to be employed that complement in vivo systems and relate to clinical data. Using the lens as a model for fibrosis has direct relevance to millions affected by lens disorders, but also serves as a valuable experimental tool to understand fibrosis per se.
Collapse
Affiliation(s)
- J A Eldred
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | | | | |
Collapse
|
52
|
Kumarswamy R, Volkmann I, Thum T. Regulation and function of miRNA-21 in health and disease. RNA Biol 2011; 8:706-13. [PMID: 21712654 DOI: 10.4161/rna.8.5.16154] [Citation(s) in RCA: 449] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The small regulatory RNA microRNA-21 (miR-21) plays a crucial role in a plethora of biological functions and diseases including development, cancer, cardiovascular diseases and inflammation. The gene coding for pri-miR-21 (primary transcript containing miR-21) is located within the intronic region of the TMEM49 gene. Despite pri-miR-21 and TMEM49 are overlapping genes in the same direction of transcription, pri-miR-21 is independently transcribed by its own promoter regions and terminated with its own poly(A) tail. After transcription, primiR- 21 is finally processed into mature miR-21. Expression of miR-21 has been found to be deregulated in almost all types of cancers and therefore was classified as an oncomiR. During recent years, additional roles of miR-21 in cardiovascular and pulmonary diseases, including cardiac and pulmonary fibrosis as well as myocardial infarction have been described. MiR-21 additionally regulates various immunological and developmental processes. Due to the critical functions of its target proteins in various signaling pathways, miR-21 has become an attractive target for genetic and pharmacological modulation in various disease conditions.
Collapse
Affiliation(s)
- Regalla Kumarswamy
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | | | | |
Collapse
|
53
|
Morrogh M, Andrade VP, Patil AJ, Qin LX, Mo Q, Sakr R, Arroyo CD, Brogi E, Morrow M, King TA. Differentially expressed genes in window trials are influenced by the wound-healing process: lessons learned from a pilot study with anastrozole. J Surg Res 2011; 176:121-32. [PMID: 21777924 DOI: 10.1016/j.jss.2011.05.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 05/17/2011] [Accepted: 05/26/2011] [Indexed: 11/30/2022]
Abstract
BACKGROUND Perioperative window trials provide an opportunity to obtain intact tumor samples at two different time-points for evaluation of potential surrogate biomarkers. We report results of a pilot trial designed to determine if treatment-mediated changes in gene expression can be detected in formalin-fixed paraffin-embedded (FFPE) samples after 10-d exposure to anastrozole in estrogen receptor (ER)-positive breast cancer compared with untreated controls. METHODS Paired tumor samples (biopsy, surgical) were obtained from 26 postmenopausal women with ER-positive breast cancer. Patients were assigned anastrozole (1 mg/d) for 10 d immediately prior to surgery (13 cases) or no treatment (13 controls). Five hundred two cancer-related genes were examined by the Illumina cDNA-mediated annealing, selection, extension, and ligation, FFPE cDNA array (moderated t-test, P ≤ 0.005). Surrogate biomarkers reflecting changes in gene expression were examined by immunohistochemistry (Wilcoxon rank-based test, P < 0.05). RESULTS Sufficient RNA was available from 19 paired samples (8 controls, 11 cases). Frozen tissue and FFPE showed good correlation (r = 0.82). Within each group, 18 genes, reflecting roles in proliferation, angiogenesis, and apoptosis, showed differential expression from biopsy to surgery (P < 0.005). Estrogen-related genes were dysregulated in the treated group only. A reduction in Ki-67 was observed in 7 (54%) treated cases and in 1 (7.7%) control patient. CONCLUSIONS 10-d exposure to anastrozole resulted in dysregulation of 18/502 cancer-related genes, and Ki-67 was reduced in 54% of cases. FFPE samples demonstrated good correlation with frozen samples. However, changes in gene expression and increased Ki-67 in the control group suggest local effects of wound healing may represent a confounding factor in the interpretation of perioperative window trials.
Collapse
Affiliation(s)
- Mary Morrogh
- Breast Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Kriz W, Kaissling B, Le Hir M. Epithelial-mesenchymal transition (EMT) in kidney fibrosis: fact or fantasy? J Clin Invest 2011; 121:468-74. [PMID: 21370523 DOI: 10.1172/jci44595] [Citation(s) in RCA: 347] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) has become widely accepted as a mechanism by which injured renal tubular cells transform into mesenchymal cells that contribute to the development of fibrosis in chronic renal failure. However, an increasing number of studies raise doubts about the existence of this process in vivo. Herein, we review and summarize both sides of this debate, but it is our view that unequivocal evidence supporting EMT as an in vivo process in kidney fibrosis is lacking.
Collapse
Affiliation(s)
- Wilhelm Kriz
- Department of Anatomy and Developmental Biology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| | | | | |
Collapse
|
55
|
Abstract
Progression of fibrosis involves interstitial hypercellularity, matrix accumulation, and atrophy of epithelial structures, resulting in loss of normal function and ultimately organ failure. There is common agreement that the fibroblast/myofibroblast is the cell type most responsible for interstitial matrix accumulation and consequent structural deformations associated with fibrosis. During wound healing and progressive fibrotic events, fibroblasts transform into myofibroblasts acquiring smooth muscle features, most notably the expression of alpha-smooth muscle actin and synthesis of mesenchymal cell-related matrix proteins. In renal disease, glomerular mesangial cells also acquire a myofibroblast phenotype and synthesize the same matrix proteins. The origin of interstitial myofibroblasts during fibrosis is a matter of debate, where the cells are proposed to derive from resident fibroblasts, pericytes, perivascular adventitial, epithelial, and/or endothelial sources. Regardless of the origin of the cells, transforming growth factor-beta1 (TGF-β1) is the principal growth factor responsible for myofibroblast differentiation to a profibrotic phenotype and exerts its effects via Smad signaling pathways involving mitogen-activated protein kinase and Akt/protein kinase B. Additionally, reactive oxygen species (ROS) have important roles in progression of fibrosis. ROS are derived from a variety of enzyme sources, of which the nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase family has been identified as a major source of superoxide and hydrogen peroxide generation in the cardiovasculature and kidney during health and disease. Recent evidence indicates that the NAD(P)H oxidase homolog Nox4 is most accountable for ROS-induced fibroblast and mesangial cell activation, where it has an essential role in TGF-β1 signaling of fibroblast activation and differentiation into a profibrotic myofibroblast phenotype and matrix production. Information on the role of ROS in mesangial cell and fibroblast signaling is incomplete, and further research on myofibroblast differentiation during fibrosis is warranted.
Collapse
|
56
|
Cortez V, Nair BC, Chakravarty D, Vadlamudi RK. Integrin-linked kinase 1: role in hormonal cancer progression. Front Biosci (Schol Ed) 2011; 3:788-96. [PMID: 21196412 DOI: 10.2741/s187] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Integrin-linked kinase 1 (ILK1) is a serine/threonine kinase that plays important roles in a variety of cellular functions including cell survival, migration and angiogenesis. ILK1 is normally expressed in numerous tissues and activated by growth factors, cytokines and hormones. Dysregulation of ILK1 expression or function is found in several hormonal tumors including breast, ovary and prostate. Emerging evidence suggests that ILK overexpression promotes cellular transformation, cell survival, epithelial mesenchymal transition (EMT), and metastasis of hormonal cancer cells while inhibition of ILK1 reduces tumor growth and progression. The recent development of ILK1 inhibitors has provided novel mechanisms for blocking ILK1 signaling to curb metastasis and therapy resistance of hormonal tumors. This review will focus on recent advances made towards understanding the role of ILK signaling axis in progression of hormonal cancer.
Collapse
Affiliation(s)
- Valerie Cortez
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | | | | | | |
Collapse
|
57
|
Kumar PA, Brosius FC, Menon RK. The glomerular podocyte as a target of growth hormone action: implications for the pathogenesis of diabetic nephropathy. Curr Diabetes Rev 2011; 7:50-5. [PMID: 21067510 PMCID: PMC4007067 DOI: 10.2174/157339911794273900] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 09/10/2010] [Indexed: 01/28/2023]
Abstract
Involvement of the growth hormone (GH) / insulin-like growth factor 1 (IGF-I) axis in the pathogenesis of diabetic nephropathy (DN) is strongly suggested by studies investigating the impact of GH excess and deficiency on renal structure and function. GH excess in both the human (acromegaly) and in transgenic animal models is characterized by significant structural and functional changes in the kidney. In the human a direct relationship has been noted between the activity of the GH/IGF-1 axis and renal hypertrophy, microalbuminuria, and glomerulosclerosis. Conversely, states of GH deficiency or deficiency or inhibition of GH receptor (GHR) activity confer a protective effect against DN. The glomerular podocyte plays a central and critical role in the structural and functional integrity of the glomerular filtration barrier and maintenance of normal renal function. Recent studies have revealed that the glomerular podocyte is a target of GH action and that GH's actions on the podocyte could be detrimental to the structure and function of the podocyte. These results provide a novel mechanism for GH's role in the pathogenesis of DN and offer the possibility of targeting the GH/IGF-1 axis for the prevention and treatment of DN.
Collapse
Affiliation(s)
- P Anil Kumar
- Pediatrics & Communicable Diseases, University of Michigan, Ann Arbor, MI 48109-0718, USA
| | | | | |
Collapse
|
58
|
Marek I, Volkert G, Jahn A, Fahlbusch F, Zürn C, Ozcan Z, Goppelt-Struebe M, Hilgers KF, Rascher W, Hartner A. Lack of α8 integrin leads to morphological changes in renal mesangial cells, but not in vascular smooth muscle cells. BMC Cell Biol 2010; 11:102. [PMID: 21194485 PMCID: PMC3022721 DOI: 10.1186/1471-2121-11-102] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 12/31/2010] [Indexed: 11/21/2022] Open
Abstract
Background Extracellular matrix receptors of the integrin family are known to regulate cell adhesion, shape and functions. The α8 integrin chain is expressed in glomerular mesangial cells and in vascular smooth muscle cells. Mice deficient for α8 integrin have structural alterations in glomeruli but not in renal arteries. For this reason we hypothesized that mesangial cells and vascular smooth muscle cells differ in their respective capacity to compensate for the lack of α8 integrin. Results Wild type and α8 integrin-deficient mesangial cells varied markedly in cell morphology and expression or localization of cytoskeletal molecules. In α8 integrin-deficient mesangial cells α-smooth muscle actin and CTGF were downregulated. In contrast, there were no comparable differences between α8 integrin-deficient and wild type vascular smooth muscle cells. Expression patterns of integrins were altered in α8 integrin-deficient mesangial cells compared to wild type mesangial cells, displaying a prominent overexpression of α2 and α6 integrins, while expression patterns of the these integrins were not different between wild type and α8 integrin-deficient vascular smooth muscle cells, respectively. Cell proliferation was augmented in α8 integrin-deficient mesangial cells, but not in vascular smooth muscle cells, compared to wild type cells. Conclusions Our findings suggest that α8 integrin deficiency has differential effects in mesangial cells and vascular smooth muscle cells. While the phenotype of vascular smooth muscle cells lacking α8 integrin is not altered, mesangial cells lacking α8 integrin differ considerably from wild type mesangial cells which might be a consequence of compensatory changes in the expression patterns of other integrins. This could result in glomerular changes in α8 integrin-deficient mice, while the vasculature is not affected in these mice.
Collapse
Affiliation(s)
- Ines Marek
- Hospital for Children and Adolescents, Universität Erlangen-Nürnberg, Loschgestrasse 15, 91054 Erlangen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Suppression of Her2/neu expression through ILK inhibition is regulated by a pathway involving TWIST and YB-1. Oncogene 2010; 29:6343-56. [PMID: 20838384 PMCID: PMC3007675 DOI: 10.1038/onc.2010.366] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In a previous study it was found that the therapeutic effects of QLT0267, a small molecule inhibitor of integrin-linked kinase (ILK), were influenced by Her2/neu expression. To understand how inhibition or silencing of ILK influences Her2/neu expression, Her2/neu signaling was evaluated in six Her2/neu-positive breast cancer cell lines (LCC6Her2, MCF7Her2, SKBR3, BT474, JIMT-1 and KPL-4). Treatment with QLT0267 engendered suppression (32–87%) of total Her2/neu protein in these cells. Suppression of Her2/neu was also observed following small interfering RNA-mediated silencing of ILK expression. Time course studies suggest that ILK inhibition or silencing caused transient decreases in P-AKTser473, which were not temporally related to Her2/neu downregulation. Attenuation of ILK activity or expression was, however, associated with decreases in YB-1 (Y-box binding protein-1) protein and transcript levels. YB-1 is a known transcriptional regulator of Her2/neu expression, and in this study it is demonstrated that inhibition of ILK activity using QLT0267 decreased YB-1 promoter activity by 50.6%. ILK inhibition was associated with changes in YB-1 localization, as reflected by localization of cytoplasmic YB-1 into stress granules. ILK inhibition also suppressed TWIST (a regulator of YB-1 expression) protein expression. To confirm the role of ILK on YB-1 and TWIST, cells were engineered to overexpress ILK. This was associated with a fourfold increase in the level of YB-1 in the nucleus, and a 2- and 1.5-fold increase in TWIST and Her2/neu protein levels, respectively. Taken together, these data indicate that ILK regulates the expression of Her2/neu through TWIST and YB-1, lending support to the use of ILK inhibitors in the treatment of aggressive Her2/neu-positive tumors.
Collapse
|
60
|
Yeh YC, Wei WC, Wang YK, Lin SC, Sung JM, Tang MJ. Transforming growth factor-{beta}1 induces Smad3-dependent {beta}1 integrin gene expression in epithelial-to-mesenchymal transition during chronic tubulointerstitial fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:1743-54. [PMID: 20709799 DOI: 10.2353/ajpath.2010.091183] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transforming growth factor-β1 (TGF-β1)-induced epithelial-to-mesenchymal transition (EMT) contributes to the pathophysiological development of kidney fibrosis. Although it was reported that TGF-β1 enhances β(1) integrin levels in NMuMG cells, the detailed molecular mechanisms underlying TGF-β1-induced β(1) integrin gene expression and the role of β(1) integrin during EMT in the renal system are still unclear. In this study, we examined the role of β(1) integrin in TGF-β1-induced EMT both in vitro and in vivo. TGF-β1-induced augmentation of β(1) integrin expression was required for EMT in several epithelial cell lines, and knockdown of Smad3 inhibited TGF-β1-induced augmentation of β(1) integrin. TGF-β1 triggered β(1) integrin gene promoter activity as assessed by luciferase activity assay. Both knockdown of Smad3 and mutation of the Smad-binding element to block binding to the β(1) integrin promoter markedly reduced TGF-β1-induced β(1) integrin promoter activity. Chromatin immunoprecipitation assay showed that TGF-β1 enhanced Smad3 binding to the β(1) integrin promoter. Furthermore, induction of unilateral ureteral obstruction triggered increases of β(1) integrin in both renal epithelial and interstitial cells. In human kidney with chronic tubulointerstitial fibrosis, we also found a concomitant increase of β(1) integrin and α-smooth muscle actin in tubule epithelia. Blockade of β(1) integrin signaling dampened the progression of fibrosis. Taken together, β(1) integrin mediates EMT and subsequent tubulointerstitutial fibrosis, suggesting that inhibition of β(1) integrin is a possible therapeutic target for prevention of renal fibrosis.
Collapse
Affiliation(s)
- Yi-Chun Yeh
- tDepartment of Medicine, Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Skeleton-Joint Research Center, Tainan 70101, Taiwan
| | | | | | | | | | | |
Collapse
|
61
|
Inhibition of Necl-5 (CD155/PVR) reduces glioblastoma dispersal and decreases MMP-2 expression and activity. J Neurooncol 2010; 102:225-35. [PMID: 20680398 DOI: 10.1007/s11060-010-0323-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 07/19/2010] [Indexed: 01/30/2023]
Abstract
Patients afflicted with glioblastoma (GBM) have poor survival due to dispersive invasion throughout the brain. Necl-5, a cell surface receptor for vitronectin, is expressed in GBM but not normal brain. In several GBM cell lines Necl-5 promotes migration and invasion but the mechanism is poorly understood. In this study, we show that knockdown of Necl-5 by RNAi results in markedly decreased invasion of A172 GBM cells in a 3-dimensional matrix. There is a concomitant decrease in the expression and activity of matrix metalloproteinase-2 (MMP-2), a known factor in GBM invasion and disease severity. Knockdown of Necl-5 diminishes basal activation of Akt, an established mediator of MMP-2 expression in gliomas. Knockdown of Necl-5 also limits the maximal Akt activation in response to vitronectin, which requires the activity of Integrin-linked kinase (ILK). During migration, Necl-5, Akt and ILK co-localize at focal contacts at the leading edge of the plasma membrane, suggesting that these molecules may act to integrate Akt signaling at the leading edge to induce MMP-2 expression. By virtue of its restricted expression in GBM and its role in invasion, Necl-5 may be an attractive target for limiting MMP-2 production in glioblastoma, and therefore limiting dispersal.
Collapse
|
62
|
Cho MH. Renal fibrosis. KOREAN JOURNAL OF PEDIATRICS 2010; 53:735-40. [PMID: 21189948 PMCID: PMC3004484 DOI: 10.3345/kjp.2010.53.7.735] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 06/06/2010] [Accepted: 06/14/2010] [Indexed: 12/17/2022]
Abstract
Renal fibrosis, characterized by tubulointerstitial fibrosis and glomerulosclerosis, is the final manifestation of chronic kidney disease. Renal fibrosis is characterized by an excessive accumulation and deposition of extracellular matrix components. This pathologic result usually originates from both underlying complicated cellular activities such as epithelial-to-mesenchymal transition, fibroblast activation, monocyte/macrophage infiltration, and cellular apoptosis and the activation of signaling molecules such as transforming growth factor beta and angiotensin II. However, because the pathogenesis of renal fibrosis is extremely complicated and our knowledge regarding this condition is still limited, further studies are needed.
Collapse
Affiliation(s)
- Min Hyun Cho
- Department of Pediatrics, Kyungpook National University School of Medicine, Daegu, Korea
| |
Collapse
|
63
|
Hao S, Shen H, Hou Y, Mars WM, Liu Y. tPA is a potent mitogen for renal interstitial fibroblasts: role of beta1 integrin/focal adhesion kinase signaling. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:1164-75. [PMID: 20639453 DOI: 10.2353/ajpath.2010.091269] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Proliferation and expansion of interstitial fibroblasts are predominant features of progressive chronic kidney diseases. However, how interstitial fibroblast proliferation is controlled remains ambiguous. Here we show that tissue-type plasminogen activator (tPA) is a potent mitogen that promotes interstitial fibroblast proliferation through a cascade of signaling events. In vitro, tPA promoted cell proliferation of rat kidney fibroblasts (NRK-49F), as assessed by cell counting, cell proliferation assay, and bromodeoxyuridine labeling. tPA also accelerated NRK-49F cell cycle progression. Fibroblast proliferation induced by tPA was associated with an increased expression of numerous proliferation-related genes, including c-fos, c-myc, proliferating cell nuclear antigen, and cyclin D1. The mitogenic effect of tPA was independent of its protease activity, but required LDL receptor-related protein 1. Interestingly, inhibition of beta1 integrin signaling prevented tPA-mediated fibroblast proliferation. tPA rapidly induced tyrosine phosphorylation of focal adhesion kinase (FAK), which led to activation of its downstream mitogen-activated protein kinase signaling. Blockade of FAK, but not integrin-linked kinase, abolished the tPA-triggered extracellular signal-regulated protein kinase 1/2 activation, proliferation-related gene induction, and fibroblast proliferation. In vivo, proliferation of interstitial myofibroblasts in tPA null mice was attenuated after obstructive injury, compared with the wild-type controls. These studies illustrate that tPA is a potent mitogen that promotes renal interstitial fibroblast proliferation through LDL receptor-related protein 1-mediated beta1 integrin and FAK signaling.
Collapse
Affiliation(s)
- Sha Hao
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
64
|
Serum- and glucocorticoid-regulated kinase 1 is upregulated following unilateral ureteral obstruction causing epithelial-mesenchymal transition. Kidney Int 2010; 78:668-78. [PMID: 20631674 DOI: 10.1038/ki.2010.214] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Obstructive nephropathy leads to chronic kidney disease, characterized by a progressive epithelial-to-mesenchymal cell transition (EMT)-driven interstitial fibrosis. To identify the mechanisms causing EMT, we used the mouse model of unilateral ureteral obstruction and found a rapid and significant increase in serum- and glucocorticoid-regulated kinase-1 (SGK1) expression in the kidneys with an obstructed ureter. Knockout of SGK1 significantly suppressed obstruction-induced EMT, kidney fibrosis, increased glycogen synthase kinase-3β activity, and decreased accumulation of the transcriptional repressor Snail. This caused a reduced expression of the mesenchymal marker α-smooth muscle actin, and collagen deposition in this model. In cultured kidney epithelial cells, mechanical stretch or treatment with transforming growth factor-β not only stimulated the transcription of SGK1, but also stimulated EMT in an SGK1-dependent manner. Activated SGK1 stimulated Snail accumulation and downregulation of the epithelial marker E-cadherin. Hence, our study shows that SGK1 is involved in mediating fibrosis associated with obstructive nephropathy.
Collapse
|
65
|
Sume SS, Kantarci A, Lee A, Hasturk H, Trackman PC. Epithelial to mesenchymal transition in gingival overgrowth. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:208-18. [PMID: 20489142 PMCID: PMC2893664 DOI: 10.2353/ajpath.2010.090952] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/24/2010] [Indexed: 12/23/2022]
Abstract
Epithelial to mesenchymal transition (EMT) occurs normally in development. In pathology, EMT drives cancer and fibrosis. Medication with phenytoin, nifedipine, and cyclosporine-A often causes gingival overgrowth. Based partly on the histopathology of gingival overgrowth, the present study investigates the hypothesis that EMT could contribute to its development. We found that phenytoin-induced human gingival overgrowth tissues, the most fibrotic drug-induced variety, contain diminished epithelial E-cadherin expression, whereas fibroblast-specific protein-1 (FSP-1) and alphavbeta6 integrin levels are up-regulated. In connective tissue stroma, fibronectin and alternatively spliced fibronectin extra type III domain A (FN-ED-A) levels are increased in overgrowth lesions. Transforming growth factor (TGF)-beta1 treatment of primary human gingival epithelial cells cultured in transwell plates resulted in inhibited barrier function as determined by reduced electrical resistance, paracellular permeability assays, and cell surface E-cadherin expression. Moreover, TGF-beta1 altered the expression of other markers of EMT determined at the mRNA and protein levels: E-cadherin decreased, whereas SLUG, fibronectin, matrix metalloproteinase (MMP)2, MMP9, and MMP13 increased. Nifedipine- and cyclosporine A-induced gingival overgrowth tissues similarly contain diminished E-cadherin and elevated levels of FSP-1 and fibronectin, but normal levels of alphavbeta6 integrin. In summary, data in vitro support that human gingival epithelial cells undergo functional and gene expression changes consistent with EMT in response to TGF-beta1, and in vivo studies show that important EMT markers occur in clinical gingival overgrowth tissues. These findings support the hypothesis that EMT likely occurs in drug-induced gingival overgrowth.
Collapse
Affiliation(s)
- Siddika Selva Sume
- Department of Periodontology and Oral Biology, Boston University, Henry M. Goldman School of Dental Medicine, 700 Albany Street W-201, Boston, MA 02118, USA
| | | | | | | | | |
Collapse
|
66
|
Perera PM, Wypasek E, Madhavan S, Rath-Deschner B, Liu J, Nam J, Rath B, Huang Y, Deschner J, Piesco N, Wu C, Agarwal S. Mechanical signals control SOX-9, VEGF, and c-Myc expression and cell proliferation during inflammation via integrin-linked kinase, B-Raf, and ERK1/2-dependent signaling in articular chondrocytes. Arthritis Res Ther 2010; 12:R106. [PMID: 20509944 PMCID: PMC2911896 DOI: 10.1186/ar3039] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 03/24/2010] [Accepted: 05/28/2010] [Indexed: 12/18/2022] Open
Abstract
Introduction The importance of mechanical signals in normal and inflamed cartilage is well established. Chondrocytes respond to changes in the levels of proinflammatory cytokines and mechanical signals during inflammation. Cytokines like interleukin (IL)-1β suppress homeostatic mechanisms and inhibit cartilage repair and cell proliferation. However, matrix synthesis and chondrocyte (AC) proliferation are upregulated by the physiological levels of mechanical forces. In this study, we investigated intracellular mechanisms underlying reparative actions of mechanical signals during inflammation. Methods ACs isolated from articular cartilage were exposed to low/physiologic levels of dynamic strain in the presence of IL-1β. The cell extracts were probed for differential activation/inhibition of the extracellular signal-regulated kinase 1/2 (ERK1/2) signaling cascade. The regulation of gene transcription was examined by real-time polymerase chain reaction. Results Mechanoactivation, but not IL-1β treatment, of ACs initiated integrin-linked kinase activation. Mechanical signals induced activation and subsequent C-Raf-mediated activation of MAP kinases (MEK1/2). However, IL-1β activated B-Raf kinase activity. Dynamic strain did not induce B-Raf activation but instead inhibited IL-1β-induced B-Raf activation. Both mechanical signals and IL-1β induced ERK1/2 phosphorylation but discrete gene expression. ERK1/2 activation by mechanical forces induced SRY-related protein-9 (SOX-9), vascular endothelial cell growth factor (VEGF), and c-Myc mRNA expression and AC proliferation. However, IL-1β did not induce SOX-9, VEGF, and c-Myc gene expression and inhibited AC cell proliferation. More importantly, SOX-9, VEGF, and Myc gene transcription and AC proliferation induced by mechanical signals were sustained in the presence of IL-1β. Conclusions The findings suggest that mechanical signals may sustain their effects in proinflammatory environments by regulating key molecules in the MAP kinase signaling cascade. Furthermore, the findings point to the potential of mechanosignaling in cartilage repair during inflammation.
Collapse
Affiliation(s)
- Priyangi M Perera
- Biomechanics and Tissue Engineering Laboratory, The Ohio State University, Postle Hall, 305 W 12th Avenue, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Inhibition of integrin-linked kinase blocks podocyte epithelial-mesenchymal transition and ameliorates proteinuria. Kidney Int 2010; 78:363-73. [PMID: 20505657 DOI: 10.1038/ki.2010.137] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Proteinuria is a primary clinical symptom of a large number of glomerular diseases that progress to end-stage renal failure. Podocyte dysfunctions play a fundamental role in defective glomerular filtration in many common forms of proteinuric kidney disorders. Since binding of these cells to the basement membrane is mediated by integrins, we determined the role of integrin-linked kinase (ILK) in podocyte dysfunction and proteinuria. ILK expression was induced in mouse podocytes by various injurious stimuli known to cause proteinuria including TGF-beta1, adriamycin, puromycin, and high ambient glucose. Podocyte ILK was also found to be upregulated in human proteinuric glomerular diseases. Ectopic expression of ILK in podocytes decreased levels of the epithelial markers nephrin and ZO-1, induced mesenchymal markers such as desmin, fibronectin, matrix metalloproteinase-9 (MMP-9), and alpha-smooth muscle actin (alpha-SMA), promoted cell migration, and increased the paracellular albumin flux across podocyte monolayers. ILK also induced Snail, a key transcription factor mediating epithelial-mesenchymal transition (EMT). Blockade of ILK activity with a highly selective small molecule inhibitor reduced Snail induction and preserved podocyte phenotypes following TGF-beta1 or adriamycin stimulation. In vivo, this ILK inhibitor ameliorated albuminuria, repressed glomerular induction of MMP-9 and alpha-SMA, and preserved nephrin expression in murine adriamycin nephropathy. Our results show that upregulation of ILK is a convergent pathway leading to podocyte EMT, migration, and dysfunction. ILK may be an attractive target for therapeutic intervention of proteinuric kidney diseases.
Collapse
|
68
|
Li Y, Zhang J, Fang L, Luo P, Peng J, Du X. Lefty A attenuates the TGF-beta1-induced epithelial to mesenchymal transition of human renal proximal epithelial tubular cells. Mol Cell Biochem 2010; 339:263-70. [PMID: 20157767 DOI: 10.1007/s11010-010-0389-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 01/25/2010] [Indexed: 01/17/2023]
Abstract
The epithelial to mesenchymal transition (EMT) is a crucial event for renal fibrosis that can be elicited by TGF-beta1/Smads signaling and its downstream mediator connective tissue growth factor (CTGF). As a distinct member of the TGF-beta superfamily, Lefty A has been shown to be significantly downregulated in the kidneys of patients with severe ureteral obstruction, suggesting its role in renal fibrosis induced by obstructive nephropathy. In order to determine whether Lefty A prevents TGF-beta1-induced EMT, human proximal tubule epithelial cells (HK-2) were stably transfected with Lefty A or control vectors and stimulated with 10 ng/ml TGF-beta1 for 48 h. The results show that stimulation with TGF-beta1 led to EMT including cell morphology changes, Smad2/3 signaling pathway activation, increased alpha-SMA, collagen type I, and CTGF expression, and decreased E-cadherin expression in mock-transfected HK-2 cells. Overexpression of Lefty A efficiently blocked p-Smad2/3 activation and attenuated all these EMT changes induced by TGF-beta1. This finding suggests that Lefty A may serve as a potential new therapeutic target to inhibit or even reverse EMT during the process of renal fibrosis.
Collapse
Affiliation(s)
- Youkong Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | | | | | | | | | | |
Collapse
|
69
|
Margadant C, Sonnenberg A. Integrin-TGF-beta crosstalk in fibrosis, cancer and wound healing. EMBO Rep 2010; 11:97-105. [PMID: 20075988 DOI: 10.1038/embor.2009.276] [Citation(s) in RCA: 471] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 12/04/2009] [Indexed: 12/16/2022] Open
Abstract
Accumulating evidence indicates that there is extensive crosstalk between integrins and TGF-beta signalling. TGF-beta affects integrin-mediated cell adhesion and migration by regulating the expression of integrins, their ligands and integrin-associated proteins. Conversely, several integrins directly control TGF-beta activation. In addition, a number of integrins can interfere with both Smad-dependent and Smad-independent TGF-beta signalling in different ways, including the regulation of the expression of TGF-beta signalling pathway components, the physical association of integrins with TGF-beta receptors and the modulation of downstream effectors. Reciprocal TGF-beta-integrin signalling is implicated in normal physiology, as well as in a variety of pathological processes including systemic sclerosis, idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease and cancer; thus, integrins could provide attractive therapeutic targets to interfere with TGF-beta signalling in these processes.
Collapse
Affiliation(s)
- Coert Margadant
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | |
Collapse
|
70
|
Neilson EG. The Jeremiah Metzger lecture. The origin of fibroblasts and the terminality of epithelial differentiation. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2010; 121:240-251. [PMID: 20697565 PMCID: PMC2917148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
For 142 years the fibroblast has lived a nomadian existence among the interstitial spaces of the metazoan body plan. The cell surface of fibroblasts lacks specific identifying markers and its parental lineage has been shrouded in mystery. Over the last 15 years much has changed. We know now that fibroblasts derive from non-motile epithelial or endothelial cells through a process called epithelial-mesenchymal transition (EMT). In this lecture I discuss the mechanisms of EMT producing fibroblasts, and the inevitable conclusion that epithelia and endothelia, rather than being terminally differentiated, are in a state of nuclear diapause and ready to change phenotype in response to the demands of tissue repair.
Collapse
Affiliation(s)
- Eric G Neilson
- Department of Medicine, D-3100 MCN, Vanderbilt University School of Medicine, Nashville, TN 37232-2358, USA.
| |
Collapse
|
71
|
Das S, Becker BN, Hoffmann FM, Mertz JE. Complete reversal of epithelial to mesenchymal transition requires inhibition of both ZEB expression and the Rho pathway. BMC Cell Biol 2009; 10:94. [PMID: 20025777 PMCID: PMC2806300 DOI: 10.1186/1471-2121-10-94] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 12/21/2009] [Indexed: 11/12/2022] Open
Abstract
Background Epithelial to Mesenchymal Transition (EMT) induced by Transforming Growth Factor-β (TGF-β) is an important cellular event in organogenesis, cancer, and organ fibrosis. The process to reverse EMT is not well established. Our purpose is to define signaling pathways and transcription factors that maintain the TGF-β-induced mesenchymal state. Results Inhibitors of five kinases implicated in EMT, TGF-β Type I receptor kinase (TβRI), p38 mitogen-activated protein kinase (p38 MAPK), MAP kinase kinase/extracellular signal-regulated kinase activator kinase (MEK1), c-Jun NH-terminal kinase (JNK), and Rho kinase (ROCK), were evaluated for reversal of the mesenchymal state induced in renal tubular epithelial cells. Single agents did not fully reverse EMT as determined by cellular morphology and gene expression. However, exposure to the TβRI inhibitor SB431542, combined with the ROCK inhibitor Y27632, eliminated detectable actin stress fibers and mesenchymal gene expression while restoring epithelial E-cadherin and Kidney-specific cadherin (Ksp-cadherin) expression. A second combination, the TβRI inhibitor SB431542 together with the p38 MAPK inhibitor SB203580, was partially effective in reversing EMT. Furthermore, JNK inhibitor SP600125 inhibits the effectiveness of the TβRI inhibitor SB431542 to reverse EMT. To explore the molecular basis underlying EMT reversal, we also targeted the transcriptional repressors ZEB1 and ZEB2/SIP1. Decreasing ZEB1 and ZEB2 expression in mouse mammary gland cells with shRNAs was sufficient to up-regulate expression of epithelial proteins such as E-cadherin and to re-establish epithelial features. However, complete restoration of cortical F-actin required incubation with the ROCK inhibitor Y27632 in combination with ZEB1/2 knockdown. Conclusions We demonstrate that reversal of EMT requires re-establishing both epithelial transcription and structural components by sustained and independent signaling through TβRI and ROCK. These findings indicate that combination small molecule therapy targeting multiple kinases may be necessary to reverse disease conditions.
Collapse
Affiliation(s)
- Shreyas Das
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA.
| | | | | | | |
Collapse
|
72
|
Liu Y. New insights into epithelial-mesenchymal transition in kidney fibrosis. J Am Soc Nephrol 2009; 21:212-22. [PMID: 20019167 DOI: 10.1681/asn.2008121226] [Citation(s) in RCA: 674] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT), a process by which differentiated epithelial cells undergo a phenotypic conversion that gives rise to the matrix-producing fibroblasts and myofibroblasts, is increasingly recognized as an integral part of tissue fibrogenesis after injury. However, the degree to which this process contributes to kidney fibrosis remains a matter of intense debate and is likely to be context-dependent. EMT is often preceded by and closely associated with chronic interstitial inflammation and could be an adaptive response of epithelial cells to a hostile or changing microenvironment. In addition to tubular epithelial cells, recent studies indicate that endothelial cells and glomerular podocytes may also undergo transition after injury. Phenotypic alteration of podocytes sets them in motion to functional impairment, resulting in proteinuria and glomerulosclerosis. Several intracellular signal transduction pathways such as TGFbeta/Smad, integrin-linked kinase (ILK) and Wnt/beta-catenin signaling are essential in controlling the process of EMT and presently are potential targets of antifibrotic therapy. This review highlights the current understanding of EMT and its underlying mechanisms to stimulate further discussion on its role, not only in the pathogenesis of renal interstitial fibrosis but also in the onset of podocyte dysfunction, proteinuria, and glomerulosclerosis.
Collapse
Affiliation(s)
- Youhua Liu
- Department of Pathology, University of Pittsburgh School of Medicine, S-405 Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA 15261, USA.
| |
Collapse
|
73
|
Yadav A, Vallabu S, Kumar D, Ding G, Charney DN, Chander PN, Singhal PC. HIVAN phenotype: consequence of epithelial mesenchymal transdifferentiation. Am J Physiol Renal Physiol 2009; 298:F734-44. [PMID: 20015943 DOI: 10.1152/ajprenal.00415.2009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Human immunodeficiency virus (HIV)-1-associated nephropathy (HIVAN) is characterized by proliferation of glomerular and tubular epithelial cells. We studied the role of epithelial mesenchymal transdifferentiation (EMT) in the development of HIVAN phenotype. Renal cortical sections from six FVB/N (control) and six Tg26 (HIVAN) mice were immunolabeled for PCNA, alpha-smooth muscle actin (alpha-SMA), fibroblast-specific protein-1 (FSP1), CD3, and F4/80. Since periglomerular cells (PGCs) and peritubular cells (PTCs) did not show any labeling for CD3 and F4/80 but showed labeling for alpha-SMA or FSP1, it appears that these were myofibroblasts that migrated from either glomerular or tubular sites, respectively. Occurrence of EMT was also supported by diminished expression of E-cadherin by renal epithelial cells in Tg26 mice. Interestingly, Tg26 mice also showed enhanced renal tissue expression of ZEB2; henceforth, it appears that transcription of molecules required for maintenance of de novo renal epithelial cell phenotype was suppressed. To evaluate the role of ANG II, Tg26 mice in groups of three were administered either normal saline or telmisartan (an AT1 receptor blocker) for 2 wk, followed by evaluation for renal cell EMT. Renal cortical section of Tg26 mice showed a sevenfold increase (P < 0.001) in parietal epithelial cell (PEC)-PGC and a threefold increase (P < 0.01) in tubular cell (TC)-PTC proliferation (PCNA-positive cells). Similarly, both PECs-PGCs and TCs-PTCs in Tg26 mice showed enhanced expression of alpha-SMA and FSP1. Both PECs and podocytes contributed to the glomerular proliferative phenotype, but the contribution of PECs was much greater. Telmisartan-receiving Tg26 mice (TRM) showed attenuated number of proliferating PECs-PGCs and TCs-PTCs compared with saline-receiving Tg26 mice (SRM). Similarly, TRM showed diminished expression of alpha-SMA and FSP1 by both PECs-PGCs and TCs-PTCs compared with SRM. We conclude that EMT contributes to the manifestation of the proliferative phenotype in HIVAN mice.
Collapse
Affiliation(s)
- Anju Yadav
- Immunonlogy Center, Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, New York, USA
| | | | | | | | | | | | | |
Collapse
|
74
|
Type I collagen promotes epithelial-mesenchymal transition through ILK-dependent activation of NF-kappaB and LEF-1. Matrix Biol 2009; 29:161-5. [PMID: 20018240 DOI: 10.1016/j.matbio.2009.12.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 12/04/2009] [Accepted: 12/04/2009] [Indexed: 12/15/2022]
Abstract
Collagen I has been shown to promote epithelial-mesenchymal transition (EMT), a critical process of embryonic development and disease progression. However, little is known about the signaling mechanisms by which collagen I induces this cellular transformation. Here we show that collagen I causes ILK-dependent phosphorylation of IkappaB and subsequent nuclear translocation of active NF-kappaB, which in turn promotes increased expression of the Snail and LEF-1 transcription factors. ILK also causes inhibitory phosphorylation of GSK-3beta, a kinase that prevents functional activation of both Snail and LEF-1. These transcription factors alter expression of epithelial and mesenchymal markers to initiate EMT and stimulate cell migration. These data provide a foundation for understanding the mechanisms by which collagen I stimulates EMT and identify potential therapeutic targets for suppressing this transition in pathological conditions.
Collapse
|
75
|
Humphreys BD, Lin SL, Kobayashi A, Hudson TE, Nowlin BT, Bonventre JV, Valerius MT, McMahon AP, Duffield JS. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 176:85-97. [PMID: 20008127 DOI: 10.2353/ajpath.2010.090517] [Citation(s) in RCA: 1118] [Impact Index Per Article: 74.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Understanding the origin of myofibroblasts in kidney is of great interest because these cells are responsible for scar formation in fibrotic kidney disease. Recent studies suggest epithelial cells are an important source of myofibroblasts through a process described as the epithelial-to-mesenchymal transition; however, confirmatory studies in vivo are lacking. To quantitatively assess the contribution of renal epithelial cells to myofibroblasts, we used Cre/Lox techniques to genetically label and fate map renal epithelia in models of kidney fibrosis. Genetically labeled primary proximal epithelial cells cultured in vitro from these mice readily induce markers of myofibroblasts after transforming growth factor beta(1) treatment. However, using either red fluorescent protein or beta-galactosidase as fate markers, we found no evidence that epithelial cells migrate outside of the tubular basement membrane and differentiate into interstitial myofibroblasts in vivo. Thus, although renal epithelial cells can acquire mesenchymal markers in vitro, they do not directly contribute to interstitial myofibroblast cells in vivo. Lineage analysis shows that during nephrogenesis, FoxD1-positive((+)) mesenchymal cells give rise to adult CD73(+), platelet derived growth factor receptor beta(+), smooth muscle actin-negative interstitial pericytes, and these FoxD1-derivative interstitial cells expand and differentiate into smooth muscle actin(+) myofibroblasts during fibrosis, accounting for a large majority of myofibroblasts. These data indicate that therapeutic strategies directly targeting pericyte differentiation in vivo may productively impact fibrotic kidney disease.
Collapse
Affiliation(s)
- Benjamin D Humphreys
- Renal Division, Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Downregulation of lentivirus-mediated ILK RNAi on tractional force generation in human retinal Müller cells. Acta Pharmacol Sin 2009; 30:1625-33. [PMID: 19915584 DOI: 10.1038/aps.2009.154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
AIM To investigate the effect of lentivirus-mediated integrin-linked kinase (ILK) RNA interference (RNAi) on human retinal Müller cells transdifferentiation into contractile myofibroblasts. METHODS A lentiviral vector expressing ILK-specific shRNA was constructed and introduced into cultured retinal Müller cells. Silencing of the ILK gene was identified by real time RT-PCR and Western blot. The Müller cell phenotype change was confirmed by immunodetection of alpha-smooth muscle actin (alpha-SMA) stress fiber formation. The generation of tractional force was assessed using a tissue culture assay with cells incubated in three-dimensional collagen gels; cell migration was determined by the Boyden chamber method, using 10% FBS as a chemotactic factor. RESULTS Significant decreases in ILK mRNA and protein expression were detected in Müller cells carrying lentiviral ILK-shRNA vector. Cells treated with anti-ILK siRNA showed less alpha-SMA stress fiber formation under hypoxic conditions or cell subcultivation. Lentiviral ILK-shRNA vector transfection also significantly reduced cell migration and cell-mediated gel contraction. CONCLUSION Lentivirus-mediated ILK RNAi decreased cell migration and contractile force generation by inhibiting alpha-SMA stress fiber formation in human retinal Müller cells. This tool might be useful to treat ocular fibroproliferative diseases associated with transdifferentiated Müller cells.
Collapse
|
77
|
Doerner AM, Zuraw BL. TGF-beta1 induced epithelial to mesenchymal transition (EMT) in human bronchial epithelial cells is enhanced by IL-1beta but not abrogated by corticosteroids. Respir Res 2009; 10:100. [PMID: 19857272 PMCID: PMC2774671 DOI: 10.1186/1465-9921-10-100] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2008] [Accepted: 10/27/2009] [Indexed: 01/27/2023] Open
Abstract
Background Chronic persistent asthma is characterized by ongoing airway inflammation and airway remodeling. The processes leading to airway remodeling are poorly understood, and there is increasing evidence that even aggressive anti-inflammatory therapy does not completely prevent this process. We sought to investigate whether TGFβ1 stimulates bronchial epithelial cells to undergo transition to a mesenchymal phenotype, and whether this transition can be abrogated by corticosteroid treatment or enhanced by the pro-inflammatory cytokine IL-1β. Methods BEAS-2B and primary normal human bronchial epithelial cells were stimulated with TGFβ1 and expression of epithelial and mesenchymal markers assessed by quantitative real-time PCR, immunoblotting, immunofluorescence microscopy and zymography. In some cases the epithelial cells were also incubated with corticosteroids or IL-1β. Results were analyzed using non-parametric statistical tests. Results Treatment of BEAS-2B or primary human bronchial epithelial cells with TGFβ1 significantly reduced the expression level of the epithelial adherence junction protein E-cadherin. TGFβ1 then markedly induced mesenchymal marker proteins such as collagen I, tenascin C, fibronectin and α-smooth muscle actin mRNA in a dose dependant manner. The process of mesenchymal transition was accompanied by a morphological change towards a more spindle shaped fibroblast cell type with a more motile and invasive phenotype. Corticosteroid pre-treatment did not significantly alter the TGFβ1 induced transition but IL-1β enhanced the transition. Conclusion Our results indicate, that TGFβ1 can induce mesenchymal transition in the bronchial epithelial cell line and primary cells. Since asthma has been strongly associated with increased expression of TGFβ1 in the airway, epithelial to mesenchymal transition may contribute to the contractile and fibrotic remodeling process that accompanies chronic asthma.
Collapse
Affiliation(s)
- Astrid M Doerner
- Veterans Medical Research Foundation, La Jolla, California, USA.
| | | |
Collapse
|
78
|
Reidy K, Susztak K. Epithelial-mesenchymal transition and podocyte loss in diabetic kidney disease. Am J Kidney Dis 2009; 54:590-3. [PMID: 19781451 DOI: 10.1053/j.ajkd.2009.07.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 07/07/2009] [Indexed: 11/11/2022]
|
79
|
López-Novoa JM, Nieto MA. Inflammation and EMT: an alliance towards organ fibrosis and cancer progression. EMBO Mol Med 2009; 1:303-14. [PMID: 20049734 PMCID: PMC3378143 DOI: 10.1002/emmm.200900043] [Citation(s) in RCA: 507] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 08/17/2009] [Accepted: 08/26/2009] [Indexed: 12/13/2022] Open
Abstract
Recent advances in our understanding of the molecular pathways that govern the association of inflammation with organ fibrosis and cancer point to the epithelial to mesenchymal transition (EMT) as the common link in the progression of these devastating diseases. The EMT is a crucial process in the development of different tissues in the embryo and its reactivation in the adult may be regarded as a physiological attempt to control inflammatory responses and to 'heal' damaged tissue. However, in pathological contexts such as in tumours or during the development of organ fibrosis, this healing response adopts a sinister nature, steering these diseases towards metastasis and organ failure. Importantly, the chronic inflammatory microenvironment common to fibrotic and cancer cells emerges as a decisive factor in the induction of the pathological EMT.
Collapse
Affiliation(s)
- Jose Miguel López-Novoa
- Departamento de Fisiología y Farmacología, Universidad de Salamanca, Edificio Departamental, Campus Miguel de UnamunoSalamanca, Spain
| | - M Angela Nieto
- Instituto de Neurociencias CSIC-UMHSan Juan de Alicante, Spain
| |
Collapse
|
80
|
Grande MT, López-Novoa JM. Fibroblast activation and myofibroblast generation in obstructive nephropathy. Nat Rev Nephrol 2009; 5:319-28. [PMID: 19474827 DOI: 10.1038/nrneph.2009.74] [Citation(s) in RCA: 210] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Obstructive nephropathy is a major cause of renal failure, particularly in newborn babies and children. After urinary tract obstruction, and under the influence of mechanical forces and cytokines produced by tubular cells and cells that have infiltrated the interstitium, resident fibroblasts undergo activation and myofibroblasts are generated from bone-marrow-derived cells, pericytes and endothelial cells. In addition, selected tubular epithelial cells can become fibroblast-like cells via epithelial-mesenchymal transition. This transition is characterized by downregulation of epithelial marker proteins such as E-cadherin, zonula occludens 1 and cytokeratin; loss of cell-to-cell adhesion; upregulation of mesenchymal markers including vimentin, alpha-smooth muscle actin and fibroblast-specific protein 1; basement membrane degradation; and migration to the interstitial compartment. All the events of epithelial-mesenchymal transition are strictly regulated by complex signaling pathways. Myofibroblasts and activated fibroblasts proliferate and produce large amounts of extracellular matrix, which accumulates in the tubular interstitium; together with tubular atrophy, this accumulation leads to interstitial fibrosis. This Review examines the molecular mechanisms of fibroblast activation and epithelial-mesenchymal transition, processes that seem to be promising targets for the prevention, or even reversal, of interstitial fibrosis and renal dysfunction associated with obstructive nephropathy.
Collapse
Affiliation(s)
- María T Grande
- Instituto Reina Sofía de investigación Nefrológica, Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca 37007, Spain
| | | |
Collapse
|
81
|
Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest 2009. [PMID: 19487818 DOI: 10.1172/jci39104.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The origins of the mesenchymal cells participating in tissue repair and pathological processes, notably tissue fibrosis, tumor invasiveness, and metastasis, are poorly understood. However, emerging evidence suggests that epithelial-mesenchymal transitions (EMTs) represent one important source of these cells. As we discuss here, processes similar to the EMTs associated with embryo implantation, embryogenesis, and organ development are appropriated and subverted by chronically inflamed tissues and neoplasias. The identification of the signaling pathways that lead to activation of EMT programs during these disease processes is providing new insights into the plasticity of cellular phenotypes and possible therapeutic interventions.
Collapse
Affiliation(s)
- Raghu Kalluri
- Division of Matrix Biology, Beth Israel Deaconess Medical Center, and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | |
Collapse
|
82
|
Abstract
The origins of the mesenchymal cells participating in tissue repair and pathological processes, notably tissue fibrosis, tumor invasiveness, and metastasis, are poorly understood. However, emerging evidence suggests that epithelial-mesenchymal transitions (EMTs) represent one important source of these cells. As we discuss here, processes similar to the EMTs associated with embryo implantation, embryogenesis, and organ development are appropriated and subverted by chronically inflamed tissues and neoplasias. The identification of the signaling pathways that lead to activation of EMT programs during these disease processes is providing new insights into the plasticity of cellular phenotypes and possible therapeutic interventions.
Collapse
Affiliation(s)
- Raghu Kalluri
- Division of Matrix Biology, Beth Israel Deaconess Medical Center, and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | |
Collapse
|
83
|
Zheng G, Lyons JG, Tan TK, Wang Y, Hsu TT, Min D, Succar L, Rangan GK, Hu M, Henderson BR, Alexander SI, Harris DCH. Disruption of E-cadherin by matrix metalloproteinase directly mediates epithelial-mesenchymal transition downstream of transforming growth factor-beta1 in renal tubular epithelial cells. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:580-91. [PMID: 19590041 DOI: 10.2353/ajpath.2009.080983] [Citation(s) in RCA: 186] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Epithelial-mesenchymal transition (EMT) plays an important role in organ fibrosis, including that of the kidney. Loss of E-cadherin expression is a hallmark of EMT; however, whether the loss of E-cadherin is a consequence or a cause of EMT remains unknown, especially in the renal system. In this study, we show that transforming growth factor (TGF)-beta1-induced EMT in renal tubular epithelial cells is dependent on proteolysis. Matrix metalloproteinase-mediated E-cadherin disruption led directly to tubular epithelial cell EMT via Slug. TGF-beta1 induced the proteolytic shedding of E-cadherin, which caused the nuclear translocation of beta-catenin, the transcriptional induction of Slug, and the repression of E-cadherin transcription in tubular epithelial cells. These findings reveal a direct role for E-cadherin and for matrix metalloproteinases in causing EMT downstream of TGF-beta1 in fibrotic disease. Specific inhibition rather than activation of matrix metalloproteinases may offer a novel approach for treatment of fibrotic disease.
Collapse
Affiliation(s)
- Guoping Zheng
- Centre for Transplantation and Renal Research, the University of Sydney at Westmead Millennium Institute, Westmead, NSW 2145 Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Wu S, Platteau A, Chen S, McNamara G, Whitsett J, Bancalari E. Conditional overexpression of connective tissue growth factor disrupts postnatal lung development. Am J Respir Cell Mol Biol 2009; 42:552-63. [PMID: 19541844 DOI: 10.1165/rcmb.2009-0068oc] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Connective tissue growth factor (CTGF) is a member of an emerging family of immediate-early gene products that coordinates complex biological processes during development, differentiation, and tissue repair. Overexpression of CTGF is associated with mechanical ventilation with high tidal volume and oxygen exposure in newborn lungs. However, the role of CTGF in postnatal lung development and remodeling is not well understood. In the present study, a double-transgenic mouse model was generated with doxycycline-inducible overexpression of CTGF in respiratory epithelial cells. Overexpression of CTGF from Postnatal Days 1-14 resulted in thicker alveolar septa and decreased secondary septal formation. This is correlated with increased myofibroblast differentiation and disorganized elastic fiber deposition in alveolar septa. Overexpression of CTGF also decreased alveolar capillary network formation. There were increased alpha-smooth muscle actin expression and collagen deposition, and dramatic thickening in the peribronchial/peribronchiolar and perivascular regions in the double-transgenic lungs. Furthermore, overexpression of CTGF increased integrin-linked kinase expression, activated its downstream signaling target, Akt, as well as increased mRNA expression of fibronectin. These data demonstrate that overexpression of CTGF disrupts alveologenesis and capillary formation, and induces fibrosis during the critical period of alveolar development. These histologic changes are similar to those observed in lungs of infants with bronchopulmonary dysplasia.
Collapse
Affiliation(s)
- Shu Wu
- Department of Pediatrics, Division of Neonatology, University of Miami Miller School of Medicine, Miami, Florida 33101, USA.
| | | | | | | | | | | |
Collapse
|
85
|
Li Y, Tan X, Dai C, Stolz DB, Wang D, Liu Y. Inhibition of integrin-linked kinase attenuates renal interstitial fibrosis. J Am Soc Nephrol 2009; 20:1907-18. [PMID: 19541809 DOI: 10.1681/asn.2008090930] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Integrin-linked kinase (ILK) is an intracellular serine/threonine protein kinase that regulates cell adhesion, survival, and epithelial-to-mesenchymal transition (EMT). In this study, we investigated the kinase activity of ILK during tubular EMT induced by TGF-beta1 and examined the therapeutic potential of an ILK inhibitor in obstructive nephropathy. TGF-beta1 induced a biphasic activation of ILK in renal tubular epithelial cells, with rapid activation starting at 5 min and the second wave of activation peaking at 24 h; the latter paralleled the induction of ILK protein expression. Pharmacologic inhibition of ILK with small-molecule inhibitor QLT-0267 abolished TGF-beta1-induced phosphorylation of Akt and glycogen synthase kinase-3beta, suppressed cyclin D1 expression, and largely restored the expression of E-cadherin and zonula occludens 1. Inhibition of ILK also blocked TGF-beta1-mediated induction of fibronectin, Snail1, plasminogen activator inhibitor 1, and matrix metalloproteinase 2. In a mouse model of obstructive nephropathy, administration of QLT-0267 inhibited beta-catenin accumulation; suppressed Snail1, alpha-smooth muscle actin, fibronectin, vimentin, and type I and type III collagen expression; and reduced total tissue collagen content. Inhibition of ILK did not affect kidney structure or function in normal mice. These findings suggest that increased ILK activity mediates EMT and the progression of renal fibrosis. Pharmacologic inhibition of ILK signaling may hold therapeutic potential for fibrotic kidney diseases.
Collapse
Affiliation(s)
- Yingjian Li
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | | | |
Collapse
|
86
|
Abstract
The origins of the mesenchymal cells participating in tissue repair and pathological processes, notably tissue fibrosis, tumor invasiveness, and metastasis, are poorly understood. However, emerging evidence suggests that epithelial-mesenchymal transitions (EMTs) represent one important source of these cells. As we discuss here, processes similar to the EMTs associated with embryo implantation, embryogenesis, and organ development are appropriated and subverted by chronically inflamed tissues and neoplasias. The identification of the signaling pathways that lead to activation of EMT programs during these disease processes is providing new insights into the plasticity of cellular phenotypes and possible therapeutic interventions.
Collapse
Affiliation(s)
- Raghu Kalluri
- Division of Matrix Biology, Beth Israel Deaconess Medical Center, and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | |
Collapse
|
87
|
Abstract
Somatic cells that change from one mature phenotype to another exhibit the property of plasticity. It is increasingly clear that epithelial and endothelial cells enjoy some of this plasticity, which is easily demonstrated by studying the process of epithelial-mesenchymal transition (EMT). Published reports from the literature typically rely on ad hoc criteria for determining EMT events; consequently, there is some uncertainty as to whether the same process occurs under different experimental conditions. As we discuss in this Personal Perspective, we believe that context and various changes in plasticity biomarkers can help identify at least three types of EMT and that using a collection of criteria for EMT increases the likelihood that everyone is studying the same phenomenon - namely, the transition of epithelial and endothelial cells to a motile phenotype.
Collapse
Affiliation(s)
- Michael Zeisberg
- Division of Matrix Biology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | |
Collapse
|
88
|
Huang WY, Li ZG, Rus H, Wang X, Jose PA, Chen SY. RGC-32 mediates transforming growth factor-beta-induced epithelial-mesenchymal transition in human renal proximal tubular cells. J Biol Chem 2009; 284:9426-32. [PMID: 19158077 DOI: 10.1074/jbc.m900039200] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) occurs in several disease states, including renal fibrosis and carcinogenesis. Myofibroblasts produced from EMT of renal tubular cells are responsible for the deposition of extracellular matrix components in a large portion of renal interstitial fibrosis. Transforming growth factor-beta (TGF-beta) plays an essential role in the EMT of renal tubular cells, but the molecular mechanism governing this process remains largely unknown. In this study, we found that RGC-32 (response gene to complement 32) is critical for TGF-beta-induced EMT of human renal proximal tubular cells (HPTCs). RGC-32 is not normally expressed in the HPTCs. However, TGF-beta stimulation markedly activates RGC-32 while inducing an EMT, as shown by the induction of smooth muscle alpha-actin (alpha-SMA) and extracellular matrix proteins collagen I and fibronectin, as well as the reduction of epithelial marker E-cadherin. TGF-beta function is mediated by several signaling pathways, but RGC-32 expression in HPTCs appears to be mainly regulated by Smad. Functionally, RGC-32 appears to mediate TGF-beta-induced EMT of HPTCs. Blockage of RGC-32 using short hairpin interfering RNA significantly inhibits TGF-beta induction of myofibroblast marker gene alpha-SMA while repressing the expression of E-cadherin. In contrast, overexpression of RGC-32 induces alpha-SMA expression while restoring E-cadherin. RGC-32 also inhibits the expression of another adherens junction protein, N-cadherin, suggesting that RGC-32 alone induces the phenotypic conversion of renal epithelial cells to myofibroblasts. Additional studies show that RGC-32 stimulates the production of extracellular matrix components fibronectin and collagen I. Mechanistically, RGC-32 induces EMT via the activation of other transcription factors such as Snail and Slug. RGC-32 knockdown inhibits the expression of Snail and Slug during TGF-beta-induced EMT. Taken together, our data demonstrate for the first time that RGC-32 plays a critical role in TGF-beta-induced EMT of renal tubular cells.
Collapse
Affiliation(s)
- Wen-Yan Huang
- Department of Physiology, The University of Georgia College of Veterinary Medicine, Athens, Georgia 30602, USA
| | | | | | | | | | | |
Collapse
|
89
|
Gkretsi V, Apte U, Mars WM, Bowen WC, Luo JH, Yang Y, Yu YP, Orr A, St.-Arnaud R, Dedhar S, Kaestner KH, Wu C, Michalopoulos GK. Liver-specific ablation of integrin-linked kinase in mice results in abnormal histology, enhanced cell proliferation, and hepatomegaly. Hepatology 2008; 48:1932-41. [PMID: 18846549 PMCID: PMC2597430 DOI: 10.1002/hep.22537] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
UNLABELLED Hepatocyte differentiation and proliferation are greatly affected by extracellular matrix (ECM). Primary hepatocytes cultured without matrix dedifferentiate over time, but matrix overlay quickly restores differentiation. ECM also is critical in liver regeneration where ECM degradation and reconstitution are steps in the regenerative process. Integrin-linked kinase (ILK) is a cell-ECM-adhesion component implicated in cell-ECM signaling by means of integrins. We investigated the role of ILK in whole liver by using the LoxP/Cre model system. ILK was eliminated from the liver by mating homozygous ILK-floxed animals with mice expressing Cre-recombinase under control of the alpha fetoprotein enhancer and albumin promoter. After ablation of ILK, animals are born normal. Soon after birth, however, they develop histologic abnormalities characterized by disorderly hepatic plates, increased proliferation of hepatocytes and biliary cells, and increased deposition of extracellular matrix. Cell proliferation is accompanied by increased cytoplasmic and nuclear stabilization of beta-catenin. After this transient proliferation of all epithelial components, proliferation subsides and final liver to body weight ratio in livers with ILK deficient hepatocytes is two times that of wild type. Microarray analysis of gene expression during the stage of cell proliferation shows up-regulation of integrin and matrix-related genes and a concurrent down-regulation of differentiation-related genes. After the proliferative stage, however, the previous trends are reversed resulting in a super-differentiated phenotype in the ILK-deficient livers. CONCLUSION Our results show for the first time in vivo the significance of ILK and hepatic ECM-signaling for regulation of hepatocyte proliferation and differentiation.
Collapse
Affiliation(s)
- Vasiliki Gkretsi
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Udayan Apte
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Wendy M. Mars
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - William C. Bowen
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Jian-Hua Luo
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Yu Yang
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Yan P. Yu
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Ann Orr
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - René St.-Arnaud
- Shriners Hospital and McGill University, Montréal, Québec, Canada
| | - Shoukat Dedhar
- British Columbia Cancer Agency and Vancouver Hospital, Jack Bell Research Center, Vancouver, British Columbia, Canada
| | - Klaus H. Kaestner
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Chuanyue Wu
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - George K. Michalopoulos
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
90
|
Shukla MN, Rose JL, Ray R, Lathrop KL, Ray A, Ray P. Hepatocyte growth factor inhibits epithelial to myofibroblast transition in lung cells via Smad7. Am J Respir Cell Mol Biol 2008; 40:643-53. [PMID: 18988920 DOI: 10.1165/rcmb.2008-0217oc] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Idiopathic pulmonary fibrosis is a lethal parenchymal lung disease characterized by denudation of the lung epithelium, fibroblast proliferation, and collagen deposition. Cellular changes underlying disease progression involve injury to alveolar epithelial cells, epithelial to mesenchymal transition, proliferation of alpha-smooth muscle actin (alpha-SMA)-expressing myofibroblasts and of fibroblasts resulting in enhanced deposition of extracellular matrix proteins. Hepatocyte growth factor (HGF) inhibits progression of bleomycin-induced pulmonary fibrosis in mice. The mechanism underlying the inhibitory effect of HGF was investigated in an in vitro model. We show that HGF markedly antagonizes basal and transforming growth factor (TGF)-beta-induced expression of myofibroblast markers such as alpha-SMA, collagen type 1, and fibronectin in rat alveolar epithelial cells. HGF also inhibited TGF-beta-induced alpha-SMA expression in primary murine alveolar epithelial cells. Since TGF-beta is known to regulate alpha-SMA expression, the effect of HGF on components of TGF-beta signaling was investigated. HGF induced expression of Smad7, an inhibitor of TGF-beta signaling, in a mitogen-activated protein kinase-dependent manner. HGF also induced the nuclear export of Smad7 and Smad ubiquitin regulatory factor 1 (Smurf1) to the cytoplasm. HGF-dependent decrease in alpha-SMA was abolished with specific siRNAs targeted to Smad7. Thus, induction of Smad7 by HGF serves to limit acquisition of the myofibroblast phenotype in alveolar epithelial cells.
Collapse
Affiliation(s)
- Manasi N Shukla
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | |
Collapse
|
91
|
Epithelial-to-mesenchymal transition and chronic allograft tubulointerstitial fibrosis. Transplant Rev (Orlando) 2008; 22:1-5. [PMID: 18631853 DOI: 10.1016/j.trre.2007.09.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic allograft tubular atrophy/interstitial fibrosis (TA/IF) is a major cause of late allograft loss. A major challenge to the future of kidney transplantation is to dissect the identifiable causes of chronic allograft TA/IF and to develop cause-specific treatment strategies. Emerging evidence suggests that epithelial-to-mesenchymal transition (EMT) is an important event in native and transplant kidney injury, including chronic allograft TA/IF. During EMT, tubular epithelial cells are transformed into myofibroblasts through a stepwise process including loss of cell-cell adhesion and E-cadherin expression, de novo alpha-smooth muscle actin expression, actin reorganization, tubular basement membrane disruption, cell migration, and fibroblast invasion with production of profibrotic molecules such as collagen types I and III and fibronectin. We examined in this review the molecular and cellular pathways of EMT and their involvement in chronic allograft tubulointerstitial fibrosis. We examined the role of alloimmune T cells and oxidative stress in this context and evaluated EMT as a marker of disease progression. Potential therapeutic options are discussed. In conclusion, there is enough evidence demonstrating that EMT is involved in the pathogenesis of chronic allograft tubulointerstitial fibrosis. However, the extent of its contribution to allograft fibrogenesis remains unknown, and only interventional trials will enable us to clarify this question. Furthermore, additional data are required to determine whether EMT may be used as a surrogate marker of disease progression in kidney transplant recipients.
Collapse
|
92
|
Murphy M, Docherty NG, Griffin B, Howlin J, McArdle E, McMahon R, Schmid H, Kretzler M, Droguett A, Mezzano S, Brady HR, Furlong F, Godson C, Martin F. IHG-1 amplifies TGF-beta1 signaling and is increased in renal fibrosis. J Am Soc Nephrol 2008; 19:1672-80. [PMID: 18508967 PMCID: PMC2518434 DOI: 10.1681/asn.2007101080] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Induced in high glucose-1 (IHG-1) is an evolutionarily conserved gene transcript upregulated by high extracellular glucose concentrations, but its function is unknown. Here, it is reported that the abundance of IHG-1 mRNA is nearly 10-fold higher in microdissected, tubule-rich renal biopsies from patients with diabetic nephropathy compared with control subjects. In the diabetic nephropathy specimens, in situ hybridization localized IHG-1 to tubular epithelial cells along with TGF-beta1 and activated Smad3, suggesting a possible role in the development of tubulointerstitial fibrosis. Supporting this possibility, IHG-1 mRNA and protein expression also increased with unilateral ureteral obstruction. In the HK-2 proximal tubule cell line, overexpression of IHG-1 increased TGF-beta1-stimulated expression of connective tissue growth factor and fibronectin. IHG-1 was found to amplify TGF-beta1-mediated transcriptional activity by increasing and prolonging phosphorylation of Smad3. Conversely, inhibition of endogenous IHG-1 with small interference RNA suppressed transcriptional responses to TGF-beta1. In summary, IHG-1, which increases in diabetic nephropathy, may enhance the actions of TGF-beta1 and contribute to the development of tubulointerstitial fibrosis.
Collapse
Affiliation(s)
- Madeline Murphy
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Kattla JJ, Carew RM, Heljic M, Godson C, Brazil DP. Protein kinase B/Akt activity is involved in renal TGF-beta1-driven epithelial-mesenchymal transition in vitro and in vivo. Am J Physiol Renal Physiol 2008; 295:F215-25. [PMID: 18495798 PMCID: PMC2494512 DOI: 10.1152/ajprenal.00548.2007] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The molecular pathogenesis of diabetic nephropathy (DN), the leading cause of end-stage renal disease worldwide, is complex and not fully understood. Transforming growth factor-β (TGF-β1) plays a critical role in many fibrotic disorders, including DN. In this study, we report protein kinase B (PKB/Akt) activation as a downstream event contributing to the pathophysiology of DN. We investigated the potential of PKB/Akt to mediate the profibrotic bioactions of TGF-β1 in kidney. Treatment of normal rat kidney epithelial cells (NRK52E) with TGF-β1 resulted in activation of phosphatidylinositol 3-kinase (PI3K) and PKB/Akt as evidenced by increased Ser473 phosphorylation and GSK-3β phosphorylation. TGF-β1 also stimulated increased Smad3 phosphorylation in these cells, a response that was insensitive to inhibition of PI3K or PKB/Akt. NRK52E cells displayed a loss of zona occludins 1 and E-cadherin and a gain in vimentin and α-smooth muscle actin expression, consistent with the fibrotic actions of TGF-β1. These effects were blocked with inhibitors of PI3K and PKB/Akt. Furthermore, overexpression of PTEN, the lipid phosphatase regulator of PKB/Akt activation, inhibited TGF-β1-induced PKB/Akt activation. Interestingly, in the Goto-Kakizaki rat model of type 2 diabetes, we also detected increased phosphorylation of PKB/Akt and its downstream target, GSK-3β, in the tubules, relative to that in control Wistar rats. Elevated Smad3 phosphorylation was also detected in kidney extracts from Goto-Kakizaki rats with chronic diabetes. Together, these data suggest that TGF-β1-mediated PKB/Akt activation may be important in renal fibrosis during diabetic nephropathy.
Collapse
Affiliation(s)
- Jayesh J Kattla
- UCD Diabetic Research Centre, School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | | | | | | | | |
Collapse
|
94
|
Hu K, Mars WM, Liu Y. Novel actions of tissue-type plasminogen activator in chronic kidney disease. FRONT BIOSCI-LANDMRK 2008; 13:5174-86. [PMID: 18508579 DOI: 10.2741/3073] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tissue-type plasminogen activator (tPA) is traditionally viewed as a simple serine protease whose main function is to convert plasminogen into biologically active plasmin. As a protease, tPA plays a crucial role in regulating blood fibrinolysis, in maintaining the homeostasis of extracellular matrix and in modulating the post-translational activation of growth factors. However, emerging evidence indicates that tPA also functions as a cytokine that transmits its signal across the cell membrane, initiates a diverse array of intracellular signaling, and dictates gene expression in the nuclei. tPA binds to the cell membrane LDL receptor-related protein 1 (LRP-1), triggers its tyrosine phosphorylation. As a cytokine, tPA plays a pivotal role in the pathogenesis of renal interstitial fibrosis through diverse mechanisms. It facilitates tubular epithelial to mesenchymal transition, potentiates myofibroblast activation, and protects renal interstitial fibroblasts/myofibroblasts from apoptosis. Together, growing evidence has implicated tPA as a fibrogenic cytokine that promotes the progression of kidney diseases. These new findings have radically changed our conception of tPA in renal fibrogenesis and represent a paradigm shift towards uncovering its cytokine function.
Collapse
Affiliation(s)
- Kebin Hu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|
95
|
Nath AK, Brown RM, Michaud M, Sierra-Honigmann MR, Snyder M, Madri JA. Leptin affects endocardial cushion formation by modulating EMT and migration via Akt signaling cascades. ACTA ACUST UNITED AC 2008; 181:367-80. [PMID: 18411306 PMCID: PMC2315681 DOI: 10.1083/jcb.200708197] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Blood circulation is dependent on heart valves to direct blood flow through the heart and great vessels. Valve development relies on epithelial to mesenchymal transition (EMT), a central feature of embryonic development and metastatic cancer. Abnormal EMT and remodeling contribute to the etiology of several congenital heart defects. Leptin and its receptor were detected in the mouse embryonic heart. Using an ex vivo model of cardiac EMT, the inhibition of leptin results in a signal transducer and activator of transcription 3 and Snail/vascular endothelial cadherin-independent decrease in EMT and migration. Our data suggest that an Akt signaling pathway underlies the observed phenotype. Furthermore, loss of leptin phenocopied the functional inhibition of alphavbeta3 integrin receptor and resulted in decreased alphavbeta3 integrin and matrix metalloprotease 2, suggesting that the leptin signaling pathway is involved in adhesion and migration processes. This study adds leptin to the repertoire of factors that mediate EMT and, for the first time, demonstrates a role for the interleukin 6 family in embryonic EMT.
Collapse
Affiliation(s)
- Anjali K Nath
- Department of Pathology, School of Medicine, Yale University, New Haven, CT 06510, USA
| | | | | | | | | | | |
Collapse
|
96
|
Intestinal adenomagenesis involves core molecular signatures of the epithelial-mesenchymal transition. J Mol Histol 2008; 39:283-94. [PMID: 18327651 DOI: 10.1007/s10735-008-9164-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Accepted: 01/16/2008] [Indexed: 01/08/2023]
Abstract
The epithelial-mesenchymal transition (EMT) occurs commonly during carcinoma invasion and metastasis, but not during early tumorigenesis. Microarray data demonstrated elevation of vimentin, a mesenchymal marker, in intestinal adenomas from Apc Min/+ (Min) mice. We have tested the involvement of EMT in early tumorigenesis in mammalian intestines by following EMT-associated markers. Elevated vimentin RNA expression and protein production were detected within neoplastic cells in murine intestinal adenomas. Similarly, vimentin protein was detected in both adenomas and invasive adenocarcinomas of the human colon, but not in the normal colonic epithelium or in hyperplastic polyps. Expression of E-cadherin varied inversely with vimentin. In addition, the expression of fibronectin was elevated while that of E-cadherin decreased. Canonical E-cadherin suppressors, such as Snail, were not elevated in the same tumor. Elevated vimentin expression in the adenoma was not correlated with persistent Ras signaling, but was strongly correlated with reduced proliferation indices, active Wnt signaling, and TGF-beta signaling, as demonstrated by its dependence on Smad3. We designate our observations of expression of only some of the canonical features of EMT as "truncated EMT". These unexpected observations are interpreted as reflecting the involvement of a core of the EMT system during the tissue remodeling of early tumorigenesis.
Collapse
|
97
|
Hu K, Wu C, Mars WM, Liu Y. Tissue-type plasminogen activator promotes murine myofibroblast activation through LDL receptor-related protein 1-mediated integrin signaling. J Clin Invest 2008; 117:3821-32. [PMID: 18037995 DOI: 10.1172/jci32301] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Accepted: 09/19/2007] [Indexed: 12/16/2022] Open
Abstract
The activation of interstitial fibroblasts to become alpha-SMA-positive myofibroblasts is an essential step in the evolution of chronic kidney fibrosis, as myofibroblasts are responsible for the production and deposition of the ECM components that are a hallmark of the disease. Here we describe a signaling pathway that leads to this activation. Tissue-type plasminogen activator (tPA) promoted TGF-beta1-mediated alpha-SMA and type I collagen expression in rat kidney interstitial fibroblasts. This fibrogenic effect was independent of its protease activity but required its membrane receptor, the LDL receptor-related protein 1 (LRP-1). In rat kidney fibroblasts, tPA induced rapid LRP-1 tyrosine phosphorylation and enhanced beta1 integrin recruitment by facilitating the LRP-1/beta1 integrin complex formation. Blockade or knockdown of beta1 integrin abolished type I collagen and alpha-SMA expression. Furthermore, inhibition of the integrin-linked kinase (ILK), a downstream effector of beta1 integrin, or disruption of beta1 integrin/ILK engagement, abrogated the tPA action, whereas ectopic expression of ILK mimicked tPA in promoting myofibroblast activation. In murine renal interstitium after obstructive injury, tPA and alpha-SMA colocalized with LRP-1, and tPA deficiency reduced LRP-1/beta1 integrin interaction and myofibroblast activation. These findings show that tPA induces LRP-1 tyrosine phosphorylation, which in turn facilitates the LRP-1-mediated recruitment of beta1 integrin and downstream ILK signaling, thereby leading to myofibroblast activation. This study implicates tPA as a fibrogenic cytokine that promotes the progression of kidney fibrosis.
Collapse
Affiliation(s)
- Kebin Hu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
98
|
Li Y, Kang YS, Dai C, Kiss LP, Wen X, Liu Y. Epithelial-to-mesenchymal transition is a potential pathway leading to podocyte dysfunction and proteinuria. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:299-308. [PMID: 18202193 DOI: 10.2353/ajpath.2008.070057] [Citation(s) in RCA: 270] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Podocyte dysfunction plays an essential role in the pathogenesis of proteinuria and glomerulosclerosis. However, the mechanism underlying podocyte dysfunction in many common forms of chronic kidney diseases remains poorly understood. Here we tested the hypothesis that podocytes may undergo epithelial-to-mesenchymal transition after injury. Conditionally immortalized mouse podocytes were incubated with transforming growth factor (TGF)-beta1, a potent fibrogenic cytokine that is up-regulated in the diseased kidney. TGF-beta1 suppressed the slit diaphragm-associated protein P-cadherin, zonula occludens-1, and nephrin, a change consistent with loss of the epithelial feature. Meanwhile, TGF-beta1 induced the expression of the intermediate filament protein desmin and interstitial matrix components fibronectin and collagen I. Furthermore, TGF-beta1 promoted the expression and secretion of matrix metalloproteinase-9 by podocytes. Functionally, TGF-beta1 increased albumin permeability across podocyte monolayers, as demonstrated by a paracellular albumin influx assay. The expression of Snail, a key transcriptional factor that has been implicated in initiating epithelial-to-mesenchymal transition, was induced by TGF-beta1, and ectopic expression of Snail suppressed P-cadherin and nephrin in podocytes. In vivo, in addition to loss of nephrin and zonula occludens-1, mesenchymal markers such as desmin, fibroblast-specific protein-1, and matrix metalloproteinase-9 could be observed in glomerular podocytes of diabetic nephropathy. These results suggest that podocyte dedifferentiation and mesenchymal transition could be a potential pathway leading to their dysfunction, thereby playing a role in the genesis of proteinuria.
Collapse
Affiliation(s)
- Yingjian Li
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | |
Collapse
|
99
|
Kamiyama M, Kobayashi M, Araki SI, Iida A, Tsunoda T, Kawai K, Imanishi M, Nomura M, Babazono T, Iwamoto Y, Kashiwagi A, Kaku K, Kawamori R, Ng DPK, Hansen T, Gaede P, Pedersen O, Nakamura Y, Maeda S. Polymorphisms in the 3' UTR in the neurocalcin delta gene affect mRNA stability, and confer susceptibility to diabetic nephropathy. Hum Genet 2007; 122:397-407. [PMID: 17671797 DOI: 10.1007/s00439-007-0414-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Accepted: 07/24/2007] [Indexed: 10/23/2022]
Abstract
Using a large-scale genotyping analysis of gene-based single nucleotide polymorphisms (SNPs) in Japanese type 2 diabetic patients, we have identified a gene encoding neurocalcin delta (NCALD) as a candidate for a susceptibility gene to diabetic nephropathy; the landmark SNP was found in the 3' UTR of NCALD (rs1131863: exon 4 +1340 A vs. G, P = 0.00004, odds ratio = 1.59, 95% CI 1.27-1.98). We also discovered two other SNPs in exon 4 of this gene (+999 T/A, +1307 A/G) that showed absolute linkage disequilibrium to the landmark SNP. Subsequent in vitro functional analysis revealed that synthetic mRNA corresponding to the disease susceptible haplotype (exon 4 +1340 G, +1307 G, +999 A) was degraded faster than mRNA corresponding to the major haplotype (exon 4 +1340 A, +1307 A, +999 T), and allelic mRNA expression of the disease susceptibility allele was significantly lower than that of the major allele in normal kidney tissues. In an experiment using a short interfering RNA targeting NCALD, we found that silencing of the NCALD led to a considerable enhancement of cell migration, accompanied by a significant reduction in E-cadherin expression, and by an elevation of alpha smooth muscle actin expression in cultured renal proximal tubular epithelial cells. We also identified the association of the landmark SNP with the progression of diabetic nephropathy in a 8-year prospective study (A vs. G, P = 0.03, odds ratio = 1.91, 95% CI 1.07-3.42). These results suggest that the NCALD gene is a likely candidate for conferring susceptibility to diabetic nephropathy.
Collapse
Affiliation(s)
- Masumi Kamiyama
- Laboratory for Diabetic Nephropathy, SNP Research Centre, Institute of Physical and Chemical Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Weaver MS, Toida N, Sage EH. Expression of integrin-linked kinase in the murine lens is consistent with its role in epithelial-mesenchymal transition of lens epithelial cells in vitro. Mol Vis 2007; 13:707-18. [PMID: 17563721 PMCID: PMC2765468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To evaluate the expression and location of integrin-linked kinase (ILK) within the mouse lens and to characterize the role of this protein during mouse lens epithelial cells (LEC) differentiation in vitro. METHODS Transcription levels of ILK mRNA were determined by RT-PCR in cultured cells and lens tissue. ILK protein was detected by immunoblotting, immunocytochemistry, immunohistochemistry, and immunoprecipitation. A role for ILK in the outgrowth of LEC from dissected mouse lens explants was determined by the use of ILK short interfering RNA (siRNA). Affinity-purified polyclonal anti-recombinant human ILK IgG was prepared and characterized for these experiments. A comparison of several anti-ILK antibodies was performed by immunoblotting, immunoprecipitation, and ELISA. RESULTS ILK was transcribed in LEC and lens fiber cells in vivo. ILK protein was expressed in the differentiating LEC at the equatorial region of the lens and, to a lesser extent, within the cortical and nuclear fiber cells. LEC in vitro produced copious ILK, which exhibited a filamentous pattern throughout the cytoplasm. The expression of ILK was increased during epithelial-mesenchymal-transition (EMT) of LEC from lens explants, whereas inhibition of ILK by siRNA delayed expression of the EMT markers smooth muscle alpha-actin and fibronectin. CONCLUSIONS Analysis of ILK expression, localization, and activity in the mouse lens and cultured LEC is substantially facilitated by the generation of a multi-functional, polyclonal, affinity-purified anti-ILK antibody. Expressed in most tissues and cells lines, ILK is unexpectedly restricted to the equatorial LEC and differentiated fiber cells of the mouse lens. The occurrence of ILK expression with LEC differentiation is consistent with the positive regulatory function of ILK, which is revealed in a model of EMT in vitro. This is the first study to show the expression of ILK in the lens and its unique distribution pattern within cultured lens epithelia.
Collapse
Affiliation(s)
- Matt S. Weaver
- Hope Heart Program, Benaroya Research Institute at Virginia Mason, Seattle WA
- Department of Biological Structure, University of Washington, Seattle, WA
| | - Natalie Toida
- Hope Heart Program, Benaroya Research Institute at Virginia Mason, Seattle WA
| | - E. Helene Sage
- Hope Heart Program, Benaroya Research Institute at Virginia Mason, Seattle WA
- Department of Biological Structure, University of Washington, Seattle, WA
| |
Collapse
|