51
|
McGowan SE, McCoy DM. Neuropilin-1 and platelet-derived growth factor receptors cooperatively regulate intermediate filaments and mesenchymal cell migration during alveolar septation. Am J Physiol Lung Cell Mol Physiol 2018. [PMID: 29543041 DOI: 10.1152/ajplung.00511.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Generation of secondary alveolar septa occurs primarily after birth in humans and is complete in mice postnatally, when mechanical stresses vary as air space pressure oscillates. Alveolar mesenchymal cells deposit elastic fibers, which limit cell strain; although when the elastic fiber network is incomplete, this function is also served by the intracellular cytoskeleton. Intermediate filament proteins support deformation during cell division and migration, which occur during septal elongation. Because platelet-derived growth factor receptor-α (PDGFRα) signaling is essential for alveolar septation, we hypothesized that neuropilin-1 (NRP1) may link PDGFRα to cytoskeletal deformation. During cell migration, NRP1 links receptor tyrosine kinase signaling to cytoskeletal and focal adhesion remodeling. Therefore, we examined the consequences of nrp1 gene deletion in alveolar mesenchymal cells (myofibroblasts and pericytes). NRP1 depletion reduced the proportion of mesenchymal cells that contain nestin and desmin within the subpopulation that lacked PDGFRα but contained PDGFRβ. Desmin was reduced at alveolar entry rings, air spaces were enlarged, and surface area was reduced after NRP1 depletion. PDGFRα and NRP1 colocalized to membrane lipid rafts, which are known to contain Src kinase. NRP1 depletion reduced alveolar mesenchymal cell migration and PDGF-A-mediated activation of Src kinase, which may limit accumulation of desmin at septal tips (alveolar entry rings). Cooperation between NRP1 and PDGF signaling is required for secondary septation, and manipulation of NRP1 could promote alveolar regeneration without producing fibrosis.
Collapse
Affiliation(s)
- Stephen E McGowan
- Department of Veterans Affairs Research Service and Department of Internal Medicine, University of Iowa Carver College of Medicine , Iowa City, Iowa
| | - Diann M McCoy
- Department of Veterans Affairs Research Service and Department of Internal Medicine, University of Iowa Carver College of Medicine , Iowa City, Iowa
| |
Collapse
|
52
|
Mota F, Fotinou C, Rana RR, Chan AWE, Yelland T, Arooz MT, O'Leary AP, Hutton J, Frankel P, Zachary I, Selwood D, Djordjevic S. Architecture and hydration of the arginine-binding site of neuropilin-1. FEBS J 2018; 285:1290-1304. [PMID: 29430837 PMCID: PMC5947257 DOI: 10.1111/febs.14405] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/26/2018] [Accepted: 02/06/2018] [Indexed: 12/15/2022]
Abstract
Neuropilin‐1 (NRP1) is a transmembrane co‐receptor involved in binding interactions with variety of ligands and receptors, including receptor tyrosine kinases. Expression of NRP1 in several cancers correlates with cancer stages and poor prognosis. Thus, NRP1 has been considered a therapeutic target and is the focus of multiple drug discovery initiatives. Vascular endothelial growth factor (VEGF) binds to the b1 domain of NRP1 through interactions between the C‐terminal arginine of VEGF and residues in the NRP1‐binding site including Tyr297, Tyr353, Asp320, Ser346 and Thr349. We obtained several complexes of the synthetic ligands and the NRP1‐b1 domain and used X‐ray crystallography and computational methods to analyse atomic details and hydration profile of this binding site. We observed side chain flexibility for Tyr297 and Asp320 in the six new high‐resolution crystal structures of arginine analogues bound to NRP1. In addition, we identified conserved water molecules in binding site regions which can be targeted for drug design. The computational prediction of the VEGF ligand‐binding site hydration map of NRP1 was in agreement with the experimentally derived, conserved hydration structure. Displacement of certain conserved water molecules by a ligand's functional groups may contribute to binding affinity, whilst other water molecules perform as protein–ligand bridges. Our report provides a comprehensive description of the binding site for the peptidic ligands’ C‐terminal arginines in the b1 domain of NRP1, highlights the importance of conserved structural waters in drug design and validates the utility of the computational hydration map prediction method in the context of neuropilin. Database The structures were deposited to the PDB with accession numbers PDB ID: 5IJR, 5IYY, 5JHK, 5J1X, 5JGQ, 5JGI.
Collapse
Affiliation(s)
- Filipa Mota
- Magnus Life, Magnus Life Science, London, UK
| | | | | | - A W Edith Chan
- Wolfson Institute for Biomedical Research, University College London, UK
| | | | - Mohamed T Arooz
- The Institute of Structural and Molecular Biology, University College London, UK
| | | | | | - Paul Frankel
- Magnus Life, Magnus Life Science, London, UK.,Centre for Cardiovascular Biology & Medicine, BHF Laboratories at University College London, UK
| | - Ian Zachary
- Centre for Cardiovascular Biology & Medicine, BHF Laboratories at University College London, UK
| | - David Selwood
- Wolfson Institute for Biomedical Research, University College London, UK
| | - Snezana Djordjevic
- The Institute of Structural and Molecular Biology, University College London, UK
| |
Collapse
|
53
|
Luo H, Zhao F, Zhang F, Liu N. Influence of amygdalin on PDG, IGF and PDGFR expression in HSC-T6 cells. Exp Ther Med 2018; 15:3693-3698. [PMID: 29556259 PMCID: PMC5844102 DOI: 10.3892/etm.2018.5886] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 05/15/2017] [Indexed: 01/13/2023] Open
Abstract
The aim of the present study was to elucidate the mechanism of amygdalin treatment on reducing liver fibrosis by investigating its role in regulating the expression level of platelet-derived growth factor (PDGF), insulin-like growth factor (IGF) and PDGF receptor (PDGFR) in the hepatic stellate cell (HSC)-T6 line. HSC-T6 cells were used as an in vitro model and randomly assigned into four groups: control, high-dose amygdalin, mid-dose amygdalin and low-dose amygdalin. Following amygdalin treatment, compared with the control, a high dose of amygdalin significantly suppressed the mRNA expression of PDGF and IGF (each P<0.05), whereas moderate and low doses showed no significant effect, relatively low doses of amygdalin are not sufficient to transfer signals to its receptor. The high-dose amygdalin and low-dose amygdalin displayed suppressed protein expression of PDGF at 24, 48 and 72 h, with the high-dose group exhibiting the most marked suppression at all three time points. By reducing the transcription of PDGF and IGF mRNA and the expression of PDGF protein, amygdalin decreased the synthesis and release of PDGF and IGF, thereby reducing the influence of PDGF and IGF on HSCs, thus protecting the liver from fibrosis.
Collapse
Affiliation(s)
- Huanhuan Luo
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Fang Zhao
- Department of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Fengxue Zhang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Ni Liu
- Department of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|
54
|
Human airway smooth muscle cell proliferation from asthmatics is negatively regulated by semaphorin3A. Oncotarget 2018; 7:80238-80251. [PMID: 27791986 PMCID: PMC5348316 DOI: 10.18632/oncotarget.12884] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 10/06/2016] [Indexed: 12/11/2022] Open
Abstract
Airway smooth muscle (ASM) hyperplasia is a key feature of airway remodeling in development of lung diseases such as asthma. Anomalous proliferation of ASM cells directly contributes to ASM hyperplasia. However, the molecular mechanisms controlling ASM cell proliferation are not completely understood. Semaphorins are versatile regulators of various cellular processes including cell growth and proliferation. The role of semaphorins in ASM cell proliferation has remained to be addressed. Here, we report that semaphorin 3A (Sema3A) receptor, neuropilin 1 (Nrp1), is expressed on human ASM cells (HASMC) isolated from healthy and asthmatic donors and treatment of these cells with exogenous Sema3A inhibits growth factor-induced proliferation. Sema3A inhibitory effect on HASMC proliferation is associated with decreased tyrosine phosphorylation of PDGFR, downregulation of Rac1 activation, STAT3 and GSK-3β phosphorylation. Bronchial sections from severe asthmatics displayed immunoreactivity of Nrp1, suggestive of functional contribution of Sema3A-Nrp1 axis in airway remodeling. Together, our data suggest Sema3A-Nrp1 signaling as a novel regulatory pathway of ASM hyperplasia.
Collapse
|
55
|
Drinane MC, Yaqoob U, Yu H, Luo F, Greuter T, Arab JP, Kostallari E, Verma VK, Maiers J, De Assuncao TM, Simons M, Mukhopadhyay D, Kisseleva T, Brenner DA, Urrutia R, Lomberk G, Gao Y, Ligresti G, Tschumperlin DJ, Revzin A, Cao S, Shah VH. Synectin promotes fibrogenesis by regulating PDGFR isoforms through distinct mechanisms. JCI Insight 2017; 2:92821. [PMID: 29263300 DOI: 10.1172/jci.insight.92821] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 11/22/2017] [Indexed: 12/30/2022] Open
Abstract
The scaffold protein synectin plays a critical role in the trafficking and regulation of membrane receptor pathways. As platelet-derived growth factor receptor (PDGFR) is essential for hepatic stellate cell (HSC) activation and liver fibrosis, we sought to determine the role of synectin on the PDGFR pathway and development of liver fibrosis. Mice with deletion of synectin from HSC were found to be protected from liver fibrosis. mRNA sequencing revealed that knockdown of synectin in HSC demonstrated reductions in the fibrosis pathway of genes, including PDGFR-β. Chromatin IP assay of the PDGFR-β promoter upon synectin knockdown revealed a pattern of histone marks associated with decreased transcription, dependent on p300 histone acetyltransferase. Synectin knockdown was found to downregulate PDGFR-α protein levels, as well, but through an alternative mechanism: protection from autophagic degradation. Site-directed mutagenesis revealed that ubiquitination of specific PDGFR-α lysine residues was responsible for its autophagic degradation. Furthermore, functional studies showed decreased PDGF-dependent migration and proliferation of HSC after synectin knockdown. Finally, human cirrhotic livers demonstrated increased synectin protein levels. This work provides insight into differential transcriptional and posttranslational mechanisms of synectin regulation of PDGFRs, which are critical to fibrogenesis.
Collapse
Affiliation(s)
- Mary C Drinane
- Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Usman Yaqoob
- Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Haibin Yu
- Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA.,Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Fanghong Luo
- Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA.,Medical College, Xiamen University, Xiamen, Fujian, China
| | - Thomas Greuter
- Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Juan P Arab
- Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Enis Kostallari
- Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Vikas K Verma
- Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jessica Maiers
- Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Thiago Milech De Assuncao
- Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Michael Simons
- Section of Cardiovascular Medicine, Yale University, New Haven, Connecticut, USA
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, Florida, USA
| | | | | | - Raul Urrutia
- Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Gwen Lomberk
- Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Yandong Gao
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Giovanni Ligresti
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Alexander Revzin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Sheng Cao
- Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Vijay H Shah
- Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
56
|
Xu ZC, Shen HX, Chen C, Ma L, Li WZ, Wang L, Geng ZM. Neuropilin-1 promotes primary liver cancer progression by potentiating the activity of hepatic stellate cells. Oncol Lett 2017; 15:2245-2251. [PMID: 29434931 PMCID: PMC5777127 DOI: 10.3892/ol.2017.7541] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 07/20/2017] [Indexed: 01/06/2023] Open
Abstract
As a co-receptor for a variety of cytokines, neuropilin-1 (NRP-1) is detectable in primary liver cancer (PLC) cells. Previous studies determined that silencing of NRP-1 expression attenuated the proliferation, migration and invasion of PLC cells. An increasing number of studies have highlighted the crucial role of the tumor microenvironment in the pathogenesis of cancer. Hepatic stellate cells (HSCs) are one of the major interstitial cell types present in the liver tumor microenvironment, and can promote the proliferation, migration and invasion of PLC cells. It remains unknown whether NRP-1 can promote PLC progression by potentiating the activity of HSCs. In the present study, the expression of NRP-1, and its co-expression with platelet-derived growth factor receptor-β, in HSCs was detected via immunofluorescence. LX2 HSCs were transfected with NRP-1 short hairpin RNA lentiviral vectors and their proliferation was observed. The proliferation, migration and invasion of HepG2 cells co-cultured with LX2 cells were also observed. Finally, LX2 and HepG2 cells were co-injected into nude mice as subcutaneous xenografts, and the tumor growth and α-smooth muscle actin expression levels were observed. NRP-1 knockdown attenuated LX2 cell activation, with concomitant downregulation of HepG2 cell proliferation, migration and invasion (P<0.05). Thus, silencing of NRP-1 expression may inhibit the activation of HSCs, as well as the proliferation, migration and invasion of PLC cells. The mechanism underlying the inhibition of PLC cell progression is possibly mediated by the inhibition of HSC activation, reduction of transforming growth factor-β1 levels in the conditioned medium and downregulation of extracellular signal-related kinase activity in PLC cells. Thus, NRP-1 could be regarded as a potential gene therapy target for PLC.
Collapse
Affiliation(s)
- Zhi-Chao Xu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Hao-Xin Shen
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Chen Chen
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Li Ma
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wen-Zhi Li
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Lin Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Zhi-Min Geng
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
57
|
Abstract
Recent studies suggest that neuropilin-1 (NRP-1) promotes angiogenesis mainly via VEGF and its receptors. It promotes tumorigenesis via formation of the NRP-1/ VEGF (vascular endothelial growth factor)/VEGFR2 (vascular endothelial growth factor receptor 2) complex. In addition to VEGF and its receptors, NRP-1 also binds with other growth factors such as platelet-derived growth factor (PDGF) and platelet-derived growth factor receptor (PDGFR). PDGF plays important roles in cellular proliferation and, in particular, blood vessel formation. Moreover, recent studies show that NRP-1 promotes angiogenesis via the NRP-1-ABL pathway, but independent of VEGF-VEGFR2. RAD51 is a protein involved in the signaling pathways of NRP1-ABL and PDGF(R), the expression of which is positively associated with cell radioresistance and chemoresistance. NRP-1 activates the signaling pathways of ABL and PDGF(R) to upregulate RAD51, which induces resistance to radiotherapy and chemotherapy in cancer cells. Furthermore, NRP-1 activates the tumor microenvironment by binding with fibronectin and activating ABL, thereby promoting tumor growth. Inhibition of NRP-1 may overcome the limitations of individually inhibiting the VEGF-VEGFR2 pathway in cancer therapy and provide new ideas for cancer treatment. Therefore, we review the role of NRP-1 in VEGF-VEGFR2-independent tumorigenesis.
Collapse
Affiliation(s)
- Chenxi Hu
- Department of Radiation Oncology, Lianyungang First People's Hospital, No.182, Tongguan Road, Lianyungang City, 222002, Jiangsu Province, China
| | - Xiaodong Jiang
- Department of Radiation Oncology, Lianyungang First People's Hospital, No.182, Tongguan Road, Lianyungang City, 222002, Jiangsu Province, China.
| |
Collapse
|
58
|
Neuropilin-1 is upregulated by Wnt/β-catenin signaling and is important for mammary stem cells. Sci Rep 2017; 7:10941. [PMID: 28887477 PMCID: PMC5591238 DOI: 10.1038/s41598-017-11287-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 08/21/2017] [Indexed: 12/21/2022] Open
Abstract
Wnt/β-catenin signaling is instrumental for the development of mammary gland and the properties of mammary stem cells (MaSCs). The Wnt signaling downstream effectors that engage in regulating MaSCs have not been extensively studied. Here, we report that Neuropilin-1 (Nrp1) expression is induced by Wnt/β-catenin signaling in MaSCs, and its function is critical for the activity of MaSCs. Nrp1 is particularly expressed in MaSCs that are marked by the expression of Protein C Receptor (Procr). Knockdown of Nrp1 by shRNA diminishes MaSCs' in vitro colony formation and in vivo mammary gland reconstitution ability. Similar results are seen when antagonizing Nrp1 using a dominant negative peptide. In genetic experiments, deletion of Nrp1 results in delay of mammary development. In addition, knockdown of Nrp1 inhibits MMTV-Wnt1 tumor growth in xenograft. Our data demonstrate that Nrp1 is critical for mammary development and tumorigenesis, revealing new insights into MaSC regulation and targeting stem cells in treatment of breast cancer.
Collapse
|
59
|
Glycosylation-dependent galectin-1/neuropilin-1 interactions promote liver fibrosis through activation of TGF-β- and PDGF-like signals in hepatic stellate cells. Sci Rep 2017; 7:11006. [PMID: 28887481 PMCID: PMC5591297 DOI: 10.1038/s41598-017-11212-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 08/21/2017] [Indexed: 01/12/2023] Open
Abstract
Concomitant expressions of glycan-binding proteins and their bound glycans regulate many pathophysiologic processes, but this issue has not been addressed in liver fibrosis. Activation of hepatic stellate cells (HSCs) is a rate-limiting step in liver fibrosis and is an important target for liver fibrosis therapy. We previously reported that galectin (Gal)-1, a β-galactoside-binding protein, regulates myofibroblast homeostasis in oral carcinoma and wound healing, but the role of Gal-1 in HSC migration and activation is unclear. Herein, we report that Gal-1 and its bound glycans were highly expressed in fibrotic livers and activated HSCs. The cell-surface glycome of activated HSCs facilitated Gal-1 binding, which upon recognition of the N-glycans on neuropilin (NRP)-1, activated platelet-derived growth factor (PDGF)- and transforming growth factor (TGF)-β-like signals to promote HSC migration and activation. In addition, blocking endogenous Gal-1 expression suppressed PDGF- and TGF-β1-induced signaling, migration, and gene expression in HSCs. Methionine and choline-deficient diet (MCD)-induced collagen deposition and HSC activation were attenuated in Gal-1-null mice compared to wild-type mice. In summary, we concluded that glycosylation-dependent Gal-1/NRP-1 interactions activate TGF-β and PDGF-like signaling to promote the migration and activation of HSCs. Therefore, targeting Gal-1/NRP-1 interactions could be developed into liver fibrosis therapy.
Collapse
|
60
|
Paired related homeobox protein 1 regulates PDGF-induced chemotaxis of hepatic stellate cells in liver fibrosis. J Transl Med 2017; 97:1020-1032. [PMID: 28737764 DOI: 10.1038/labinvest.2017.65] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/16/2017] [Accepted: 05/03/2017] [Indexed: 01/27/2023] Open
Abstract
Activation of the platelet-derived growth factor (PDGF)/PDGF beta receptor (PDGFβR) axis has a critical role in liver fibrosis. However, the mechanisms that regulate the PDGF signaling are yet to be elucidated. The present study demonstrates that paired related homeobox protein 1 (Prrx1) is involved in PDGF-dependent hepatic stellate cell (HSCs) migration via modulation of the expression of metalloproteinases MMP2 and MMP9. PDGF elevated the level of Prrx1 through the activation of ERK/Sp1 and PI3K/Akt/Ets1 pathways. In vivo, an adenoviral-mediated Prrx1 shRNA administration attenuated liver fibrosis in thioacetamide-induced fibrotic models. These studies reveal a role of Prrx1 as a modulator of PDGF-dependent signaling in HSCs, and inhibiting its expression may offer a therapeutic approach for hepatic fibrosis.
Collapse
|
61
|
吴 兰, 刘 文. 肝纤维化逆转机制的研究进展及治疗概况. Shijie Huaren Xiaohua Zazhi 2017; 25:2123-2132. [DOI: 10.11569/wcjd.v25.i23.2123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
肝纤维化是肝脏对慢性损伤的一种修复反应, 多是持续性肝脏损伤或纤维化刺激因子刺激产生的共有病理改变, 是一项严重的全球性健康难题. 近年来临床研究发现, 由病毒性肝炎造成肝纤维化或肝硬化的患者, 在成功接受病毒性肝炎治疗后, 其肝纤维化甚至肝硬化发生了逆转现象. 因此研究和了解肝纤维化逆转的机制有利于发现新的针对肝纤维化的治疗靶向. 本文就近年来有关肝纤维化逆转机制的研究以及治疗概况作一综述, 以期为肝纤维化的研究提供帮助.
Collapse
|
62
|
Maiers JL, Kostallari E, Mushref M, de Assuncao TM, Li H, Huebert RC, Cao S, Malhi H, Shah VH, Shah VH. The unfolded protein response mediates fibrogenesis and collagen I secretion through regulating TANGO1 in mice. Hepatology 2017; 65:983-998. [PMID: 28039913 PMCID: PMC5319908 DOI: 10.1002/hep.28921] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 09/21/2016] [Accepted: 10/26/2016] [Indexed: 12/14/2022]
Abstract
UNLABELLED Fibrogenesis encompasses the deposition of matrix proteins, such as collagen I, by hepatic stellate cells (HSCs) that culminates in cirrhosis. Fibrogenic signals drive transcription of procollagen I, which enters the endoplasmic reticulum (ER), is trafficked through the secretory pathway, and released to generate extracellular matrix. Alternatively, disruption of procollagen I ER export could activate the unfolded protein response (UPR) and drive HSC apoptosis. Using a small interfering RNA screen, we identified Transport and Golgi organization 1 (TANGO1) as a potential participant in collagen I secretion. We investigated the role of TANGO1 in procollagen I secretion in HSCs and liver fibrogenesis. Depletion of TANGO1 in HSCs blocked collagen I secretion without affecting other matrix proteins. Disruption of secretion led to procollagen I retention within the ER, induction of the UPR, and HSC apoptosis. In wild-type (WT) HSCs, both TANGO1 and the UPR were induced by transforming growth factor β (TGFβ). As the UPR up-regulates proteins involved in secretion, we studied whether TANGO1 was a target of the UPR. We found that UPR signaling is responsible for up-regulating TANGO1 in response to TGFβ, and this mechanism is mediated by the transcription factor X-box binding protein 1 (XBP1). In vivo, murine and human cirrhotic tissue displayed increased TANGO1 messenger RNA levels. Finally, TANGO1+/- mice displayed less hepatic fibrosis compared to WT mice in two separate murine models: CCl4 and bile duct ligation. CONCLUSION Loss of TANGO1 leads to procollagen I retention in the ER, which promotes UPR-mediated HSC apoptosis. TANGO1 regulation during HSC activation occurs through a UPR-dependent mechanism that requires the transcription factor, XBP1. Finally, TANGO1 is critical for fibrogenesis through mediating HSC homeostasis. The work reveals a unique role for TANGO1 and the UPR in facilitating collagen I secretion and fibrogenesis. (Hepatology 2017;65:983-998).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Vijay H. Shah
- Division of Gastroenterology and Hepatology; Mayo Clinic; Rochester MN
| |
Collapse
|
63
|
Muhl L, Folestad EB, Gladh H, Wang Y, Moessinger C, Jakobsson L, Eriksson U. Neuropilin 1 binds platelet-derived growth factor (PDGF)-D and is a co-receptor in PDGF-D/PDGF receptor β signaling. J Cell Sci 2017; 130:1365-1378. [DOI: 10.1242/jcs.200493] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/19/2017] [Indexed: 01/09/2023] Open
Abstract
Platelet-derived growth factor (PDGF)-D is a PDGF receptor β (PDGFRβ) specific ligand implicated in a number of pathological conditions, such as cardiovascular disease and cancer, but its biological function remains incompletely understood.
In this study, we demonstrate that PDGF-D binds directly to NRP1, with the requirement of the C-terminal Arg residue of PDGF-D. Stimulation with PDGF-D, but not PDGF-B, induced PDGFRβ/NRP1 complex formation in fibroblasts. Additionally, PDGF-D induced translocation of NRP1 to cell-cell junctions in endothelial cells, independent of PDGFRβ, altering the availability of NRP1 for VEGF-A/VEGF receptor 2 signaling. PDGF-D showed differential effects on pericyte behavior in ex vivo sprouting assays, compared to PDGF-B. Furthermore, PDGF-D induced PDGFRβ/NRP1 interaction in the trans-configuration between endothelial cells and pericytes.
In summary, we show that NRP1 can act as a co-receptor for PDGF-D in PDGFRβ signaling, possibly implicated in intercellular communication in the vascular wall.
Collapse
Affiliation(s)
- Lars Muhl
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Scheeles väg 2, A3:P4, S-17177 Stockholm, Sweden
| | - Erika Bergsten Folestad
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Scheeles väg 2, A3:P4, S-17177 Stockholm, Sweden
| | - Hanna Gladh
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Scheeles väg 2, A3:P4, S-17177 Stockholm, Sweden
| | - Yixin Wang
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Scheeles väg 2, A3:P4, S-17177 Stockholm, Sweden
| | - Christine Moessinger
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Scheeles väg 2, A3:P4, S-17177 Stockholm, Sweden
| | - Lars Jakobsson
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Scheeles väg 2, A3:P4, S-17177 Stockholm, Sweden
| | - Ulf Eriksson
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Scheeles väg 2, A3:P4, S-17177 Stockholm, Sweden
| |
Collapse
|
64
|
Chen YN, Hsu SL, Liao MY, Liu YT, Lai CH, Chen JF, Nguyen MHT, Su YH, Chen ST, Wu LC. Ameliorative Effect of Curcumin-Encapsulated Hyaluronic Acid-PLA Nanoparticles on Thioacetamide-Induced Murine Hepatic Fibrosis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 14:ijerph14010011. [PMID: 28029125 PMCID: PMC5295262 DOI: 10.3390/ijerph14010011] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/21/2016] [Accepted: 12/15/2016] [Indexed: 12/13/2022]
Abstract
In this study, we developed curcumin-encapsulated hyaluronic acid–polylactide nanoparticles (CEHPNPs) to be used for liver fibrosis amelioration. CD44, the hyaluronic acid (HA) receptor, is upregulated on the surface of cancer cells and on activated hepatic stellate cells (aHSCs) rather than normal cells. CEHPNPs could bind to CD44 and be internalized effectively through endocytosis to release curcumin, a poor water-soluble liver protective agent. Thus, CEHPNPs were potentially not only improving drug efficiency, but also targeting aHSCs. HA and polylactide (PLA) were crosslinked by adipic acid dihydrazide (ADH). The synthesis of HA–PLA was monitored by Fourier-transform infrared (FTIR) and Nuclear Magnetic Resonance (NMR). The average particle size was approximately 60–70 nm as determined by dynamic light scattering (DLS) and scanning electron microscope (SEM). Zeta potential was around −30 mV, which suggested a good stability of the particles. This drug delivery system induced significant aHSC cell death without affecting quiescent HSCs, hepatic epithelial, and parenchymal cells. This system reduced drug dosage without sacrificing therapeutic efficacy. The cytotoxicity IC50 (inhibitory concentration at 50%) value of CEHPNPs was approximately 1/30 to that of the free drug treated group in vitro. Additionally, the therapeutic effects of CEHPNPs were as effective as the group treated with the same curcumin dose intensity in vivo. CEHPNPs significantly reduced serum aspartate transaminase/alanine transaminase (ALT/AST) significantly, and attenuated tissue collagen production and cell proliferation as revealed by liver biopsy. Conclusively, the advantages of superior biosafety and satisfactory therapeutic effect mean that CEHPNPs hold great potential for treating hepatic fibrosis.
Collapse
Affiliation(s)
- Yu-Nong Chen
- Department Applied Chemistry, College of Science and Technology, National Chi Nan University, Nantou, Puli 545, Taiwan.
| | - Shih-Lan Hsu
- Department Medical Education & Research, Taichung Veterans General Hospital, Taichung 40705, Taiwan.
| | - Ming-Yuan Liao
- Department Chemistry, College of Sciences, National Chung Hsing University, Taichung 402, Taiwan.
| | - Yi-Ting Liu
- Department Applied Chemistry, College of Science and Technology, National Chi Nan University, Nantou, Puli 545, Taiwan.
| | - Chien-Hung Lai
- Department Applied Chemistry, College of Science and Technology, National Chi Nan University, Nantou, Puli 545, Taiwan.
| | - Ji-Feng Chen
- Department Applied Chemistry, College of Science and Technology, National Chi Nan University, Nantou, Puli 545, Taiwan.
| | - Mai-Huong Thi Nguyen
- Department Applied Chemistry, College of Science and Technology, National Chi Nan University, Nantou, Puli 545, Taiwan.
| | - Yung-Hsiang Su
- Department Applied Chemistry, College of Science and Technology, National Chi Nan University, Nantou, Puli 545, Taiwan.
| | - Shang-Ting Chen
- Department Applied Chemistry, College of Science and Technology, National Chi Nan University, Nantou, Puli 545, Taiwan.
| | - Li-Chen Wu
- Department Applied Chemistry, College of Science and Technology, National Chi Nan University, Nantou, Puli 545, Taiwan.
| |
Collapse
|
65
|
Wnuk M, Anderegg MA, Graber WA, Buergy R, Fuster DG, Djonov V. Neuropilin1 regulates glomerular function and basement membrane composition through pericytes in the mouse kidney. Kidney Int 2016; 91:868-879. [PMID: 27988210 DOI: 10.1016/j.kint.2016.10.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/04/2016] [Accepted: 10/06/2016] [Indexed: 12/28/2022]
Abstract
Neuropilin1 (Nrp1) is a co-receptor best known to regulate the development of endothelial cells and is a target of anticancer therapies. However, its role in other vascular cells including pericytes is emergent. The kidney is an organ with high pericyte density and cancer patients develop severe proteinuria following administration of NRP1B-neutralizing antibody combined with bevacizumab. Therefore, we investigated whether Nrp1 regulates glomerular capillary integrity after completion of renal development using two mouse models; tamoxifen-inducible NG2Cre to delete Nrp1 specifically in pericytes and administration of Nrp1-neutralizing antibodies. Specific Nrp1 deletion in pericytes did not affect pericyte number but mutant mice developed hematuria with glomerular basement membrane defects. Despite foot process effacement, albuminuria was absent and expression of podocyte proteins remained unchanged upon Nrp1 deletion. Additionally, these mice displayed dilation of the afferent arteriole and glomerular capillaries leading to glomerular hyperfiltration. Nidogen-1 mRNA was downregulated and collagen4α3 mRNA was upregulated with no significant effect on the expression of other basement membrane genes in the mutant mice. These features were phenocopied by treating wild-type mice with Nrp1-neutralizing antibodies. Thus, our results reveal a postdevelopmental role of Nrp1 in renal pericytes as an important regulator of glomerular basement membrane integrity. Furthermore, our study offers novel mechanistic insights into renal side effects of Nrp1 targeting cancer therapies.
Collapse
Affiliation(s)
- Monika Wnuk
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Manuel A Anderegg
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | | | - Regula Buergy
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Daniel G Fuster
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland; Division of Nephrology, Hypertension, and Clinical Pharmacology, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, Bern, Switzerland.
| |
Collapse
|
66
|
Tumor Necrosis Factor-Like Weak Inducer of Apoptosis Promotes Hepatic Stellate Cells Migration via Canonical NF-κB/MMP9 Pathway. PLoS One 2016; 11:e0167658. [PMID: 27907201 PMCID: PMC5132172 DOI: 10.1371/journal.pone.0167658] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/17/2016] [Indexed: 12/18/2022] Open
Abstract
In the liver, the signal and function of tumor necrosis factor-like weak inducer of apoptosis (TWEAK) have mainly been assessed in association with liver regeneration. However, the effects of TWEAK on liver fibrosis have not been fully elucidated. To investigate the effects of TWEAK on human hepatic stellate cells (HSCs) and to explore the relevant potential mechanisms, human HSCs line-LX-2 were cultured with TWEAK. Cell migration was detected by transwell assay; cell viability was evaluated by Cell Counting Kit-8; the expression of MMP1, MMP2, MMP3, MMP7, MMP8, MMP9, MMP10, MMP11, MMP12, MMP13 gene was identified by quantitative real-time polymerase chain reaction and western blotting; the activity of matrix metalloproteinases (MMPs) was tested by enzyme-linked immuno sorbent assay; small interfering RNA transfection was applied for depletion of MMP9 and p65. The result of transwell assay revealed that TWEAK promoted LX-2 migration. Subsequently, our data testified that the expression and activity of MMP9 was induced by TWEAK in LX-2 cells, which enhanced the migration. Furthermore, our findings showed that TWEAK upregulated the phosphorylation of IκBα and p65 protein to increase MMP9 expression in LX-2 cells. Meanwhile, the alpha-smooth muscle actin, vimentin and desmin expression were upregulated following TWEAK treatment. The results in the present study revealed that TWEAK promotes HSCs migration via canonical NF-κB/MMP9 pathway, which possibly provides a molecular basis targeting TWEAK for the therapy of liver fibrosis.
Collapse
|
67
|
Neufeld G, Mumblat Y, Smolkin T, Toledano S, Nir-Zvi I, Ziv K, Kessler O. The role of the semaphorins in cancer. Cell Adh Migr 2016; 10:652-674. [PMID: 27533782 PMCID: PMC5160032 DOI: 10.1080/19336918.2016.1197478] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 05/19/2016] [Accepted: 05/30/2016] [Indexed: 12/16/2022] Open
Abstract
The semaphorins were initially characterized as axon guidance factors, but have subsequently been implicated also in the regulation of immune responses, angiogenesis, organ formation, and a variety of additional physiological and developmental functions. The semaphorin family contains more then 20 genes divided into 7 subfamilies, all of which contain the signature sema domain. The semaphorins transduce signals by binding to receptors belonging to the neuropilin or plexin families. Additional receptors which form complexes with these primary semaphorin receptors are also frequently involved in semaphorin signaling. Recent evidence suggests that semaphorins also fulfill important roles in the etiology of multiple forms of cancer. Some semaphorins have been found to function as bona-fide tumor suppressors and to inhibit tumor progression by various mechanisms while other semaphorins function as inducers and promoters of tumor progression.
Collapse
Affiliation(s)
- Gera Neufeld
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Yelena Mumblat
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Tatyana Smolkin
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Shira Toledano
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Inbal Nir-Zvi
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Keren Ziv
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Ofra Kessler
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
68
|
Neufeld G, Mumblat Y, Smolkin T, Toledano S, Nir-Zvi I, Ziv K, Kessler O. The semaphorins and their receptors as modulators of tumor progression. Drug Resist Updat 2016; 29:1-12. [DOI: 10.1016/j.drup.2016.08.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 07/31/2016] [Accepted: 08/23/2016] [Indexed: 12/16/2022]
|
69
|
Hendricks C, Dubail J, Brohée L, Delforge Y, Colige A, Deroanne C. A Novel Physiological Glycosaminoglycan-Deficient Splice Variant of Neuropilin-1 Is Anti-Tumorigenic In Vitro and In Vivo. PLoS One 2016; 11:e0165153. [PMID: 27798666 PMCID: PMC5087894 DOI: 10.1371/journal.pone.0165153] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 10/09/2016] [Indexed: 01/13/2023] Open
Abstract
Neuropilin-1 (NRP1) is a transmembrane protein acting as a co-receptor for several growth factors and interacting with other proteins such as integrins and plexins/semaphorins. It is involved in axonal development, angiogenesis and cancer progression. Its primary mRNA is subjected to alternative splicing mechanisms generating different isoforms, some of which lack the transmembrane domain and display antagonist properties to NRP1 full size (FS). NRP1 is further post-translationally modified by the addition of glycosaminoglycans (GAG) side chains through an O-glycosylation site at serine612. Here, we characterized a novel splice variant which has never been investigated, NRP1-Δ7, differing from the NRP1-FS by a deletion of 7 amino acids occurring two residues downstream of the O-glycosylation site. This short sequence contains two aspartic residues critical for efficient glycosylation. As expected, the high molecular weight products appearing as a smear in SDS-PAGE and reflecting the presence of GAG in NRP1-FS were undetectable in the NRP1-Δ7 protein. NRP1-Δ7 mRNA was found expressed at an appreciable level, between 10 and 30% of the total NRP1, by various cells lines and tissues from human and murine origin. To investigate the biological properties of this isoform, we generated prostatic (PC3) and breast (MDA-MB-231) cancer cells able to express recombinant NRP1-FS or NRP1-Δ7 in a doxycycline-inducible manner. Cells with increased expression of NRP1-Δ7 were characterized in vitro by a significant reduction of proliferation, migration and anchorage-independent growth, while NRP1-FS had the expected opposite “pro-tumoral” effects. Upon VEGF-A165 treatment, a lower internalization rate was observed for NRP1-Δ7 than for NRP1-FS. Finally, we showed that NRP1-Δ7 inhibited growth of prostatic tumors and their vascularization in vivo. This report identifies NRP1-Δ7 as a splice variant displaying anti-tumorigenic properties in vitro and in vivo, emphasizing the need to consider this isoform in future studies.
Collapse
Affiliation(s)
- Céline Hendricks
- Laboratory of Connective Tissues Biology, Tour de Pathologie, GIGA-Cancer, University of Liège, Sart-Tilman, Belgium
| | - Johanne Dubail
- Laboratory of Connective Tissues Biology, Tour de Pathologie, GIGA-Cancer, University of Liège, Sart-Tilman, Belgium
| | - Laura Brohée
- Laboratory of Connective Tissues Biology, Tour de Pathologie, GIGA-Cancer, University of Liège, Sart-Tilman, Belgium
| | - Yves Delforge
- Laboratory of Connective Tissues Biology, Tour de Pathologie, GIGA-Cancer, University of Liège, Sart-Tilman, Belgium
| | - Alain Colige
- Laboratory of Connective Tissues Biology, Tour de Pathologie, GIGA-Cancer, University of Liège, Sart-Tilman, Belgium
- * E-mail: (AC)
| | - Christophe Deroanne
- Laboratory of Connective Tissues Biology, Tour de Pathologie, GIGA-Cancer, University of Liège, Sart-Tilman, Belgium
| |
Collapse
|
70
|
Wang Y, Cao Y, Mangalam AK, Guo Y, LaFrance-Corey RG, Gamez JD, Atanga PA, Clarkson BD, Zhang Y, Wang E, Angom RS, Dutta K, Ji B, Pirko I, Lucchinetti CF, Howe CL, Mukhopadhyay D. Neuropilin-1 modulates interferon-γ-stimulated signaling in brain microvascular endothelial cells. J Cell Sci 2016; 129:3911-3921. [PMID: 27591257 DOI: 10.1242/jcs.190702] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/31/2016] [Indexed: 02/06/2023] Open
Abstract
Inflammatory response of blood-brain barrier (BBB) endothelial cells plays an important role in pathogenesis of many central nervous system inflammatory diseases, including multiple sclerosis; however, the molecular mechanism mediating BBB endothelial cell inflammatory response remains unclear. In this study, we first observed that knockdown of neuropilin-1 (NRP1), a co-receptor of several structurally diverse ligands, suppressed interferon-γ (IFNγ)-induced C-X-C motif chemokine 10 expression and activation of STAT1 in brain microvascular endothelial cells in a Rac1-dependent manner. Moreover, endothelial-specific NRP1-knockout mice, VECadherin-Cre-ERT2/NRP1flox/flox mice, showed attenuated disease progression during experimental autoimmune encephalomyelitis, a mouse neuroinflammatory disease model. Detailed analysis utilizing histological staining, quantitative PCR, flow cytometry and magnetic resonance imaging demonstrated that deletion of endothelial NRP1 suppressed neuron demyelination, altered lymphocyte infiltration, preserved BBB function and decreased activation of the STAT1-CXCL10 pathway. Furthermore, increased expression of NRP1 was observed in endothelial cells of acute multiple sclerosis lesions. Our data identify a new molecular mechanism of brain microvascular endothelial inflammatory response through NRP1-IFNγ crosstalk that could be a potential target for intervention of endothelial cell dysfunction in neuroinflammatory diseases.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Ying Cao
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Ashutosh K Mangalam
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa city, IA 52242, USA
| | - Yong Guo
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Jeffrey D Gamez
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | - Yuebo Zhang
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Enfeng Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Ramcharan Singh Angom
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Kirthica Dutta
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Baoan Ji
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Istvan Pirko
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Charles L Howe
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| |
Collapse
|
71
|
Cinar R, Iyer MR, Liu Z, Cao Z, Jourdan T, Erdelyi K, Godlewski G, Szanda G, Liu J, Park JK, Mukhopadhyay B, Rosenberg AZ, Liow JS, Lorenz RG, Pacher P, Innis RB, Kunos G. Hybrid inhibitor of peripheral cannabinoid-1 receptors and inducible nitric oxide synthase mitigates liver fibrosis. JCI Insight 2016; 1:87336. [PMID: 27525312 DOI: 10.1172/jci.insight.87336] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Liver fibrosis, a consequence of chronic liver injury and a way station to cirrhosis and hepatocellular carcinoma, lacks effective treatment. Endocannabinoids acting via cannabinoid-1 receptors (CB1R) induce profibrotic gene expression and promote pathologies that predispose to liver fibrosis. CB1R antagonists produce opposite effects, but their therapeutic development was halted due to neuropsychiatric side effects. Inducible nitric oxide synthase (iNOS) also promotes liver fibrosis and its underlying pathologies, but iNOS inhibitors tested to date showed limited therapeutic efficacy in inflammatory diseases. Here, we introduce a peripherally restricted, orally bioavailable CB1R antagonist, which accumulates in liver to release an iNOS inhibitory leaving group. In mouse models of fibrosis induced by CCl4 or bile duct ligation, the hybrid CB1R/iNOS antagonist surpassed the antifibrotic efficacy of the CB1R antagonist rimonabant or the iNOS inhibitor 1400W, without inducing anxiety-like behaviors or CB1R occupancy in the CNS. The hybrid inhibitor also targeted CB1R-independent, iNOS-mediated profibrotic pathways, including increased PDGF, Nlrp3/Asc3, and integrin αvβ6 signaling, as judged by its ability to inhibit these pathways in cnr1-/- but not in nos2-/- mice. Additionally, it was able to slow fibrosis progression and to attenuate established fibrosis. Thus, dual-target peripheral CB1R/iNOS antagonists have therapeutic potential in liver fibrosis.
Collapse
Affiliation(s)
| | | | - Ziyi Liu
- Laboratory of Physiologic Studies and
| | - Zongxian Cao
- Laboratory of Oxidative Stress and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, Washington, DC, USA
| | | | - Katalin Erdelyi
- Laboratory of Oxidative Stress and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, Washington, DC, USA
| | | | | | - Jie Liu
- Laboratory of Physiologic Studies and
| | | | | | - Avi Z Rosenberg
- Kidney Diseases Section, National Institute on Diabetes, Digestive, and Kidney Diseases, Washington, DC, USA.,Children's National Medical Center, Washington, DC, USA
| | - Jeih-San Liow
- Molecular Imaging Branch, National Institute on Mental Health, NIH, Bethesda, Maryland, USA
| | - Robin G Lorenz
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Pal Pacher
- Laboratory of Oxidative Stress and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, Washington, DC, USA
| | - Robert B Innis
- Molecular Imaging Branch, National Institute on Mental Health, NIH, Bethesda, Maryland, USA
| | | |
Collapse
|
72
|
Garbuzenko DV, Arefyev NO, Belov DV. Mechanisms of adaptation of the hepatic vasculature to the deteriorating conditions of blood circulation in liver cirrhosis. World J Hepatol 2016; 8:665-672. [PMID: 27326313 PMCID: PMC4909428 DOI: 10.4254/wjh.v8.i16.665] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 04/25/2016] [Accepted: 05/27/2016] [Indexed: 02/06/2023] Open
Abstract
PubMed, EMBASE, Orphanet, MIDLINE, Google Scholar and Cochrane Library were searched for articles published between 1983 and 2015. Relevant articles were selected by using the following terms: “Liver cirrhosis”, “Endothelial dysfunction”, “Sinusoidal remodeling”, “Intrahepatic angiogenesis” and “Pathogenesis of portal hypertension”. Then the reference lists of identified articles were searched for other relevant publications as well. Besides gross hepatic structural disorders related to diffuse fibrosis and formation of regenerative nodules, the complex morphofunctional rearrangement of the hepatic microvascular bed and intrahepatic angiogenesis also play important roles in hemodynamic disturbances in liver cirrhosis. It is characterized by endothelial dysfunction and impaired paracrine interaction between activated stellate hepatocytes and sinusoidal endotheliocytes, sinusoidal remodeling and capillarization, as well as development of the collateral microcirculation. In spite of the fact that complex morphofunctional rearrangement of the hepatic microvascular bed and intrahepatic angiogenesis in liver cirrhosis are the compensatory-adaptive reaction to the deteriorating conditions of blood circulation, they contribute to progression of disease and development of serious complications, in particular, related to portal hypertension.
Collapse
|
73
|
Greuter T, Shah VH. Hepatic sinusoids in liver injury, inflammation, and fibrosis: new pathophysiological insights. J Gastroenterol 2016; 51:511-9. [PMID: 26939970 DOI: 10.1007/s00535-016-1190-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 02/16/2016] [Indexed: 02/04/2023]
Abstract
Changes of hepatic sinusoids are crucial in the pathogenesis of liver cirrhosis and portal hypertension. Liver injury leads to distinct morphological abnormalities such as loss of sinusoidal fenestration, vasoconstriction, and angiogenesis as well as molecular changes. Communication between the two key cells in this hepatic microenvironment-hepatic stellate cells (HSC) and sinusoidal endothelial cells (SEC)-has been studied for many years and several canonical pathways have been elucidated, such as decreased eNOS activity or increased PDGF and TGF-β production leading to activation and migration of HSC. In recent studies, alternative pathways of intercellular communication in liver diseases have been described such as cell-derived extracellular vesicles called exosomes, which deliver cell compounds to their target cells. Moreover, such extracellular vesicles may link injury to inflammation in alcoholic hepatitis. While inflammation leading to liver fibrosis has been studied in detail, in some circumstances pathways other than the known canonical inflammatory pathways may contribute to hepatic fibrogenesis. For example, in congestive hepatopathy, sinusoidal dilatation and fibrosis have been shown to be mediated by non-inflammatory mechanisms and associated with sinusoidal thrombi. A recently developed murine model further enables experimental studies of this disease entity. Increasing knowledge about these alternative disease pathways in liver injury, inflammation, and fibrosis may reveal possible target molecules for future therapies. This article builds upon a seminar given at the recent 3rd JSGE International Topic Conference in Sendai, Japan, and reviews the areas outlined above.
Collapse
Affiliation(s)
- Thomas Greuter
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Vijay H Shah
- Gastroenterology Research Unit, Department of Gastroenterology and Hepatology, Mayo Clinic and Foundation, 200 First St. SW, Rochester, MN, 55905, USA.
| |
Collapse
|
74
|
Janardhanan R, Kilari S, Leof EB, Misra S. Hyperglycemia-Induced Modulation of the Physiognomy and Angiogenic Potential of Fibroblasts Mediated by Matrix Metalloproteinase-2: Implications for Venous Stenosis Formation Associated with Hemodialysis Vascular Access in Diabetic Milieu. J Vasc Res 2016; 52:334-46. [PMID: 26985676 PMCID: PMC8965729 DOI: 10.1159/000443886] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 01/07/2016] [Indexed: 11/19/2022] Open
Abstract
Purpose: It is hypothesized that venous stenosis formation associated with hemodialysis vascular-access failure is caused by hypoxia-mediated fibroblast-to-myofibroblast differentiation accompanied by proliferation and migration, and that diabetic patients have worse clinical outcomes. The aim of this study was to determine the functional and gene expression outcomes of matrix metalloproteinase-2 (Mmp-2) silencing in fibroblasts cultured under hyperglycemia and euglycemia with hypoxic and normoxic stimuli. Materials and Methods: AKR-2B fibroblasts were stably transduced using lentivirus-mediated shRNA-Mmp-2 or scrambled controls and subjected to hypoxia or normoxia under hyperglycemic or euglycemic conditions for 24 and 72 h. Gene expression of vascular endothelial growth factor-A (Vegf-A), Vegfr-1, Mmp-2, Mmp-9 and tissue inhibitors of matrix metalloproteinases (Timps) were determined by RT-PCR. Collagen I and IV secretion and cellular proliferation and migration were determined. Results: Under hyperglycemic conditions, there is a significant reduction in the average gene expression of Vegf-A and Mmp-9, with an increase in Timp-1 at 24 h of hypoxia (p < 0.05) in Mmp-2-silenced fibroblasts when compared to controls. In addition, there is a decrease in collagen I and IV secretion and cellular migration. The euglycemic cells were able to reverse these findings. Conclusion: These findings demonstrate the rationale for using anti-Mmp-2 therapy in dialysis patients with hemodialysis vascular access in helping to reduce stenosis formation.
Collapse
Affiliation(s)
- Rajiv Janardhanan
- Amity Institute of Public Health, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | | | | | | |
Collapse
|
75
|
Geesala R, Bar N, Dhoke NR, Basak P, Das A. Data on bone marrow stem cells delivery using porous polymer scaffold. Data Brief 2015; 6:221-8. [PMID: 26862563 PMCID: PMC4707184 DOI: 10.1016/j.dib.2015.12.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/01/2015] [Accepted: 12/07/2015] [Indexed: 01/13/2023] Open
Abstract
Low bioavailability and/or survival at the injury site of transplanted stem cells necessitate its delivery using a biocompatible, biodegradable cell delivery vehicle. In this dataset, we report the application of a porous biocompatible, biodegradable polymer network that successfully delivers bone marrow stem cells (BMSCs) at the wound site of a murine excisional splint wound model. In this data article, we are providing the additional data of the reference article “Porous polymer scaffold for on-site delivery of stem cells – protects from oxidative stress and potentiates wound tissue repair” (Ramasatyaveni et al., 2016) [1]. This data consists of the characterization of bone marrow stem cells (BMSCs) showing the pluripotency and stem cell-specific surface markers. Image analysis of the cellular penetration into PEG–PU polymer network and the mechanism via enzymatic activation of MMP-2 and MMP-13 are reported. In addition, we provide a comparison of various routes of transplantation-mediated BMSCs engraftment in the murine model using bone marrow transplantation chimeras. Furthermore, we included in this dataset the engraftment of BMSCs expressing Sca-1+Lin−CD133+CD90.2+ in post-surgery day 10.
Collapse
Affiliation(s)
- Ramasatyaveni Geesala
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India; Academy of Scientific & Innovative Research (AcSIR), 2 Rafi Marg, New Delhi 110001, India
| | - Nimai Bar
- Nanomaterials Laboratory, Division of Inorganic and Physical Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India; Academy of Scientific & Innovative Research (AcSIR), 2 Rafi Marg, New Delhi 110001, India
| | - Neha R Dhoke
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India; Academy of Scientific & Innovative Research (AcSIR), 2 Rafi Marg, New Delhi 110001, India
| | - Pratyay Basak
- Nanomaterials Laboratory, Division of Inorganic and Physical Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India; Academy of Scientific & Innovative Research (AcSIR), 2 Rafi Marg, New Delhi 110001, India
| | - Amitava Das
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India; Academy of Scientific & Innovative Research (AcSIR), 2 Rafi Marg, New Delhi 110001, India
| |
Collapse
|
76
|
Wang R, Ding Q, Yaqoob U, de Assuncao TM, Verma VK, Hirsova P, Cao S, Mukhopadhyay D, Huebert RC, Shah VH. Exosome Adherence and Internalization by Hepatic Stellate Cells Triggers Sphingosine 1-Phosphate-dependent Migration. J Biol Chem 2015; 290:30684-96. [PMID: 26534962 DOI: 10.1074/jbc.m115.671735] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Indexed: 12/13/2022] Open
Abstract
Exosomes are cell-derived extracellular vesicles thought to promote intercellular communication by delivering specific content to target cells. The aim of this study was to determine whether endothelial cell (EC)-derived exosomes could regulate the phenotype of hepatic stellate cells (HSCs). Initial microarray studies showed that fibroblast growth factor 2 induced a 2.4-fold increase in mRNA levels of sphingosine kinase 1 (SK1). Exosomes derived from an SK1-overexpressing EC line increased HSC migration 3.2-fold. Migration was not conferred by the dominant negative SK1 exosome. Incubation of HSCs with exosomes was also associated with an 8.3-fold increase in phosphorylation of AKT and 2.5-fold increase in migration. Exosomes were found to express the matrix protein and integrin ligand fibronectin (FN) by Western blot analysis and transmission electron microscopy. Blockade of the FN-integrin interaction with a CD29 neutralizing antibody or the RGD peptide attenuated exosome-induced HSC AKT phosphorylation and migration. Inhibition of endocytosis with transfection of dynamin siRNA, the dominant negative dynamin GTPase construct Dyn2K44A, or the pharmacological inhibitor Dynasore significantly attenuated exosome-induced AKT phosphorylation. SK1 levels were increased in serum exosomes derived from mice with experimental liver fibrosis, and SK1 mRNA levels were up-regulated 2.5-fold in human liver cirrhosis patient samples. Finally, S1PR2 inhibition protected mice from CCl4-induced liver fibrosis. Therefore, EC-derived SK1-containing exosomes regulate HSC signaling and migration through FN-integrin-dependent exosome adherence and dynamin-dependent exosome internalization. These findings advance our understanding of EC/HSC cross-talk and identify exosomes as a potential target to attenuate pathobiology signals.
Collapse
Affiliation(s)
- Ruisi Wang
- From the Departments of Molecular Pharmacology and Experimental Therapeutics and
| | - Qian Ding
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55902
| | - Usman Yaqoob
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55902
| | - Thiago M de Assuncao
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55902
| | - Vikas K Verma
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55902
| | - Petra Hirsova
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55902
| | - Sheng Cao
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55902
| | | | - Robert C Huebert
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55902
| | - Vijay H Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55902
| |
Collapse
|
77
|
TGF-β in Hepatic Stellate Cell Activation and Liver Fibrogenesis: Updated. CURRENT PATHOBIOLOGY REPORTS 2015. [DOI: 10.1007/s40139-015-0089-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
78
|
Pellet-Many C, Mehta V, Fields L, Mahmoud M, Lowe V, Evans I, Ruivo J, Zachary I. Neuropilins 1 and 2 mediate neointimal hyperplasia and re-endothelialization following arterial injury. Cardiovasc Res 2015; 108:288-98. [PMID: 26410366 PMCID: PMC4614691 DOI: 10.1093/cvr/cvv229] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 09/18/2015] [Indexed: 01/01/2023] Open
Abstract
Aims Neuropilins 1 and 2 (NRP1 and NRP2) play crucial roles in endothelial cell migration contributing to angiogenesis and vascular development. Both NRPs are also expressed by cultured vascular smooth muscle cells (VSMCs) and are implicated in VSMC migration stimulated by PDGF-BB, but it is unknown whether NRPs are relevant for VSMC function in vivo. We investigated the role of NRPs in the rat carotid balloon injury model, in which endothelial denudation and arterial stretch induce neointimal hyperplasia involving VSMC migration and proliferation. Methods and results NRP1 and NRP2 mRNAs and proteins increased significantly following arterial injury, and immunofluorescent staining revealed neointimal NRP expression. Down-regulation of NRP1 and NRP2 using shRNA significantly reduced neointimal hyperplasia following injury. Furthermore, inhibition of NRP1 by adenovirally overexpressing a loss-of-function NRP1 mutant lacking the cytoplasmic domain (ΔC) reduced neointimal hyperplasia, whereas wild-type (WT) NRP1 had no effect. NRP-targeted shRNAs impaired, while overexpression of NRP1 WT and NRP1 ΔC enhanced, arterial re-endothelialization 14 days after injury. Knockdown of either NRP1 or NRP2 inhibited PDGF-BB-induced rat VSMC migration, whereas knockdown of NRP2, but not NRP1, reduced proliferation of cultured rat VSMC and neointimal VSMC in vivo. NRP knockdown also reduced the phosphorylation of PDGFα and PDGFβ receptors in rat VSMC, which mediate VSMC migration and proliferation. Conclusion NRP1 and NRP2 play important roles in the regulation of neointimal hyperplasia in vivo by modulating VSMC migration (via NRP1 and NRP2) and proliferation (via NRP2), independently of the role of NRPs in re-endothelialization.
Collapse
Affiliation(s)
- Caroline Pellet-Many
- Division of Medicine, Centre for Cardiovascular Biology and Medicine, University College London, 5 University Street, London WC1E 6JF, UK
| | - Vedanta Mehta
- Division of Medicine, Centre for Cardiovascular Biology and Medicine, University College London, 5 University Street, London WC1E 6JF, UK
| | - Laura Fields
- Division of Medicine, Centre for Cardiovascular Biology and Medicine, University College London, 5 University Street, London WC1E 6JF, UK
| | - Marwa Mahmoud
- Division of Medicine, Centre for Cardiovascular Biology and Medicine, University College London, 5 University Street, London WC1E 6JF, UK
| | - Vanessa Lowe
- Division of Medicine, Centre for Cardiovascular Biology and Medicine, University College London, 5 University Street, London WC1E 6JF, UK
| | - Ian Evans
- Division of Medicine, Centre for Cardiovascular Biology and Medicine, University College London, 5 University Street, London WC1E 6JF, UK
| | - Jorge Ruivo
- Division of Medicine, Centre for Cardiovascular Biology and Medicine, University College London, 5 University Street, London WC1E 6JF, UK
| | - Ian Zachary
- Division of Medicine, Centre for Cardiovascular Biology and Medicine, University College London, 5 University Street, London WC1E 6JF, UK
| |
Collapse
|
79
|
Abstract
Neuropilins (NRPs) are highly conserved transmembrane glycoproteins that possess pleiotropic functions. Neuropilin-1 (NRP1) and its homologue neuropilin-2 interact as coreceptors with both class 3 semaphorins and vascular endothelial growth factor and are involved in neuronal guidance and angiogenesis, respectively. The contribution of NRPs to tumor angiogenesis has been highlighted in previous studies, leading to the development of NRP antagonists as novel anti-angiogenesis therapies. However, more recent studies have demonstrated that NRPs have a much broader spectrum of activity in the integration of different pathways in physiological and pathological conditions. A few studies investigated the role of NRPs in both malignant and non-neoplastic liver diseases. In normal liver, NRP1 is expressed in hepatic stellate cells and liver sinusoidal endothelial cells. NRP1 expression in hepatocytes has been associated with malignant transformation and may play an important role in tumor behavior. A contribution of NRPs in sinusoidal remodeling during liver regeneration has been also noted. Studies in chronic liver diseases have indicated that, besides its influence on angiogenesis, NRP1 might contribute to the progression of liver fibrosis owing to its effects on other growth factors, including transforming growth factor β1. As a result, NRP1 has been identified as a promising therapeutic target for future antifibrotic therapies based on the simultaneous blockade of multiple growth factor signaling pathways. In this review, the structure of NRPs and their interactions with various ligands and associated cell surface receptors are described briefly. The current understanding of the roles of the NRPs in liver diseases including tumors, regeneration and fibrogenesis, are also summarized.
Collapse
|
80
|
Wang X, Zhao W, Wang J, Shi K, Qin X, Kong Q, Wang G, Mu L, Li H, Sun B, Shi L. Bone Marrow Stromal Cells Inhibit the Activation of Liver Cirrhotic Fat-Storing Cells via Adrenomedullin Secretion. Dig Dis Sci 2015; 60:1325-34. [PMID: 25445161 DOI: 10.1007/s10620-014-3423-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 10/30/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND Cirrhosis, or liver fibrosis, which is mainly triggered by cirrhosis fat-storing cells (CFSCs) activation, has traditionally been considered an irreversible disease. However, recent observations indicate that even advanced fibrosis is still reversible by removing the causative agents. Anti-fibrotic effects of bone marrow-derived stromal cells (BMSCs) have been demonstrated by inhibiting CFSCs via cytokines secretion; however, the mechanisms are still unclear. AIMS The purpose of this study was to explore the underlying mechanisms by which BMSCs modulate the function of activated CFSCs. METHODS After the co-culture of CFSCs with BMSCs supernatants with or without the addition of recombinant rat adrenomedullin (AM)/AM-specific siRNA, western blot analysis was mainly used to detect the differences of relative protein expression on CFSCs. RESULTS BMSC-secreted adrenomedullin (AM) effectively inhibited the proliferation and activation of CFSCs by suppressing the expression of Ang II and its binding receptor, AT1, which resulted in a reduction of p47-phox formation. CONCLUSIONS Our data suggested that BMSCs inhibited CFSC activation in vitro via the AM-Ang II-p47-phox signaling pathway, and since CFSC activation is an essential part of hepatic fibrosis process, this inhibition by BMSCs implies us new insights into the potential treatment of hepatic fibrosis via BMSCs.
Collapse
Affiliation(s)
- Xiaodong Wang
- Emergency Department, The 2nd Affiliated Hospital of Harbin Medical University, 148 Bao Jian Road, Nangang District, Harbin, 150086, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Elpek G&O. Angiogenesis and liver fibrosis. World J Hepatol 2015; 7:377-391. [PMID: 25848465 PMCID: PMC4381164 DOI: 10.4254/wjh.v7.i3.377] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/27/2014] [Accepted: 12/01/2014] [Indexed: 02/06/2023] Open
Abstract
Recent data indicate that hepatic angiogenesis, regardless of the etiology, takes place in chronic liver diseases (CLDs) that are characterized by inflammation and progressive fibrosis. Because anti-angiogenic therapy has been found to be efficient in the prevention of fibrosis in experimental models of CLDs, it is suggested that blocking angiogenesis could be a promising therapeutic option in patients with advanced fibrosis. Consequently, efforts are being directed to revealing the mechanisms involved in angiogenesis during the progression of liver fibrosis. Literature evidences indicate that hepatic angiogenesis and fibrosis are closely related in both clinical and experimental conditions. Hypoxia is a major inducer of angiogenesis together with inflammation and hepatic stellate cells. These profibrogenic cells stand at the intersection between inflammation, angiogenesis and fibrosis and play also a pivotal role in angiogenesis. This review mainly focuses to give a clear view on the relevant features that communicate angiogenesis with progression of fibrosis in CLDs towards the-end point of cirrhosis that may be translated into future therapies. The pathogenesis of hepatic angiogenesis associated with portal hypertension, viral hepatitis, non-alcoholic fatty liver disease and alcoholic liver disease are also discussed to emphasize the various mechanisms involved in angiogenesis during liver fibrogenesis.
Collapse
|
82
|
Ohsaka A, Hirota-Komatsu S, Araki M, Komatsu N. Platelet-derived growth factor receptors form complexes with neuropilin-1 during megakaryocytic differentiation of thrombopoietin-dependent UT-7/TPO cells. Biochem Biophys Res Commun 2015; 459:443-9. [PMID: 25744030 DOI: 10.1016/j.bbrc.2015.02.124] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 02/21/2015] [Indexed: 01/13/2023]
Abstract
Neuropilin-1 (NRP-1) is involved in angiogenesis, but the role of NRP-1 in megakaryocytopoiesis is not yet fully understood. In this study, we investigated whether thrombopoietin (TPO) regulates the expression of platelet-derived growth factor (PDGF) and its receptors (PDGFRs) on TPO-dependent UT-7/TPO cells and whether PDGFRs and NRP-1 on UT-7/TPO cells form complexes during megakaryocytic differentiation. When UT-7/TPO cells were starved of TPO for 24 h and then stimulated with 5 ng/ml TPO, the expression of PDGF-B, PDGFRα, and PDGFRβ were significantly up-regulated after the addition of TPO. TPO also induced tyrosine phosphorylation of PDGFRα but not PDGFRβ, and promoted the formation of PDGFRαβ heterodimer complexes. Furthermore, megakaryocytic differentiation of UT-7/TPO cells on treatment with phorbol myristate acetate (PMA) was accompanied by a marked up-regulation of PDGFRβ and NRP-1 protein expression, complex formation between PDGFRs and NRP-1, PDGFRαβ heterodimer complexes, and an increase in PDGF-BB-binding activity. Immunocytochemistry confirmed complex formation between PDGFRs and NRP-1 and PDGFRαβ heterodimer complexes in PMA-differentiated UT-7/TPO cells. Our observations suggest that NRP-1 is involved in megakaryocytopoiesis through complex formation with PDGFRs, and that NRP-1-PDGFR-complexes may contribute to effective cellular functions mediated by TPO and PDGF in megakaryocytic cells.
Collapse
Affiliation(s)
- Akimichi Ohsaka
- Department of Transfusion Medicine and Stem Cell Regulation, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| | - Satoko Hirota-Komatsu
- Department of Transfusion Medicine and Stem Cell Regulation, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Marito Araki
- Department of Transfusion Medicine and Stem Cell Regulation, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Norio Komatsu
- Department of Hematology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
83
|
Wang HB, Zhang H, Zhang JP, Li Y, Zhao B, Feng GK, Du Y, Xiong D, Zhong Q, Liu WL, Du H, Li MZ, Huang WL, Tsao SW, Hutt-Fletcher L, Zeng YX, Kieff E, Zeng MS. Neuropilin 1 is an entry factor that promotes EBV infection of nasopharyngeal epithelial cells. Nat Commun 2015; 6:6240. [PMID: 25670642 PMCID: PMC4339892 DOI: 10.1038/ncomms7240] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 01/08/2015] [Indexed: 02/07/2023] Open
Abstract
Epstein-Barr virus (EBV) is implicated as an aetiological factor in B lymphomas and nasopharyngeal carcinoma. The mechanisms of cell-free EBV infection of nasopharyngeal epithelial cells remain elusive. EBV glycoprotein B (gB) is the critical fusion protein for infection of both B and epithelial cells, and determines EBV susceptibility of non-B cells. Here we show that neuropilin 1 (NRP1) directly interacts with EBV gB(23-431). Either knockdown of NRP1 or pretreatment of EBV with soluble NRP1 suppresses EBV infection. Upregulation of NRP1 by overexpression or EGF treatment enhances EBV infection. However, NRP2, the homologue of NRP1, impairs EBV infection. EBV enters nasopharyngeal epithelial cells through NRP1-facilitated internalization and fusion, and through macropinocytosis and lipid raft-dependent endocytosis. NRP1 partially mediates EBV-activated EGFR/RAS/ERK signalling, and NRP1-dependent receptor tyrosine kinase (RTK) signalling promotes EBV infection. Taken together, NRP1 is identified as an EBV entry factor that cooperatively activates RTK signalling, which subsequently promotes EBV infection in nasopharyngeal epithelial cells.
Collapse
Affiliation(s)
- Hong-Bo Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China
| | - Hua Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China
| | - Jing-Ping Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China
| | - Yan Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China
| | - Bo Zhao
- Department of Medicine and Microbiology and Molecular Genetics, Channing Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Guo-Kai Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China
| | - Yong Du
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China
| | - Dan Xiong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China
| | - Qian Zhong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China
| | - Wan-Li Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China
| | - Huamao Du
- College of Biotechnology, Southwest University, Chongqing 400715, People's Republic of China
| | - Man-Zhi Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China
| | - Wen-Lin Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China
| | - Sai Wah Tsao
- Department of Anatomy and Center for Cancer Research, University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Lindsey Hutt-Fletcher
- Department of Microbiology and Immunology, Louisiana State University, Health Science Center, Shreveport, Louisiana 71130, USA
| | - Yi-Xin Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China
| | - Elliott Kieff
- Department of Medicine and Microbiology and Molecular Genetics, Channing Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China
| |
Collapse
|
84
|
Kang N, Shah VH, Urrutia R. Membrane-to-Nucleus Signals and Epigenetic Mechanisms for Myofibroblastic Activation and Desmoplastic Stroma: Potential Therapeutic Targets for Liver Metastasis? Mol Cancer Res 2014; 13:604-12. [PMID: 25548101 DOI: 10.1158/1541-7786.mcr-14-0542] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/05/2014] [Indexed: 12/21/2022]
Abstract
Cancer-associated fibroblasts (CAFs), the most abundant cells in the tumor microenvironment (TME), are a key source of the extracellular matrix (ECM) that constitutes the desmoplastic stroma. Through remodeling of the reactive tumor stroma and paracrine actions, CAFs regulate cancer initiation, progression, and metastasis, as well as tumor resistance to therapies. The CAFs found in stroma-rich primary hepatocellular carcinomas (HCC) and liver metastases of primary cancers of other organs predominantly originate from hepatic stellate cells (HSTC), which are pericytes associated with hepatic sinusoids. During tumor invasion, HSTCs transdifferentiate into myofibroblasts in response to paracrine signals emanating from either tumor cells or a heterogeneous cell population within the hepatic tumor microenvironment. Mechanistically, HSTC-to-myofibroblast transdifferentiation, also known as, HSTC activation, requires cell surface receptor activation, intracellular signal transduction, gene transcription, and epigenetic signals, which combined ultimately modulate distinct gene expression profiles that give rise to and maintain a new phenotype. The current review defines a paradigm that explains how HSTCs are activated into CAFs to promote liver metastasis. Furthermore, a focus on the most relevant intracellular signaling networks and epigenetic mechanisms that control HSTC activation is provided. Finally, we discuss the feasibility of targeting CAF/activated HSTCs, in isolation or in conjunction with targeting cancer cells, which constitutes a promising and viable therapeutic approach for the treatment of primary stroma-rich liver cancers and liver metastasis.
Collapse
Affiliation(s)
- Ningling Kang
- Tumor Microenvironment and Metastasis Section, The Hormel Institute, University of Minnesota, Austin, Minnesota.
| | - Vijay H Shah
- GI Research Unit, Division of Gastroenterology and Hepatology, Epigenomics Translational Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Raul Urrutia
- GI Research Unit, Division of Gastroenterology and Hepatology, Epigenomics Translational Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
85
|
Yoshida S, Ikenaga N, Liu SB, Peng ZW, Chung J, Sverdlov DY, Miyamoto M, Kim YO, Ogawa S, Arch RH, Schuppan D, Popov Y. Extrahepatic platelet-derived growth factor-β, delivered by platelets, promotes activation of hepatic stellate cells and biliary fibrosis in mice. Gastroenterology 2014; 147:1378-92. [PMID: 25173753 DOI: 10.1053/j.gastro.2014.08.038] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 08/20/2014] [Accepted: 08/23/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Platelet-derived growth factor-β (PDGFB) is a mitogen for hepatic stellate cells (HSCs). We studied the cellular sources of PDGFB and the effects of a high-affinity monoclonal antibody against PDGFB (MOR8457) in mouse models of biliary fibrosis. METHODS Cellular sources of PDGFB were identified using quantitative reverse-transcription polymerase chain reaction, biochemical, and immunohistologic methods. Mice with advanced biliary fibrosis, MDR2(Abcb4)-null mice, and C57Bl/6 (control) mice were placed on 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-supplemented diets and were given weekly intraperitoneal injections of MOR8457. Platelets were depleted from MDR2-null mice by injection of an antibody against CD41, or inhibited with diets containing low-dose aspirin. Liver tissues were collected and analyzed by quantitative reverse-transcription PCR and histologic and biochemical analyses. RESULTS Levels of PDGFB protein, but not messenger RNA, were increased in fibrotic livers of MDR2-null mice, compared with control mice. Platelet clusters were detected in the hepatic endothelium, in close proximity to HSCs, and were identified as a source of PDGFB protein in MDR2-null mice. Levels of the PDGFB were increased in serum samples from patients with early stages of liver fibrosis of various etiologies (F1-2, n = 16; P < .05), compared with nonfibrotic liver tissue (F0, n = 12). Depletion of platelets from MDR2-null mice normalized hepatic levels of PDGFB within 48 hours, reducing levels of a marker of HSC activation (α-smooth muscle actin) and expression of genes that promote fibrosis. Diets supplemented with low-dose aspirin reduced circulating serum and hepatic levels of PDGFB and significantly reduced progression of fibrosis in MDR2-null mice over 1 year. MOR8457 produced a dose-dependent decrease in liver fibrosis in MDR2-null mice, reducing collagen deposition by 45% and expression of fibrosis-associated genes by 50%, compared with mice given a control antibody. In vitro, platelets activated freshly isolated HSCs (induction of α-smooth muscle actin and fibrosis-associated genes) via a PDGFB-dependent mechanism. MOR8457 also reduced liver fibrosis in mice placed on DDC-supplemented diets. CONCLUSIONS Platelets produce PDGFB to activate HSC and promote fibrosis in MDR2-null mice and mice on DDC-supplemented diets. Antiplatelet therapy or selective inhibition of PDGFB might reduce biliary fibrosis in patients with liver disease.
Collapse
Affiliation(s)
- Shuhei Yoshida
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Naoki Ikenaga
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Susan B Liu
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Zhen-Wei Peng
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Jeanhee Chung
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Deanna Y Sverdlov
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Makoto Miyamoto
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Yong Ook Kim
- Institute of Translational Immunology, University Medical Center, Mainz, Germany
| | | | | | - Detlef Schuppan
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; Institute of Translational Immunology, University Medical Center, Mainz, Germany
| | - Yury Popov
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
86
|
Mecollari V, Nieuwenhuis B, Verhaagen J. A perspective on the role of class III semaphorin signaling in central nervous system trauma. Front Cell Neurosci 2014; 8:328. [PMID: 25386118 PMCID: PMC4209881 DOI: 10.3389/fncel.2014.00328] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 09/29/2014] [Indexed: 01/07/2023] Open
Abstract
Traumatic injury of the central nervous system (CNS) has severe impact on the patients’ quality of life and initiates many molecular and cellular changes at the site of insult. Traumatic CNS injury results in direct damage of the axons of CNS neurons, loss of myelin sheaths, destruction of the surrounding vascular architecture and initiation of an immune response. Class III semaphorins (SEMA3s) are present in the neural scar and influence a wide range of molecules and cell types in and surrounding the injured tissue. SEMA3s and their receptors, neuropilins (NRPs) and plexins (PLXNs) were initially studied because of their involvement in repulsive axon guidance. To date, SEMA3 signaling is recognized to be of crucial importance for re-vascularization, the immune response and remyelination. The purpose of this review is to summarize and discuss how SEMA3s modulate these processes that are all crucial components of the tissue response to injury. Most of the functions for SEMA3s are achieved through their binding partners NRPs, which are also co-receptors for a variety of other molecules implicated in the above processes. The most notable ligands are members of the vascular endothelial growth factor (VEGF) family and the transforming growth factor family. Therefore, a second aim is to highlight the overlapping or competing signaling pathways that are mediated through NRPs in the same processes. In conclusion, we show that the role of SEMA3s goes beyond inhibiting axonal regeneration, since they are also critical modulators of re-vascularization, the immune response and re-myelination.
Collapse
Affiliation(s)
- Vasil Mecollari
- Laboratory for Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience Amsterdam, Netherlands
| | - Bart Nieuwenhuis
- Laboratory for Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience Amsterdam, Netherlands
| | - Joost Verhaagen
- Laboratory for Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience Amsterdam, Netherlands ; Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam Amsterdam, Netherlands
| |
Collapse
|
87
|
Nasarre P, Gemmill RM, Drabkin HA. The emerging role of class-3 semaphorins and their neuropilin receptors in oncology. Onco Targets Ther 2014; 7:1663-87. [PMID: 25285016 PMCID: PMC4181631 DOI: 10.2147/ott.s37744] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The semaphorins, discovered over 20 years ago, are a large family of secreted or transmembrane and glycophosphatidylinositol -anchored proteins initially identified as axon guidance molecules crucial for the development of the nervous system. It has now been established that they also play important roles in organ development and function, especially involving the immune, respiratory, and cardiovascular systems, and in pathological disorders, including cancer. During tumor progression, semaphorins can have both pro- and anti-tumor functions, and this has created complexities in our understanding of these systems. Semaphorins may affect tumor growth and metastases by directly targeting tumor cells, as well as indirectly by interacting with and influencing cells from the micro-environment and vasculature. Mechanistically, semaphorins, through binding to their receptors, neuropilins and plexins, affect pathways involved in cell adhesion, migration, invasion, proliferation, and survival. Importantly, neuropilins also act as co-receptors for several growth factors and enhance their signaling activities, while class 3 semaphorins may interfere with this. In this review, we focus on the secreted class 3 semaphorins and their neuropilin co-receptors in cancer, including aspects of their signaling that may be clinically relevant.
Collapse
Affiliation(s)
- Patrick Nasarre
- Division of Hematology-Oncology, The Hollings Cancer Center and Medical University of South Carolina, Charleston, SC, USA
| | - Robert M Gemmill
- Division of Hematology-Oncology, The Hollings Cancer Center and Medical University of South Carolina, Charleston, SC, USA
| | - Harry A Drabkin
- Division of Hematology-Oncology, The Hollings Cancer Center and Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
88
|
Chen CF, Feng X, Liao HY, Jin WJ, Zhang J, Wang Y, Gong LL, Liu JJ, Yuan XH, Zhao BB, Zhang D, Chen GF, Wan Y, Guo J, Yan HP, He YW. Regulation of T cell proliferation by JMJD6 and PDGF-BB during chronic hepatitis B infection. Sci Rep 2014; 4:6359. [PMID: 25219359 PMCID: PMC4163673 DOI: 10.1038/srep06359] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 07/24/2014] [Indexed: 01/31/2023] Open
Abstract
T cell functional exhaustion during chronic hepatitis B virus (HBV) infection may contribute to the failed viral clearance; however, the underlying molecular mechanisms remain largely unknown. Here we demonstrate that jumonji domain-containing protein 6 (JMJD6) is a potential regulator of T cell proliferation during chronic HBV infection. The expression of JMJD6 was reduced in T lymphocytes in chronic hepatitis B (CHB) patients, and this reduction in JMJD6 expression was associated with impaired T cell proliferation. Moreover, silencing JMJD6 expression in primary human T cells impaired T cell proliferation. We found that JMJD6 promotes T cell proliferation by suppressing the mRNA expression of CDKN3. Furthermore, we have identified platelet derived growth factor-BB (PDGF-BB) as a regulator of JMJD6 expression. PDGF-BB downregulates JMJD6 expression and inhibits the proliferation of human primary T cells. Importantly, the expression levels of JMJD6 and PDGF-BB in lymphocytes from CHB patients were correlated with the degree of liver damage and the outcome of chronic HBV infection treatment. Our results demonstrate that PDGF-BB and JMJD6 regulate T cell function during chronic HBV infection and may provide insights for the treatment strategies for CHB patients.
Collapse
Affiliation(s)
- Cai-Feng Chen
- 1] MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, People's Republic of China [2]
| | - Xia Feng
- 1] Center for Infection and Immunity, YouAn Hospital, The Beijing Capital Medical University, Beijing, China [2]
| | - Hui-Yu Liao
- 1] Center for Infection and Immunity, YouAn Hospital, The Beijing Capital Medical University, Beijing, China [2]
| | - Wen-Jing Jin
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, People's Republic of China
| | - Jian Zhang
- Diagnosis and Treatment Center of Liver Fibrosis, 302 Hospital, Beijing, China
| | - Yu Wang
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Lu-Lu Gong
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, People's Republic of China
| | - Jing-Jun Liu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, People's Republic of China
| | - Xiao-Hui Yuan
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, People's Republic of China
| | - Bin-Bin Zhao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, People's Republic of China
| | - Ding Zhang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, People's Republic of China
| | - Guo-Feng Chen
- Diagnosis and Treatment Center of Liver Fibrosis, 302 Hospital, Beijing, China
| | - Ying Wan
- Biomedical Analysis Center, The Third Military Medical University, Chongqing, China
| | - Jian Guo
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Hui-Ping Yan
- Center for Infection and Immunity, YouAn Hospital, The Beijing Capital Medical University, Beijing, China
| | - You-Wen He
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
89
|
Lin YT, Chen JS, Wu MH, Hsieh IS, Liang CH, Hsu CL, Hong TM, Chen YL. Galectin-1 accelerates wound healing by regulating the neuropilin-1/Smad3/NOX4 pathway and ROS production in myofibroblasts. J Invest Dermatol 2014; 135:258-268. [PMID: 25007042 DOI: 10.1038/jid.2014.288] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/20/2014] [Accepted: 06/04/2014] [Indexed: 01/05/2023]
Abstract
Myofibroblasts have a key role in wound healing by secreting growth factors and chemoattractants to create new substrates and proteins in the extracellular matrix. We have found that galectin-1, a β-galactose-binding lectin involved in many physiological functions, induces myofibroblast activation; however, the mechanism remains unclear. Here, we reveal that galectin-1-null (Lgals1(-/-)) mice exhibited a delayed cutaneous wound healing response. Galectin-1 induced myofibroblast activation, migration, and proliferation by triggering intracellular reactive oxygen species (ROS) production. A ROS-producing protein, NADPH oxidase 4 (NOX4), was upregulated by galectin-1 through the neuropilin-1/Smad3 signaling pathway in myofibroblasts. Subcutaneous injection of galectin-1 into wound areas accelerated the healing of general and pathological (streptozotocin-induced diabetes mellitus) wounds and decreased the mortality of diabetic mice with skin wounds. These findings indicate that galectin-1 is a key regulator of wound repair that has therapeutic potential for pathological or imperfect wound healing.
Collapse
Affiliation(s)
- Yueh-Te Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jhih-Sian Chen
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Heng Wu
- Institute for Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - I-Shan Hsieh
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chen-Hsien Liang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Lung Hsu
- Department of Internal Medicine, Division of Hematology and Oncology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Tse-Ming Hong
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Yuh-Ling Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
90
|
Elpek G&O. Cellular and molecular mechanisms in the pathogenesis of liver fibrosis: An update. World J Gastroenterol 2014; 20:7260-7276. [PMID: 24966597 PMCID: PMC4064072 DOI: 10.3748/wjg.v20.i23.7260] [Citation(s) in RCA: 264] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 02/08/2014] [Accepted: 05/26/2014] [Indexed: 02/06/2023] Open
Abstract
There have been considerable recent advances towards a better understanding of the complex cellular and molecular network underlying liver fibrogenesis. Recent data indicate that the termination of fibrogenic processes and the restoration of deficient fibrolytic pathways may allow the reversal of advanced fibrosis and even cirrhosis. Therefore, efforts have been made to better clarify the cellular and molecular mechanisms that are involved in liver fibrosis. Activation of hepatic stellate cells (HSCs) remains a central event in fibrosis, complemented by other sources of matrix-producing cells, including portal fibroblasts, fibrocytes and bone marrow-derived myofibroblasts. These cells converge in a complex interaction with neighboring cells to provoke scarring in response to persistent injury. Defining the interaction of different cell types, revealing the effects of cytokines on these cells and characterizing the regulatory mechanisms that control gene expression in activated HSCs will enable the discovery of new therapeutic targets. Moreover, the characterization of different pathways associated with different etiologies aid in the development of disease-specific therapies. This article outlines recent advances regarding the cellular and molecular mechanisms involved in liver fibrosis that may be translated into future therapies. The pathogenesis of liver fibrosis associated with alcoholic liver disease, non-alcoholic fatty liver disease and viral hepatitis are also discussed to emphasize the various mechanisms involved in liver fibrosis.
Collapse
|
91
|
Zhou WC, Zhang QB, Qiao L. Pathogenesis of liver cirrhosis. World J Gastroenterol 2014; 20:7312-7324. [PMID: 24966602 PMCID: PMC4064077 DOI: 10.3748/wjg.v20.i23.7312] [Citation(s) in RCA: 378] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 03/16/2014] [Accepted: 04/29/2014] [Indexed: 02/06/2023] Open
Abstract
Liver cirrhosis is the final pathological result of various chronic liver diseases, and fibrosis is the precursor of cirrhosis. Many types of cells, cytokines and miRNAs are involved in the initiation and progression of liver fibrosis and cirrhosis. Activation of hepatic stellate cells (HSCs) is a pivotal event in fibrosis. Defenestration and capillarization of liver sinusoidal endothelial cells are major contributing factors to hepatic dysfunction in liver cirrhosis. Activated Kupffer cells destroy hepatocytes and stimulate the activation of HSCs. Repeated cycles of apoptosis and regeneration of hepatocytes contribute to pathogenesis of cirrhosis. At the molecular level, many cytokines are involved in mediation of signaling pathways that regulate activation of HSCs and fibrogenesis. Recently, miRNAs as a post-transcriptional regulator have been found to play a key role in fibrosis and cirrhosis. Robust animal models of liver fibrosis and cirrhosis, as well as the recently identified critical cellular and molecular factors involved in the development of liver fibrosis and cirrhosis will facilitate the development of more effective therapeutic approaches for these conditions.
Collapse
|
92
|
Wu JB, Shao C, Li X, Li Q, Hu P, Shi C, Li Y, Chen YT, Yin F, Liao CP, Stiles BL, Zhau HE, Shih JC, Chung LWK. Monoamine oxidase A mediates prostate tumorigenesis and cancer metastasis. J Clin Invest 2014; 124:2891-908. [PMID: 24865426 DOI: 10.1172/jci70982] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 04/03/2014] [Indexed: 01/13/2023] Open
Abstract
Tumors from patients with high-grade aggressive prostate cancer (PCa) exhibit increased expression of monoamine oxidase A (MAOA), a mitochondrial enzyme that degrades monoamine neurotransmitters and dietary amines. Despite the association between MAOA and aggressive PCa, it is unclear how MAOA promotes PCa progression. Here, we found that MAOA functions to induce epithelial-to-mesenchymal transition (EMT) and stabilize the transcription factor HIF1α, which mediates hypoxia through an elevation of ROS, thus enhancing growth, invasiveness, and metastasis of PCa cells. Knockdown and overexpression of MAOA in human PCa cell lines indicated that MAOA induces EMT through activation of VEGF and its coreceptor neuropilin-1. MAOA-dependent activation of neuropilin-1 promoted AKT/FOXO1/TWIST1 signaling, allowing FOXO1 binding at the TWIST1 promoter. Importantly, the MAOA-dependent HIF1α/VEGF-A/FOXO1/TWIST1 pathway was activated in high-grade PCa specimens, and knockdown of MAOA reduced or even eliminated prostate tumor growth and metastasis in PCa xenograft mouse models. Pharmacological inhibition of MAOA activity also reduced PCa xenograft growth in mice. Moreover, high MAOA expression in PCa tissues correlated with worse clinical outcomes in PCa patients. These findings collectively characterize the contribution of MAOA in PCa pathogenesis and suggest that MAOA has potential as a therapeutic target in PCa.
Collapse
|
93
|
Yaqoob U, Jagavelu K, Shergill U, de Assuncao T, Cao S, Shah VH. FGF21 promotes endothelial cell angiogenesis through a dynamin-2 and Rab5 dependent pathway. PLoS One 2014; 9:e98130. [PMID: 24848261 PMCID: PMC4029959 DOI: 10.1371/journal.pone.0098130] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 04/28/2014] [Indexed: 12/26/2022] Open
Abstract
Binding of angiogenic molecules with cognate receptor tyrosine kinases (RTK) is required for angiogenesis however the precise link between RTK binding, endocytosis, and signaling requires further investigation. Here, we use FGFR1 as a model to test the effects of the large GTPase and endocytosis regulatory molecule dynamin-2 on angiogenic signaling in context of distinct FGF ligands. In vitro, overexpression of dominant negative dynamin-2 (DynK44A) attenuates FGFR1 activation of Erk and tubulogenesis by FGF2. Furthermore, we identify FGF21, a non-classical, FGF ligand implicated in diverse human pathologies as an angiogenic molecule acting through FGFR1 and β-Klotho coreceptor. Disruption of FGFR1 activation of ERK by FGF21 is achieved by perturbation of the function of both dynamin-2 and Rab5 GTPase. In vivo, mice harboring endothelial selective overexpression of DynK44A, show impaired angiogenesis in response to FGF21. In conclusion, dynamin dependent endocytosis of FGFR1 is required for in vitro and in vivo angiogenesis in response to FGF2 and the non-classical FGF ligand, FGF21. These studies extend our understanding of the relationships between RTK binding, internalization, endosomal targeting, and angiogenic signaling.
Collapse
Affiliation(s)
- Usman Yaqoob
- Gastroenterology Research Unit, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Kumaravelu Jagavelu
- Gastroenterology Research Unit, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Uday Shergill
- Gastroenterology Research Unit, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Thiago de Assuncao
- Gastroenterology Research Unit, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Sheng Cao
- Gastroenterology Research Unit, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail: (SC); (VHS)
| | - Vijay H. Shah
- Gastroenterology Research Unit, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail: (SC); (VHS)
| |
Collapse
|
94
|
Yang L, Kwon J, Popov Y, Gajdos GB, Ordog T, Brekken RA, Mukhopadhyay D, Schuppan D, Bi Y, Simonetto D, Shah VH. Vascular endothelial growth factor promotes fibrosis resolution and repair in mice. Gastroenterology 2014; 146:1339-50.e1. [PMID: 24503129 PMCID: PMC4001704 DOI: 10.1053/j.gastro.2014.01.061] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 01/20/2014] [Accepted: 01/29/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Vascular endothelial growth factor (VEGF)-induced angiogenesis is implicated in fibrogenesis and portal hypertension. However, the function of VEGF in fibrosis resolution has not been explored. METHODS We developed a cholecystojejunostomy procedure to reconstruct biliary flow after bile duct ligation in C57BL/6 mice to generate a model of fibrosis resolution. These mice were then given injections of VEGF-neutralizing (mcr84) or control antibodies, and other mice received an adenovirus that expressed mouse VEGF or a control vector. The procedure was also performed on macrophage fas-induced apoptosis mice, in which macrophages can be selectively depleted. Liver and blood samples were collected and analyzed in immunohistochemical, morphometric, vascular permeability, real-time polymerase chain reaction, and flow cytometry assays. RESULTS VEGF-neutralizing antibodies prevented development of fibrosis but also disrupted hepatic tissue repair and fibrosis resolution. During fibrosis resolution, VEGF inhibition impaired liver sinusoidal permeability, which was associated with reduced monocyte migration, adhesion, and infiltration of fibrotic liver. Scar-associated macrophages contributed to this process by producing the chemokine (C-X-C motif) ligand 9 (CXCL9) and matrix metalloproteinase 13. Resolution of fibrosis was impaired in macrophage fas-induced apoptosis mice but increased after overexpression of CXCL9. CONCLUSIONS In a mouse model of liver fibrosis resolution, VEGF promoted fibrogenesis, but was also required for hepatic tissue repair and fibrosis resolution. We observed that VEGF regulates vascular permeability, monocyte infiltration, and scar-associated macrophages function.
Collapse
Affiliation(s)
- Liu Yang
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Junghee Kwon
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Yury Popov
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Gabriella B. Gajdos
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Tamas Ordog
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Rolf A. Brekken
- Hamon Center for Therapeutic Oncology Research, Division of Surgical Oncology, Department of Surgery, UT Southwestern Medical Center, Dallas, Texas
| | | | - Detlef Schuppan
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Yan Bi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Douglas Simonetto
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Vijay H. Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
95
|
Zhang F, Zhang Z, Chen L, Kong D, Zhang X, Lu C, Lu Y, Zheng S. Curcumin attenuates angiogenesis in liver fibrosis and inhibits angiogenic properties of hepatic stellate cells. J Cell Mol Med 2014; 18:1392-406. [PMID: 24779927 PMCID: PMC4124023 DOI: 10.1111/jcmm.12286] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 02/17/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatic fibrosis is concomitant with sinusoidal pathological angiogenesis, which has been highlighted as novel therapeutic targets for the treatment of chronic liver disease. Our prior studies have demonstrated that curcumin has potent antifibrotic activity, but the mechanisms remain to be elucidated. The current work demonstrated that curcumin ameliorated fibrotic injury and sinusoidal angiogenesis in rat liver with fibrosis caused by carbon tetrachloride. Curcumin reduced the expression of a number of angiogenic markers in fibrotic liver. Experiments in vitro showed that the viability and vascularization of rat liver sinusoidal endothelial cells and rat aortic ring angiogenesis were not impaired by curcumin. These results indicated that hepatic stellate cells (HSCs) that are characterized as liver-specific pericytes could be potential target cells for curcumin. Further investigations showed that curcumin inhibited VEGF expression in HSCs associated with disrupting platelet-derived growth factor-β receptor (PDGF-βR)/ERK and mTOR pathways. HSC motility and vascularization were also suppressed by curcumin associated with blocking PDGF-βR/focal adhesion kinase/RhoA cascade. Gain- or loss-of-function analyses revealed that activation of peroxisome proliferator-activated receptor-γ (PPAR-γ) was required for curcumin to inhibit angiogenic properties of HSCs. We concluded that curcumin attenuated sinusoidal angiogenesis in liver fibrosis possibly by targeting HSCs via a PPAR-γ activation-dependent mechanism. PPAR-γ could be a target molecule for reducing pathological angiogenesis during liver fibrosis.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Pharmacology, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Therapeutic potential of microRNA: a new target to treat intrahepatic portal hypertension? BIOMED RESEARCH INTERNATIONAL 2014; 2014:797898. [PMID: 24812632 DOI: 10.1155/2014/797898] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 02/09/2014] [Accepted: 03/18/2014] [Indexed: 02/06/2023]
Abstract
Intrahepatic portal hypertension accounts for most of the morbidity and mortality encountered in patients with liver cirrhosis, due to increased portal inflow and intrahepatic vascular resistance. Most treatments have focused only on portal inflow or vascular resistance. However, miRNA multitarget regulation therapy may potentially intervene in these two processes for therapeutic benefit in cirrhosis and portal hypertension. This review presents an overview of the most recent knowledge of and future possibilities for the use of miRNA therapy. The benefits of this therapeutic modality--which is poorly applied in the clinical setting--are still uncertain. Increasing the knowledge and current understanding of the roles of miRNAs in the development of intrahepatic portal hypertension and hepatic stellate cells (HSCs) functions, as well as their potential as novel drug targets, is critical.
Collapse
|
97
|
Rowe IA, Galsinh SK, Wilson GK, Parker R, Durant S, Lazar C, Branza-Nichita N, Bicknell R, Adams DH, Balfe P, McKeating JA. Paracrine signals from liver sinusoidal endothelium regulate hepatitis C virus replication. Hepatology 2014; 59:375-84. [PMID: 23775568 PMCID: PMC3992845 DOI: 10.1002/hep.26571] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 05/31/2013] [Indexed: 12/15/2022]
Abstract
UNLABELLED Hepatitis C virus (HCV) is a major cause of global morbidity, causing chronic liver injury that can progress to cirrhosis and hepatocellular carcinoma. The liver is a large and complex organ containing multiple cell types, including hepatocytes, sinusoidal endothelial cells (LSEC), Kupffer cells, and biliary epithelial cells. Hepatocytes are the major reservoir supporting HCV replication; however, the role of nonparenchymal cells in the viral lifecycle remains largely unexplored. LSEC secrete factors that promote HCV infection and transcript analysis identified bone morphogenetic protein 4 (BMP4) as a candidate endothelial-expressed proviral molecule. Recombinant BMP4 increased HCV replication and neutralization of BMP4 abrogated the proviral activity of LSEC-conditioned media. Importantly, BMP4 expression was negatively regulated by vascular endothelial growth factor A (VEGF-A) by way of a VEGF receptor-2 (VEGFR-2) primed activation of p38 MAPK. Consistent with our in vitro observations, we demonstrate that in normal liver VEGFR-2 is activated and BMP4 expression is suppressed. In contrast, in chronic liver disease including HCV infection where there is marked endothelial cell proliferation, we observed reduced endothelial cell VEGFR-2 activation and a concomitant increase in BMP4 expression. CONCLUSION These studies identify a role for LSEC and BMP4 in HCV infection and highlight BMP4 as a new therapeutic target for treating individuals with liver disease.
Collapse
Affiliation(s)
- Ian A Rowe
- Hepatitis C Virus Research Group, Institute for Biomedical Research, University of BirminghamBirmingham, UK,Centre for Liver Research and NIHR Birmingham Liver Biomedical Research Unit, Institute for Biomedical Research, University of BirminghamBirmingham, UK
| | - Sukhdeep K Galsinh
- Hepatitis C Virus Research Group, Institute for Biomedical Research, University of BirminghamBirmingham, UK
| | - Garrick K Wilson
- Hepatitis C Virus Research Group, Institute for Biomedical Research, University of BirminghamBirmingham, UK
| | - Richard Parker
- Centre for Liver Research and NIHR Birmingham Liver Biomedical Research Unit, Institute for Biomedical Research, University of BirminghamBirmingham, UK
| | - Sarah Durant
- Angiogenesis Group, Institute for Biomedical Research, University of BirminghamBirmingham, UK
| | - Catalin Lazar
- Viral Glycoproteins Department, Institute of BiochemistryBucharest, Romania
| | | | - Roy Bicknell
- Angiogenesis Group, Institute for Biomedical Research, University of BirminghamBirmingham, UK
| | - David H Adams
- Centre for Liver Research and NIHR Birmingham Liver Biomedical Research Unit, Institute for Biomedical Research, University of BirminghamBirmingham, UK
| | - Peter Balfe
- Hepatitis C Virus Research Group, Institute for Biomedical Research, University of BirminghamBirmingham, UK
| | - Jane A McKeating
- Hepatitis C Virus Research Group, Institute for Biomedical Research, University of BirminghamBirmingham, UK,Centre for Liver Research and NIHR Birmingham Liver Biomedical Research Unit, Institute for Biomedical Research, University of BirminghamBirmingham, UK,Address reprint requests to: Professor Jane McKeating, Hepatitis C Virus Research Group, Institute for Biomedical Research, University of Birmingham, Birmingham UK B15 2TT. E-mail: fax: +44 (0)1214143599
| |
Collapse
|
98
|
Ocho M, Togayachi A, Iio E, Kaji H, Kuno A, Sogabe M, Korenaga M, Gotoh M, Tanaka Y, Ikehara Y, Mizokami M, Narimatsu H. Application of a Glycoproteomics-Based Biomarker Development Method: Alteration in Glycan Structure on Colony Stimulating Factor 1 Receptor as a Possible Glycobiomarker Candidate for Evaluation of Liver Cirrhosis. J Proteome Res 2014; 13:1428-37. [PMID: 24422531 DOI: 10.1021/pr400986t] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Makoto Ocho
- Research Center for Medical
Glycoscience (RCMG), National Institute of Advanced Industrial Science
and Technology, Tsukuba, Ibaraki, Japan
| | - Akira Togayachi
- Research Center for Medical
Glycoscience (RCMG), National Institute of Advanced Industrial Science
and Technology, Tsukuba, Ibaraki, Japan
| | - Etsuko Iio
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Hiroyuki Kaji
- Research Center for Medical
Glycoscience (RCMG), National Institute of Advanced Industrial Science
and Technology, Tsukuba, Ibaraki, Japan
| | - Atsushi Kuno
- Research Center for Medical
Glycoscience (RCMG), National Institute of Advanced Industrial Science
and Technology, Tsukuba, Ibaraki, Japan
| | - Maki Sogabe
- Research Center for Medical
Glycoscience (RCMG), National Institute of Advanced Industrial Science
and Technology, Tsukuba, Ibaraki, Japan
| | - Masaaki Korenaga
- The Research Center for Hepatitis and
Immunology, National Center for Global Health and Medicine, Ichikawa, Chiba, Japan
| | - Masanori Gotoh
- Research Center for Medical
Glycoscience (RCMG), National Institute of Advanced Industrial Science
and Technology, Tsukuba, Ibaraki, Japan
| | - Yasuhito Tanaka
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Yuzuru Ikehara
- Research Center for Medical
Glycoscience (RCMG), National Institute of Advanced Industrial Science
and Technology, Tsukuba, Ibaraki, Japan
| | - Masashi Mizokami
- The Research Center for Hepatitis and
Immunology, National Center for Global Health and Medicine, Ichikawa, Chiba, Japan
| | - Hisashi Narimatsu
- Research Center for Medical
Glycoscience (RCMG), National Institute of Advanced Industrial Science
and Technology, Tsukuba, Ibaraki, Japan
| |
Collapse
|
99
|
Yu F, Lin Z, Zheng J, Gao S, Lu Z, Dong P. Suppression of collagen synthesis by Dicer gene silencing in hepatic stellate cells. Mol Med Rep 2013; 9:707-14. [PMID: 24337369 DOI: 10.3892/mmr.2013.1866] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 12/06/2013] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs (miRNAs) have emerged as important mediators of hepatic stellate cells (HSCs) and are pivotal in the pathogenesis of liver fibrosis. Dicer, the key enzyme in the RNA interference (RNAi) pathway, is involved in cutting precursor miRNAs to functionally mature forms. Emerging evidence has demonstrated that Dicer expression is dysregulated in embryo development and tumors. In the present study, we aimed to address whether Dicer expression was correlated with the activity of HSCs. We used a recombinant lentivirus to generate short hairpin RNAs (shRNAs) targeting Dicer. The mRNA and protein expression of Dicer was effectively inhibited by three pairs of Dicer shRNA vectors, of which the shRNA1 vector exhibited the strongest inhibitory effect. The shRNA1 vector demonstrated a marked inhibitory effect on the activity of HSCs, resulting in the reduction of cell proliferation and the decrease of fibrosis-related genes, including type Ⅰ collagen (Col1A1), α-smooth muscle actin (α-SMA) and tissue inhibitor of metalloproteinases (TIMP). The mRNA expression of Col1A1, α-SMA and TIMP were decreased by 60, 56 and 49%, respectively. The protein expression was reduced by 56, 52 and 42%, respectively. Additionally, the inhibition of Dicer resulted in a decrease of miR-138, -143, -140 and -122 levels, of which miR-138 exhibited the strongest decline. The firefly luciferase reporter experiments and RT-PCR indicated that phosphatase and tension homolog deleted on chromosome 10 (PTEN), Ras GTPase activating-like protein 1 (RASAL1), acyl-CoA synthetase long-chain family member 1 (ACSL1) and p27 3' untranslated region sequences were targeted by miR-138, -143, -140 and -122, respectively. Taken together, the present study contributes important new findings for the role of Dicer-mediated miRNA processing in collagen synthesis of HSCs, which may serve as a foundation for RNAi study of liver fibrosis in vivo.
Collapse
Affiliation(s)
- Fujun Yu
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhuo Lin
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Jianjian Zheng
- Wenzhou Key Laboratory of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Shenmeng Gao
- Laboratory of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhongqiu Lu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Peihong Dong
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
100
|
Seo YS, Kwon JH, Yaqoob U, Yang L, De Assuncao TM, Simonetto DA, Verma VK, Shah VH. HMGB1 recruits hepatic stellate cells and liver endothelial cells to sites of ethanol-induced parenchymal cell injury. Am J Physiol Gastrointest Liver Physiol 2013; 305:G838-48. [PMID: 24091596 PMCID: PMC3882432 DOI: 10.1152/ajpgi.00151.2013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatic stellate cells (HSC) and liver endothelial cells (LEC) migrate to sites of injury and perpetuate alcohol-induced liver injury. High-mobility group box 1 (HMGB1) is a protein released from the nucleus of injured cells that has been implicated as a proinflammatory mediator. We hypothesized that HMGB1 may be released from ethanol-stimulated liver parenchymal cells and contribute to HSC and LEC recruitment. Ethanol stimulation of rat hepatocytes and HepG2 cells resulted in translocation of HMGB1 from the nucleus as assessed by Western blot. HMGB1 protein levels were increased in the supernatant of ethanol-treated hepatocytes compared with vehicle-treated cells. Migration of both HSC and LEC was increased in response to conditioned medium for ethanol-stimulated hepatocytes (CMEtOH) compared with vehicle-stimulated hepatocytes (CMVEH) (P < 0.05). However, the effect of CMEtOH on migration was almost entirely reversed by treatment with HMGB1-neutralizing antibody or when HepG2 cells were pretransfected with HMGB1-siRNA compared with control siRNA-transfected HepG2 cells (P < 0.05). Recombinant HMGB1 (100 ng/ml) also stimulated migration of HSC and LEC compared with vehicle stimulation (P < 0.05 for both HSC and LEC). HMGB1 stimulation of HSC increased the phosphorylation of Src and Erk and HMGB1-induced HSC migration was blocked by the Src inhibitor PP2 and the Erk inhibitor U0126. Hepatocytes release HMGB1 in response to ethanol with subsequent recruitment of HSC and LEC. This pathway has implications for HSC and LEC recruitment to sites of ethanol-induced liver injury.
Collapse
Affiliation(s)
- Yeon S. Seo
- 1Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota; and ,2Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Jung H. Kwon
- 1Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota; and
| | - Usman Yaqoob
- 1Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota; and
| | - Liu Yang
- 1Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota; and
| | - Thiago M. De Assuncao
- 1Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota; and
| | - Douglas A. Simonetto
- 1Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota; and
| | - Vikas K. Verma
- 1Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota; and
| | - Vijay H. Shah
- 1Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota; and
| |
Collapse
|