51
|
Chen CY, Jan CI, Lo JF, Yang SC, Chang YL, Pan SH, Wang WL, Hong TM, Yang PC. Tid1-L inhibits EGFR signaling in lung adenocarcinoma by enhancing EGFR Ubiquitinylation and degradation. Cancer Res 2013; 73:4009-19. [PMID: 23698466 DOI: 10.1158/0008-5472.can-12-4066] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tid1 (DNAJA3), a DnaJ cochaperone, may promote degradation of oncogenic kinases. Tid1 has 2 isoforms, Tid1-L and Tid1-S, that may function differently. In this study, we investigated the role of the Tid1 isoforms in regulating EGF receptor (EGFR) signaling and lung cancer progression. We found that both Tid1-L and Tid1-S expressions were reduced in patients with non-small cell lung cancer compared with normal counterparts. Tid1-L expression correlated inversely with EGFR expression. Low Tid1-L/high EGFR expression predicted poor overall survival in patients with lung adenocarcinoma. Tid1-L overexpression in lung cancer cells attenuated EGFR signaling and inhibited cell proliferation, colony formation, and tumor growth in subcutaneous and orthotropic xenograft models. Conversely, depletion of Tid1 restored EGFR signaling and increased cell proliferation and colony formation. Tid1-L, but not Tid1-S, interacted with EGFR/HSP70/HSP90 through the DnaJ domain, counteracting the EGFR regulatory function of HSP90 by causing EGFR ubiquitinylation and proteasomal degradation. Tid1-L inhibited EGFR signaling even more than the HSP90 inhibitor 17-allylamino-demethoxy geldanamycin. We concluded that Tid1-L acted as a tumor suppressor by inhibiting EGFR signaling through interaction with EGFR/HSP70/HSP90 and enhancing EGFR ubiquitinylation and degradation.
Collapse
Affiliation(s)
- Chi-Yuan Chen
- Department of Nutrition and Health Sciences, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
The motor protein KIF14 inhibits tumor growth and cancer metastasis in lung adenocarcinoma. PLoS One 2013; 8:e61664. [PMID: 23626713 PMCID: PMC3633961 DOI: 10.1371/journal.pone.0061664] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 03/12/2013] [Indexed: 11/19/2022] Open
Abstract
The motor protein kinesin superfamily proteins (KIFs) are involved in cancer progression. The depletion of one of the KIFs, KIF14, might delay the metaphase-to-anaphase transition, resulting in a binucleated status, which enhances tumor progression; however, the exact correlation between KIF14 and cancer progression remains ambiguous. In this study, using loss of heterozygosity and array comparative genomic hybridization analyses, we observed a 30% loss in the regions surrounding KIF14 on chromosome 1q in lung adenocarcinomas. In addition, the protein expression levels of KIF14 in 122 lung adenocarcinomas also indicated that approximately 30% of adenocarcinomas showed KIF14 down-regulation compared with the expression in the bronchial epithelial cells of adjacent normal counterparts. In addition, the reduced expression of KIF14 mRNA or proteins was correlated with poor overall survival (P = 0.0158 and <0.0001, respectively), and the protein levels were also inversely correlated with metastasis (P<0.0001). The overexpression of KIF14 in lung adenocarcinoma cells inhibited anchorage-independent growth in vitro and xenograft tumor growth in vivo. The overexpression and silencing of KIF14 also inhibited or enhanced cancer cell migration, invasion and adhesion to the extracellular matrix proteins laminin and collagen IV. Furthermore, we detected the adhesion molecules cadherin 11 (CDH11) and melanoma cell adhesion molecule (MCAM) as cargo on KIF14. The overexpression and silencing of KIF14 enhanced or reduced the recruitment of CDH11 in the membrane fraction, suggesting that KIF14 might act through recruiting adhesion molecules to the cell membrane and modulating cell adhesive, migratory and invasive properties. Thus, KIF14 might inhibit tumor growth and cancer metastasis in lung adenocarcinomas.
Collapse
|
53
|
Altmäe S, Martinez-Conejero JA, Esteban FJ, Ruiz-Alonso M, Stavreus-Evers A, Horcajadas JA, Salumets A. MicroRNAs miR-30b, miR-30d, and miR-494 regulate human endometrial receptivity. Reprod Sci 2013; 20:308-17. [PMID: 22902743 PMCID: PMC4077381 DOI: 10.1177/1933719112453507] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
MicroRNAs (miRNAs) act as important epigenetic posttranscriptional regulators of gene expression. We aimed to gain more understanding of the complex gene expression regulation of endometrial receptivity by analyzing miRNA signatures of fertile human endometria. We set up to analyze miRNA signatures of receptive (LH + 7, n = 4) versus prereceptive (LH + 2, n = 5) endometrium from healthy fertile women. We found hsa-miR-30b and hsa-miR-30d to be significantly upregulated, and hsa-miR-494 and hsa-miR-923 to be downregulated in receptive endometrium. Three algorithms (miRanda, PicTar, and TargetScan) were used for target gene prediction. Functional analyses of the targets using Ingenuity Pathways Analysis and The Database for Annotation, Visualization and Integrated Discovery indicated roles in transcription, cell proliferation and apoptosis, and significant involvement in several relevant pathways, such as axon guidance, Wnt/β-catenin, ERK/MAPK, transforming growth factor β (TGF-β), p53 and leukocyte extravasation. Comparison of predicted miRNA target genes and our previous messenger RNA microarray data resulted in a list of 12 genes, including CAST, CFTR, FGFR2, and LIF that could serve as a panel of genes important for endometrial receptivity. In conclusion, we suggest that a subset of miRNAs and their target genes may play important roles in endometrial receptivity.
Collapse
Affiliation(s)
- Signe Altmäe
- Competence Centre on Reproductive Medicine and Biology, Tartu, Estonia.
| | | | | | | | | | | | | |
Collapse
|
54
|
Sun J, Zhang D, Zheng Y, Zhao Q, Zheng M, Kovacevic Z, Richardson DR. Targeting the metastasis suppressor, NDRG1, using novel iron chelators: regulation of stress fiber-mediated tumor cell migration via modulation of the ROCK1/pMLC2 signaling pathway. Mol Pharmacol 2012. [PMID: 23188716 DOI: 10.1124/mol.112.083097] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The iron-regulated metastasis suppressor, N-myc downstream-regulated gene 1 (NDRG1), is up-regulated by cellular iron depletion mediated by iron chelators and can inhibit cancer cell migration. However, the mechanism of how NDRG1 achieves this effect remains unclear. In this study, we implemented established and newly constructed NDRG1 overexpression and knockdown models using the DU145, HT29, and HCT116 cancer cell lines to investigate the molecular basis by which NDRG1 exerts its inhibitory effect on cell migration. Using these models, we demonstrated that NDRG1 overexpression inhibits cell migration by preventing actin-filament polymerization, stress fiber assembly and formation. In contrast, NDRG1 knockdown had the opposite effect. Moreover, we identified that NDRG1 inhibited an important regulatory pathway mediated by the Rho-associated, coiled-coil containing protein kinase 1 (ROCK1)/phosphorylated myosin light chain 2 (pMLC2) pathway that modulates stress fiber assembly. The phosphorylation of MLC2 is a key process in inducing stress fiber contraction, and this was shown to be markedly decreased or increased by NDRG1 overexpression or knockdown, respectively. The mechanism involved in the inhibition of MLC2 phosphorylation by NDRG1 was mediated by a significant (P < 0.001) decrease in ROCK1 expression that is a key kinase involved in MLC2 phosphorylation. Considering that NDRG1 is up-regulated after cellular iron depletion, novel thiosemicarbazone iron chelators (e.g., di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone) were demonstrated to inhibit ROCK1/pMLC2-modulated actin-filament polymerization, stress fiber assembly, and formation via a mechanism involving NDRG1. These results highlight the role of the ROCK1/pMLC2 pathway in the NDRG1-mediated antimetastatic signaling network and the therapeutic potential of iron chelators at inhibiting metastasis.
Collapse
Affiliation(s)
- Jing Sun
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | | | | | | | | | | | | |
Collapse
|
55
|
Zhang WJ, Zhang WG, Zhang PY, Cao XM, He AL, Chen YX, Gu LF. The expression and functional characterization associated with cell apoptosis and proteomic analysis of the novel gene MLAA-34 in U937 cells. Oncol Rep 2012; 29:491-506. [PMID: 23135622 DOI: 10.3892/or.2012.2129] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 09/25/2012] [Indexed: 11/06/2022] Open
Abstract
MLAA-34 is a novel acute monocytic leukemia (M5)-associated antigen (MLAA) that plays a role in the apoptosis of U937 cells. However, the expression and molecular mechanism of MLAA-34 in U937 cells remain largely unclear. Here, we utilized three strategies to gain insight into the expression and molecular functions of MLAA-34 and to identify its interacting proteins and pathways involved in the fine-tuning of the MLAA-34 response. Western blot analysis was performed to assess the expression of MLAA-34 in 41 cell lines and five mixed cell types, which revealed that MLAA-34 is most strongly expressed in U937 cells. Immunostaining indicated that MLAA-34 is localized in the cytoplasm and cell membrane. Furthermore, lentivirus-mediated overexpression of MLAA-34 in the U937 cell line led to significant suppression of apoptosis and increased the potential of tumorigenicity. Co-immunoprecipitation (Co-IP), shotgun and bioinformatic analysis identified 256 proteins and 225 of them were annotated by gene ontology categories. This analysis revealed 71 proteins involved in cell apoptosis or proliferation of biological processes and signaling pathways. Moreover, the effect of MLAA-34 apoptosis may be through interaction with the Ras, Wnt, calcium and chemokine signaling pathways and thirteen of the annotated proteins may interact with MLAA-34 and participate in carcinogenesis directly. This study provides a basis for a better understanding of the molecular mechanism and proteomics in the inhibition of apoptosis by MLAA-34 in U937 cells and indicates that MLAA-34 may be a potential candidate for the early diagnosis and therapeutic application of M5.
Collapse
Affiliation(s)
- Wen-Juan Zhang
- Department of Clinical Hematology, Affiliated No. 2 Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710004, PR China
| | | | | | | | | | | | | |
Collapse
|
56
|
Giraudon P, Nicolle A, Cavagna S, Benetollo C, Marignier R, Varrin-Doyer M. Insight into the role of CRMP2 (collapsin response mediator protein 2) in T lymphocyte migration: the particular context of virus infection. Cell Adh Migr 2012; 7:38-43. [PMID: 23076208 DOI: 10.4161/cam.22385] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Lymphocyte migration into the central nervous system is a critical step in the physiopathology of a variety of neurological diseases, including multiple sclerosis and virus-induced neuroinflammation. To better understand the molecular mechanisms involved in cells migration, we focused our studies on collapsin response mediator proteins (CRMPs), a group of phosphoproteins that mediate neural cell motility. There is now evidence that collapsin response mediator protein 2 (CRMP2) plays critical roles in the polarization (uropod formation) of T lymphocytes and their subsequent migration. CRMP2 was known to respond to semaphorin, ephrin and neurotrophin signaling in neurons. The link between the chemokine CXCL12, CRMP2 activity and cell migration has been demonstrated in T lymphocytes. These observations and comparisons of the activity of CRMPs in immune and non-immmune cells are summarized here. The ability of a human retrovirus to enhance lymphocyte migration through the modulation of CRMP2 activity is also discussed. In conclusion, viruses have the ability to manipulate the lymphocyte motility machinery, intensifying neural tissue invasion in infected patients.
Collapse
Affiliation(s)
- Pascale Giraudon
- INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Neurooncology Neuroinflammation Team, Lyon, France.
| | | | | | | | | | | |
Collapse
|
57
|
Chang YH, Lee SH, Chang HC, Tseng YL, Lai WW, Liao CC, Tsay YG, Liao PC. Comparative secretome analyses using a hollow fiber culture system with label-free quantitative proteomics indicates the influence of PARK7 on cell proliferation and migration/invasion in lung adenocarcinoma. J Proteome Res 2012; 11:5167-85. [PMID: 22985211 DOI: 10.1021/pr300362g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
As the leading cause of cancer death worldwide, lung cancer lacks effective diagnosis tools and treatments to prevent its metastasis. Fortunately, secretome has clinical usages as biomarkers and protein drugs. To discover the secretome that influences lung adenocarcinoma metastasis, the hollow fiber culture (HFC) system was used along with label-free proteomics approach to analyze cell secretomes between CL1-0 and CL1-5 cell lines, which exhibit low and high metastatic potentials. Among the 703 proteins quantified, 50 possessed different levels between CL1-0 and CL1-5. PARK7 was a primary focus because of the lack of research involving lung adenocarcinoma. The cell proliferation, migration, and invasion properties of CL1-0, CL1-5, and A549 cells were significantly diminished when the expression of their PARK7 proteins was reduced. Conversely, these functions were promoted when PARK7 was overexpressed in CL1-0. In clinical expression, PARK7 levels within tissue specimens and plasma samples were significantly higher in the cancer group. This represents the first time the HFC system has been used with label-free quantification to discern the elements of metastasis in lung adenocarcinoma cell secretomes. Likewise, PARK7 has never been researched for its role in promoting lung adenocarcinoma progression.
Collapse
Affiliation(s)
- Ying-Hua Chang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Goshima Y, Sasaki Y, Yamashita N, Nakamura F. Class 3 semaphorins as a therapeutic target. Expert Opin Ther Targets 2012; 16:933-44. [DOI: 10.1517/14728222.2012.710201] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
59
|
Hiroshima Y, Nakamura F, Miyamoto H, Mori R, Taniguchi K, Matsuyama R, Akiyama H, Tanaka K, Ichikawa Y, Kato S, Kobayashi N, Kubota K, Nagashima Y, Goshima Y, Endo I. Collapsin response mediator protein 4 expression is associated with liver metastasis and poor survival in pancreatic cancer. Ann Surg Oncol 2012; 20 Suppl 3:S369-78. [PMID: 22805864 DOI: 10.1245/s10434-012-2491-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Indexed: 11/18/2022]
Abstract
BACKGROUND Pancreatic cancer is an aggressive malignancy with one of the worst mortality rates of all cancers. Recently, collapsin response mediator proteins (CRMPs) were reported to be associated with proliferation, apoptosis, differentiation, and invasion in several cancers. However, CRMP expression and their role in pancreatic cancer have not been investigated. This study aimed to clarify the clinical significance of CRMPs in pancreatic cancer. METHODS Expression of crmp genes in 11 pairs of pancreatic cancer and corresponding noncancerous pancreas tissues were examined by real-time RT-PCR. Knockdown of CRMP4 expression using siRNA was examined in pancreatic cancer cell lines to determine whether CRMP4 regulates cell proliferation and invasion in vitro. Furthermore, CRMP4 protein levels in primary tumors of pancreatic cancer (n = 53) were examined by immunohistochemistry and compared with the clinicopathological features of the tumors. RESULTS Of all the CRMPs, only CRMP4 was differentially expressed in pancreatic cancer tissues (p = 0.008). CRMP4 knockdown using siRNA reduced cellular invasion, but did not affect proliferation. The expression of CRMP4 was detected immunohistochemically in 34 (64.2 %) of the 53 pancreatic cancer samples, and CRMP4 expression was correlated with severe venous invasion (p = 0.044), stage (p = 0.019), and liver metastasis (p = 0.021). Multivariate analyses suggested that venous invasion and CRMP4 overexpression were prognostic factors for survival. CONCLUSIONS Our results suggested that CRMP4 is significantly associated with poor prognosis by promoting liver metastasis and can serve as a novel therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Yukihiko Hiroshima
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Bader V, Tomppo L, Trossbach SV, Bradshaw NJ, Prikulis I, Leliveld SR, Lin CY, Ishizuka K, Sawa A, Ramos A, Rosa I, García Á, Requena JR, Hipolito M, Rai N, Nwulia E, Henning U, Ferrea S, Luckhaus C, Ekelund J, Veijola J, Järvelin MR, Hennah W, Korth C. Proteomic, genomic and translational approaches identify CRMP1 for a role in schizophrenia and its underlying traits. Hum Mol Genet 2012; 21:4406-18. [PMID: 22798627 DOI: 10.1093/hmg/dds273] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Schizophrenia is a chronic illness of heterogenous biological origin. We hypothesized that, similar to chronic progressive brain conditions, persistent functional disturbances of neurons would result in disturbed proteostasis in the brains of schizophrenia patients, leading to increased abundance of specific misfolded, insoluble proteins. Identification of such proteins would facilitate the elucidation of molecular processes underlying these devastating conditions. We therefore generated antibodies against pooled insoluble proteome of post-mortem brains from schizophrenia patients in order to identify unique, disease-specific epitopes. We successfully identified such an epitope to be present on collapsin-response mediator protein 1 (CRMP1) in biochemically purified, insoluble brain fractions. A genetic association analysis for the CRMP1 gene in a large Finnish population cohort (n = 4651) corroborated the association of physical and social anhedonia with the CRMP1 locus in a DISC1 (Disrupted-in-schizophrenia 1)-dependent manner. Physical and social anhedonia are heritable traits, present as chronic, negative symptoms of schizophrenia and severe major depression, thus constituting serious vulnerability factors for mental disease. Strikingly, lymphoblastoid cell lines derived from schizophrenia patients mirrored aberrant CRMP1 immunoreactivity by showing an increase of CRMP1 expression, suggesting its potential role as a blood-based diagnostic marker. CRMP1 is a novel candidate protein for schizophrenia traits at the intersection of the reelin and DISC1 pathways that directly and functionally interacts with DISC1. We demonstrate the impact of an interdisciplinary approach where the identification of a disease-associated epitope in post-mortem brains, powered by a genetic association study, is rapidly translated into a potential blood-based diagnostic marker.
Collapse
Affiliation(s)
- Verian Bader
- Department of Neuropathology, Heinrich Heine University Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Wang WL, Hong TM, Chang YL, Wu CT, Pan SH, Yang PC. Phosphorylation of LCRMP-1 by GSK3β promotes filopoda formation, migration and invasion abilities in lung cancer cells. PLoS One 2012; 7:e31689. [PMID: 22363707 PMCID: PMC3283678 DOI: 10.1371/journal.pone.0031689] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 01/11/2012] [Indexed: 11/18/2022] Open
Abstract
LCRMP-1, a novel isoform of CRMP-1, can promote cancer cell migration, invasion and associate with poor clinical outcome in patients with non-small-cell lung cancer (NSCLC). However, the underlying regulatory mechanisms of LCRMP-1 in cancer cell invasiveness still remain obscure. Here, we report that GSK3β can phosphorylate LCRMP-1 at Thr-628 in consensus sequences and this phosphorylation is crucial for function of LCRMP-1 to promote filopodia formation, migration and invasion in cancer cells. Impediment of Thr-628 phosphorylation attenuates the stimulatory effects of LCRMP-1 on filopodia forming, migration and invasion abilities in cancer cells; simultaneously, kinase-dead GSK3β diminishes regulation of LCRMP-1 on cancer cell invasion. Furthermore, we also found that patients with low-level Ser-9-phosphorylated GSK3β expression and high-level LCRMP-1 expression have worse overall survival than those with high-level inactive GSK3β expressions and low-level LCRMP-1 expressions (P<0.0001). Collectively, these results demonstrate that GSK3β-dependent phosphorylation of LCRMP-1 provides an important mechanism for regulation of LCRMP-1 on cancer cell invasiveness and clinical outcome.
Collapse
Affiliation(s)
- Wen-Lung Wang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Tse-Ming Hong
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, National Cheng Kong University, Tainan, Taiwan
| | - Yih-Leong Chang
- Department of Pathology and Graduate Institute of Pathology, National Taiwan University, Taipei, Taiwan
| | - Chen-Tu Wu
- Department of Pathology and Graduate Institute of Pathology, National Taiwan University, Taipei, Taiwan
| | - Szu-Hua Pan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Clinical Genomics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pan-Chyr Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- NTU Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|