51
|
Karali M, Banfi S. Inherited Retinal Dystrophies: the role of gene expression regulators. Int J Biochem Cell Biol 2015; 61:115-9. [PMID: 25697419 DOI: 10.1016/j.biocel.2015.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 02/06/2015] [Accepted: 02/07/2015] [Indexed: 12/21/2022]
Abstract
Inherited Retinal Dystrophies (IRDs) are a clinically and genetically heterogeneous group of rare disorders characterized by a significant impairment in retinal function and vision. More than 150 genes have been associated with retinal dystrophies and the genetic overlap among different IRDs renders diagnosis and prognosis challenging. In this In Focus article, we give a summary on the pathogenic role of gene expression regulators in IRDs. Emphasis is given on key transcription factors that participate to regulatory gene networks controlling photoreceptor specification and maintenance, and their possible relevance as therapeutic targets. The increasing knowledge on the composition and function of these transcriptional regulatory networks indicates that intervening on transcription factors may be instrumental for a more effective treatment of some forms of IRDs, although the development of appropriate molecular tools to target them remains a formidable challenge.
Collapse
Affiliation(s)
- Marianthi Karali
- Telethon Institute for Genetics and Medicine, via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy
| | - Sandro Banfi
- Telethon Institute for Genetics and Medicine, via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy; Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, via Luigi De Crecchio 7, 80138 Naples, Italy.
| |
Collapse
|
52
|
Sergouniotis PI, Urquhart JE, Williams SG, Bhaskar SS, Black GC, Lovell SC, Whitby DJ, Newman WG, Clayton-Smith J. Agnathia-otocephaly complex and asymmetric velopharyngeal insufficiency due to an in-frame duplication in OTX2. J Hum Genet 2015; 60:199-202. [PMID: 25589041 DOI: 10.1038/jhg.2014.122] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/03/2014] [Accepted: 12/05/2014] [Indexed: 02/05/2023]
Abstract
Agnathia-otocephaly complex is a malformation characterized by absent/hypoplastic mandible and abnormally positioned ears. Mutations in two genes, PRRX1 and OTX2, have been described in a small number of families with this disorder. We performed clinical and genetic testing in an additional family. The proband is a healthy female with a complicated pregnancy history that includes two offspring diagnosed with agnathia-otocephaly during prenatal ultrasound scans. Exome sequencing was performed in fetal DNA from one of these two offspring revealing a heterozygous duplication in OTX2: c.271_273dupCAG, p.(Gln91dup). This change leads to the insertion of a glutamine within the OTX2 homeodomain region, and is predicted to alter this signaling molecule's ability to interact with DNA. The same variant was also identified in the proband's clinically unaffected 38-year-old husband and their 9-year-old daughter, who presented with a small mandible, normal ears and velopharyngeal insufficiency due to a short hemi-palate. This unusual presentation of OTX2-related disease suggests that OTX2 might have a role in palatal hypoplasia cases. A previously unreported OTX2 variant associated with extreme intrafamilial variability is described and the utility of exome sequencing as a tool to confirm the diagnosis of agnathia-otocephaly and to inform the reproductive decisions of affected families is highlighted.
Collapse
Affiliation(s)
- Panagiotis I Sergouniotis
- 1] Institute of Human Development, University of Manchester, Manchester, UK [2] Manchester Royal Eye Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Jill E Urquhart
- 1] Institute of Human Development, University of Manchester, Manchester, UK [2] Manchester Centre for Genomic Medicine, St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Simon G Williams
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Sanjeev S Bhaskar
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Graeme C Black
- 1] Institute of Human Development, University of Manchester, Manchester, UK [2] Manchester Centre for Genomic Medicine, St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Simon C Lovell
- Department of Computational and Evolutionary Biology, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - David J Whitby
- North West, Isle of Man and North Wales Cleft Lip and Palate Network, Royal Manchester Children's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - William G Newman
- 1] Institute of Human Development, University of Manchester, Manchester, UK [2] Manchester Centre for Genomic Medicine, St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Jill Clayton-Smith
- 1] Institute of Human Development, University of Manchester, Manchester, UK [2] Manchester Centre for Genomic Medicine, St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| |
Collapse
|
53
|
Fu Y, Liu H, Ng L, Kim JW, Hao H, Swaroop A, Forrest D. Feedback induction of a photoreceptor-specific isoform of retinoid-related orphan nuclear receptor β by the rod transcription factor NRL. J Biol Chem 2014; 289:32469-80. [PMID: 25296752 DOI: 10.1074/jbc.m114.605774] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Vision requires the generation of cone and rod photoreceptors that function in daylight and dim light, respectively. The neural retina leucine zipper factor (NRL) transcription factor critically controls photoreceptor fates as it stimulates rod differentiation and suppresses cone differentiation. However, the controls over NRL induction that balance rod and cone fates remain unclear. We have reported previously that the retinoid-related orphan receptor β gene (Rorb) is required for Nrl expression and other retinal functions. We show that Rorb differentially expresses two isoforms: RORβ2 in photoreceptors and RORβ1 in photoreceptors, progenitor cells, and other cell types. Deletion of RORβ2 or RORβ1 increased the cone:rod ratio ∼2-fold, whereas deletion of both isoforms in Rorb(-/-) mice produced almost exclusively cone-like cells at the expense of rods, suggesting that both isoforms induce Nrl. Electroporation of either RORβ isoform into retinal explants from Rorb(-/-) neonates reactivated Nrl and rod genes but, in Nrl(-/-) explants, failed to reactivate rod genes, indicating that NRL is the effector for both RORβ isoforms in rod differentiation. Unexpectedly, RORβ2 expression was lost in Nrl(-/-) mice. Moreover, NRL activated the RORβ2-specific promoter of Rorb, indicating that NRL activates Rorb, its own inducer gene. We suggest that feedback activation between Nrl and Rorb genes reinforces the commitment to rod differentiation.
Collapse
Affiliation(s)
- Yulong Fu
- From the Laboratory of Endocrinology and Receptor Biology, NIDDK, and
| | - Hong Liu
- From the Laboratory of Endocrinology and Receptor Biology, NIDDK, and
| | - Lily Ng
- From the Laboratory of Endocrinology and Receptor Biology, NIDDK, and
| | - Jung-Woong Kim
- Neurobiology-Neurodegeneration and Repair Laboratory, NEI, National Institutes of Health, Bethesda, Maryland 20892
| | - Hong Hao
- Neurobiology-Neurodegeneration and Repair Laboratory, NEI, National Institutes of Health, Bethesda, Maryland 20892
| | - Anand Swaroop
- Neurobiology-Neurodegeneration and Repair Laboratory, NEI, National Institutes of Health, Bethesda, Maryland 20892
| | - Douglas Forrest
- From the Laboratory of Endocrinology and Receptor Biology, NIDDK, and
| |
Collapse
|
54
|
Kim SY, Yang HJ, Chang YS, Kim JW, Brooks M, Chew EY, Wong WT, Fariss RN, Rachel RA, Cogliati T, Qian H, Swaroop A. Deletion of aryl hydrocarbon receptor AHR in mice leads to subretinal accumulation of microglia and RPE atrophy. Invest Ophthalmol Vis Sci 2014; 55:6031-40. [PMID: 25159211 DOI: 10.1167/iovs.14-15091] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PURPOSE The aryl hydrocarbon receptor (AHR) is a ligand-activated nuclear receptor that regulates cellular response to environmental signals, including UV and blue wavelength light. This study was undertaken to elucidate AHR function in retinal homeostasis. METHODS RNA-seq data sets were examined for Ahr expression in the mouse retina and rod photoreceptors. The Ahr(-/-) mice were evaluated by fundus imaging, optical coherence tomography, histology, immunohistochemistry, and ERG. For light damage experiments, adult mice were exposed to 14,000 to 15,000 lux of diffuse white light for 2 hours. RESULTS In mouse retina, Ahr transcripts were upregulated during development, with continued increase in aging rod photoreceptors. Fundus examination of 3-month-old Ahr(-/-) mice revealed subretinal autofluorescent spots, which increased in number with age and following acute light exposure. Ahr(-/-) retina also showed subretinal microglia accumulation that correlated with autofluorescence changes, RPE abnormalities, and reactivity against immunoglobulin, complement factor H, and glial fibrillary acidic protein. Functionally, Ahr(-/-) mice displayed reduced ERG c-wave amplitudes. CONCLUSIONS The Ahr(-/-) mice exhibited subretinal accumulation of microglia and focal RPE atrophy, phenotypes observed in AMD. Together with a recently published report on another Ahr(-/-) mouse model, our study suggests that AHR has a protective role in the retina as an environmental stress sensor. As such, its altered function may contribute to human AMD progression and provide a target for pharmacological intervention.
Collapse
Affiliation(s)
- Soo-Young Kim
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Hyun-Jin Yang
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Yi-Sheng Chang
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States Department of Ophthalmology, National Cheng Kung University and Hospital, Tainan, Taiwan
| | - Jung-Woong Kim
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Matthew Brooks
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Emily Y Chew
- Division of Epidemiology and Clinical Application, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Wai T Wong
- Section on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Robert N Fariss
- Imaging Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Rivka A Rachel
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Tiziana Cogliati
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Haohua Qian
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Anand Swaroop
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
55
|
Tran NM, Chen S. Mechanisms of blindness: animal models provide insight into distinct CRX-associated retinopathies. Dev Dyn 2014; 243:1153-66. [PMID: 24888636 DOI: 10.1002/dvdy.24151] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/24/2014] [Accepted: 05/10/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The homeodomain transcription factor CRX is a crucial regulator of mammalian photoreceptor gene expression. Mutations in the human CRX gene are associated with dominant inherited retinopathies Retinitis Pigmentosa (RP), Cone-Rod Dystrophy (CoRD), and Leber Congenital Amaurosis (LCA), of varying severity. In vitro and in vivo assessment of mutant CRX proteins have revealed pathogenic mechanisms for several mutations, but no comprehensive mutation-disease correlation has yet been reported. RESULTS Here we describe four different classes of disease-causing CRX mutations, characterized by mutation type, pathogenetic mechanism, and the molecular activity of the mutant protein: (1) hypomorphic missense mutations with reduced DNA binding, (2) antimorphic missense mutations with variable DNA binding, (3) antimorphic frameshift/nonsense mutations with intact DNA binding, and (4) antimorphic frameshift mutations with reduced DNA binding. Mammalian models representing three of these classes have been characterized. CONCLUSIONS Models carrying Class I mutations display a mild dominant retinal phenotype and recessive LCA, while models carrying Class III and IV mutations display characteristically distinct dominant LCA phenotypes. These animal models also reveal unexpected pathogenic mechanisms underlying CRX-associated retinopathies. The complexity of genotype-phenotype correlation for CRX-associated diseases highlights the value of developing comprehensive "true-to-disease" animal models for understanding pathologic mechanisms and testing novel therapeutic approaches.
Collapse
Affiliation(s)
- Nicholas M Tran
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, Missouri
| | | |
Collapse
|
56
|
Hao H, Veleri S, Sun B, Kim DS, Keeley PW, Kim JW, Yang HJ, Yadav SP, Manjunath SH, Sood R, Liu P, Reese BE, Swaroop A. Regulation of a novel isoform of Receptor Expression Enhancing Protein REEP6 in rod photoreceptors by bZIP transcription factor NRL. Hum Mol Genet 2014; 23:4260-71. [PMID: 24691551 DOI: 10.1093/hmg/ddu143] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The Maf-family leucine zipper transcription factor NRL is essential for rod photoreceptor development and functional maintenance in the mammalian retina. Mutations in NRL are associated with human retinopathies, and loss of Nrl in mice leads to a cone-only retina with the complete absence of rods. Among the highly down-regulated genes in the Nrl(-/-) retina, we identified receptor expression enhancing protein 6 (Reep6), which encodes a member of a family of proteins involved in shaping of membrane tubules and transport of G-protein coupled receptors. Here, we demonstrate the expression of a novel Reep6 isoform (termed Reep6.1) in the retina by exon-specific Taqman assay and rapid analysis of complementary deoxyribonucleic acid (cDNA) ends (5'-RACE). The REEP6.1 protein includes 27 additional amino acids encoded by exon 5 and is specifically expressed in rod photoreceptors of developing and mature retina. Chromatin immunoprecipitation assay identified NRL binding within the Reep6 intron 1. Reporter assays in cultured cells and transfections in retinal explants mapped an intronic enhancer sequence that mediated NRL-directed Reep6.1 expression. We also demonstrate that knockdown of Reep6 in mouse and zebrafish resulted in death of retinal cells. Our studies implicate REEP6.1 as a key functional target of NRL-centered transcriptional regulatory network in rod photoreceptors.
Collapse
Affiliation(s)
- Hong Hao
- Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shobi Veleri
- Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Bo Sun
- Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Douglas S Kim
- Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, VA, USA
| | - Patrick W Keeley
- Neuroscience Research Institute Department of Molecular, Cellular and Developmental Biology and
| | - Jung-Woong Kim
- Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hyun-Jin Yang
- Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sharda P Yadav
- Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Souparnika H Manjunath
- Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Raman Sood
- Oncogenesis and Development Section and Zebrafish Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Paul Liu
- Oncogenesis and Development Section and Zebrafish Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin E Reese
- Neuroscience Research Institute Department of Psychological and Brain Sciences, University of California at Santa Barbara, CA, USA
| | - Anand Swaroop
- Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|