51
|
Wang Y, Zhang H, Sun W, Wang S, Zhang S, Zhu L, Chen Y, Xie L, Sun Z, Yan B. Macrophages mediate corticotomy-accelerated orthodontic tooth movement. Sci Rep 2018; 8:16788. [PMID: 30429494 PMCID: PMC6235963 DOI: 10.1038/s41598-018-34907-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 10/26/2018] [Indexed: 12/25/2022] Open
Abstract
Clinical evidence has suggested that surgical corticotomy of the alveolar bone can accelerate local orthodontic tooth movement (OTM), but the underlying cell and molecular mechanisms remain largely unclear. The present study examined the role of macrophages played in corticotomy-assisted OTM. Orthodontic nickel-titanium springs were applied to the left maxillary first molars of rats or mice to induce OTM with or without corticotomy. Corticotomy enhanced OTM distance by accelerating movement through induction of local osteoclastogenesis and macrophage infiltration during OTM. Further analysis showed that macrophages were polarized toward an M1-like phenotype immediately after corticotomy and then switched to an M2-like phenotype during OTM. The microenvironment of corticotomy induced macrophage infiltration and polarization through the production of TNF-α. More importantly, the amount of OTM induced by corticotomy was significantly decreased after mice were depleted of monocyte/macrophages by injection of liposome-encapsulated clodronate. Further experiments by incubating cultured macrophages with fresh tissue suspension obtained from post-corticotomy gingiva switched the cells to an M1 phenotype through activation of the nuclear factor-κB (NF-κB) signaling pathway, and to an M2 phenotype through activation of the JAK/STAT3 signaling pathway. Our results suggest that corticotomy induces macrophage polarization first by activating the NF-κB signaling pathway and later by activating the JAK/STAT3 signaling pathway, and that these processes contribute to OTM by triggering production of inflammatory cytokines and osteoclastogenesis.
Collapse
Affiliation(s)
- Yan Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou Science & Technology Town Hospital, 215153, Suzhou, Jiangsu Province, China
| | - Hanwen Zhang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Wen Sun
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Siyu Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Shuting Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Linlin Zhu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yali Chen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Lizhe Xie
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Zongyang Sun
- Division of Orthodontics, College of Dentistry, Ohio State University, Columbus, USA
| | - Bin Yan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China. .,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
52
|
Wang H, Feng C, Jin Y, Tan W, Wei F. Identification and characterization of circular RNAs involved in mechanical force-induced periodontal ligament stem cells. J Cell Physiol 2018; 234:10166-10177. [PMID: 30422310 DOI: 10.1002/jcp.27686] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/09/2018] [Indexed: 12/11/2022]
Abstract
Circular RNAs (circRNAs) play critical roles in signal transduction during cell proliferation, differentiation, and apoptosis in a posttranscriptional manner. Recently, circRNAs have been proved to be a large class of animal RNAs with regulatory potency. However, whether circRNAs can respond to mechanical force (MF) and impact on human periodontal ligament stem cells (PDLSCs) and the orthodontic tooth movement (OTM) process remain unknown. Here, we investigated the circRNAs expression patterns in PDLSCs induced by MF and found that circRNAs were responsive to the MF in PDLSCs. Through the valid reads' distribution analysis, we found that the majority of reads in both the control PDLSCs and the MF-induced PDLSCs were distributed in exons. Then we analyzed Gene Ontology terms of genes that overlap with or are neighbors of the stress-responsive circRNAs and found unique enrichment patterns in biological processes, molecular function, and cellular component of PDLSCs. Next, we predicted the possible functions of circRNAs through circRNAs-miRNAs networks. We found that one circRNA may regulate one or several miRNA/miRNAs and one miRNA may interact with one or multiple circRNA/circRNAs. Importantly, a number of circRNAs were predicted to directly or indirectly regulate miRNAs-mediated osteogenic differentiation in mesenchymal stem cells. For instance, circRNA3140 was highly and widely associated with microRNA-21, which plays a critical role in MF-induced osteogenic differentiation of PDLSCs. Taken together, these findings reveal a previously unrecognized mechanism that MF can induce the expression changes of circRNAs in PDLSCs, which may modulate the OTM process and the alveolar bone remodeling.
Collapse
Affiliation(s)
- Hong Wang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China.,Department of Orthodontics, School of Stomatology, Shandong University, Jinan, China
| | - Cheng Feng
- Jinan Hospital of Traditional Chinese Medicine, Jinan, China
| | - Ye Jin
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China.,Department of Orthodontics, School of Stomatology, Shandong University, Jinan, China
| | - Wanye Tan
- Department of Stomatology, Qilu Hospital, Shandong University, Jinan, China
| | - Fulan Wei
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China.,Department of Orthodontics, School of Stomatology, Shandong University, Jinan, China
| |
Collapse
|
53
|
Mechanobiology of Periodontal Ligament Stem Cells in Orthodontic Tooth Movement. Stem Cells Int 2018; 2018:6531216. [PMID: 30305820 PMCID: PMC6166363 DOI: 10.1155/2018/6531216] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/28/2018] [Accepted: 08/12/2018] [Indexed: 12/19/2022] Open
Abstract
Periodontal ligament stem cells (PDLSCs) possess self-renewal, multilineage differentiation, and immunomodulatory properties. They play a crucial role in maintaining periodontal homeostasis and also participated in orthodontic tooth movement (OTM). Various studies have applied controlled mechanical stimulation to PDLSCs and investigated the effects of orthodontic force on PDLSCs. Physical stimuli can regulate the proliferation and differentiation of PDLSCs. During the past decade, a variety of studies has demonstrated that applied forces can activate different signaling pathways in PDLSCs, including MAPK, TGF-β/Smad, and Wnt/β-catenin pathways. Besides, recent advances have highlighted the critical role of orthodontic force in PDLSC fate through mediators, such as IL-11, CTHRC1, miR-21, and H2S. This perspective review critically discusses the PDLSC fate to physical force in vitro and orthodontic force in vivo, as well as the underlying molecular mechanism involved in OTM.
Collapse
|
54
|
Hu CB, Sui BD, Wang BY, Li G, Hu CH, Zheng CX, Du FY, Zhu CH, Li HB, Feng Y, Jin Y, Yu XR. NDRG2 suppression as a molecular hallmark of photoreceptor-specific cell death in the mouse retina. Cell Death Discov 2018; 4:32. [PMID: 30245855 PMCID: PMC6135825 DOI: 10.1038/s41420-018-0101-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 08/23/2018] [Indexed: 02/07/2023] Open
Abstract
Photoreceptor cell death is recognized as the key pathogenesis of retinal degeneration, but the molecular basis underlying photoreceptor-specific cell loss in retinal damaging conditions is virtually unknown. The N-myc downstream regulated gene (NDRG) family has recently been reported to regulate cell viability, in particular NDRG1 has been uncovered expression in photoreceptor cells. Accordingly, we herein examined the potential roles of NDRGs in mediating photoreceptor-specific cell loss in retinal damages. By using mouse models of retinal degeneration and the 661 W photoreceptor cell line, we showed that photoreceptor cells are indeed highly sensitive to light exposure and the related oxidative stress, and that photoreceptor cells are even selectively diminished by phototoxins of the alkylating agent N-Methyl-N-nitrosourea (MNU). Unexpectedly, we discovered that of all the NDRG family members, NDRG2, but not the originally hypothesized NDRG1 or other NDRG subtypes, was selectively expressed and specifically responded to retinal damaging conditions in photoreceptor cells. Furthermore, functional experiments proved that NDRG2 was essential for photoreceptor cell viability, which could be attributed to NDRG2 control of the photo-oxidative stress, and that it was the suppression of NDRG2 which led to photoreceptor cell loss in damaging conditions. More importantly, NDRG2 preservation contributed to photoreceptor-specific cell maintenance and retinal protection both in vitro and in vivo. Our findings revealed a previously unrecognized role of NDRG2 in mediating photoreceptor cell homeostasis and established for the first time the molecular hallmark of photoreceptor-specific cell death as NDRG2 suppression, shedding light on improved understanding and therapy of retinal degeneration.
Collapse
Affiliation(s)
- Cheng-Biao Hu
- 1Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061 Xi'an, Shaanxi China.,2Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi Sheng China
| | - Bing-Dong Sui
- 3State Key Laboratory of Military Stomatology, Center for Tissue Engineering, Fourth Military Medical University, 710032 Xi'an, Shaanxi China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, 710032 Xi'an, Shaanxi China
| | - Bao-Ying Wang
- 1Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061 Xi'an, Shaanxi China.,2Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi Sheng China
| | - Gao Li
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, 710032 Xi'an, Shaanxi China.,5Department of Stomatology, The People's Hospital of Zhangqiu City, 250200 Zhangqiu, Shandong China
| | - Cheng-Hu Hu
- 3State Key Laboratory of Military Stomatology, Center for Tissue Engineering, Fourth Military Medical University, 710032 Xi'an, Shaanxi China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, 710032 Xi'an, Shaanxi China
| | - Chen-Xi Zheng
- 3State Key Laboratory of Military Stomatology, Center for Tissue Engineering, Fourth Military Medical University, 710032 Xi'an, Shaanxi China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, 710032 Xi'an, Shaanxi China
| | - Fang-Ying Du
- 1Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061 Xi'an, Shaanxi China.,2Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi Sheng China
| | - Chun-Hui Zhu
- 1Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061 Xi'an, Shaanxi China.,2Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi Sheng China
| | - Hong-Bo Li
- 1Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061 Xi'an, Shaanxi China.,2Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi Sheng China
| | - Yan Feng
- 1Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061 Xi'an, Shaanxi China.,2Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi Sheng China
| | - Yan Jin
- 3State Key Laboratory of Military Stomatology, Center for Tissue Engineering, Fourth Military Medical University, 710032 Xi'an, Shaanxi China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, 710032 Xi'an, Shaanxi China
| | - Xiao-Rui Yu
- 1Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061 Xi'an, Shaanxi China.,2Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi Sheng China
| |
Collapse
|
55
|
Bone remodeling induced by mechanical forces is regulated by miRNAs. Biosci Rep 2018; 38:BSR20180448. [PMID: 29844019 PMCID: PMC6028748 DOI: 10.1042/bsr20180448] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/13/2018] [Accepted: 05/25/2018] [Indexed: 12/14/2022] Open
Abstract
The relationship between mechanical force and alveolar bone remodeling is an important issue in orthodontics because tooth movement is dependent on the response of bone tissue to the mechanical force induced by the appliances used. Mechanical cyclical stretch (MCS), fluid shear stress (FSS), compression, and microgravity play different roles in the cell differentiation and proliferation involved in bone remodeling. However, the underlying mechanisms are unclear, particularly the molecular pathways regulated by non-coding RNAs (ncRNAs) that play essential roles in bone remodeling. Amongst the various ncRNAs, miRNAs act as post-transcriptional regulators that inhibit the expression of their target genes. miRNAs are considered key regulators of many biologic processes including bone remodeling. Here, we review the role of miRNAs in mechanical force-induced bone metabolism.
Collapse
|
56
|
Wang YJ, Zhao P, Sui BD, Liu N, Hu CH, Chen J, Zheng CX, Liu AQ, Xuan K, Pan YP, Jin Y. Resveratrol enhances the functionality and improves the regeneration of mesenchymal stem cell aggregates. Exp Mol Med 2018; 50:1-15. [PMID: 29959311 PMCID: PMC6026147 DOI: 10.1038/s12276-018-0109-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 03/20/2018] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cell (MSC)-based regeneration, specifically cell aggregate or cell sheet engineering, is a promising approach for tissue reconstruction. Considering the advantages of ease of harvest and lack of immune rejection, the application of autologous MSCs (i.e., patients' own MSCs) in regenerative medicine has developed considerable interest. However, the impaired cell viability and regenerative potential following MSCs impacted by disease remain a major challenge. Resveratrol (RSV) exhibits reliable and extensive rejuvenative activities that have received increasing clinical attention. Here, we uncovered that resveratrol enhances the functionality and improves the regeneration of mesenchymal stem cell aggregates. Periodontal ligament MSCs (PDLSCs) from normal control subjects (N-PDLSCs) and periodontitis patients (P-PDLSCs) were investigated. Compared to N-PDLSCs, P-PDLSCs were less capable of forming cell aggregates, and P-PDLSC aggregates showed impaired osteogenesis and regeneration. These functional declines could be mimicked in N-PDLSCs by tumor necrosis factor alpha (TNF-α) treatment. Notably, a TNF-α-induced functional decline in N-PDLSC aggregates was rescued by RSV application. More importantly, in both N-PDLSCs and P-PDLSCs, RSV promoted cell aggregate formation and improved their osteogenic potential. Furthermore, as proven ectopically in vivo, the tissue regenerative capability of P-PDLSC aggregates was also enhanced after RSV treatment during aggregate formation in vitro. Finally, in a rat in situ regeneration model, we successfully applied both N-PDLSC aggregates and P-PDLSC aggregates to repair periodontal defects upon long-term functional improvements by RSV preconditioning. Together, our data unravel a novel methodology for using pharmacology (i.e., RSV)-based cell aggregate engineering to improve the functionality and facilitate the regeneration of MSCs from both healthy and inflammatory microenvironments, shedding light on improving the application of autologous MSC-mediated regenerative medicine.
Collapse
Affiliation(s)
- Yi-Jing Wang
- Department of Periodontics and Oral Biology, School of Stomatology, China Medical University, Shenyang, Liaoning, 110002, China.,General Hospital of Shenyang Military Region, Shenyang, Liaoning, 110016, China
| | - Pan Zhao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, 710032, China
| | - Bing-Dong Sui
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Nu Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.,Department of Periodontology, Stomatological Hospital, Zunyi Medical College, Zunyi, Guizhou, 563003, China
| | - Cheng-Hu Hu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, 710032, China
| | - Ji Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Chen-Xi Zheng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - An-Qi Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Kun Xuan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Ya-Ping Pan
- Department of Periodontics and Oral Biology, School of Stomatology, China Medical University, Shenyang, Liaoning, 110002, China.
| | - Yan Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
57
|
Wang Y, Pang X, Wu J, Jin L, Yu Y, Gobin R, Yu J. MicroRNA hsa-let-7b suppresses the odonto/osteogenic differentiation capacity of stem cells from apical papilla by targeting MMP1. J Cell Biochem 2018; 119:6545-6554. [PMID: 29384216 DOI: 10.1002/jcb.26737] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/25/2018] [Indexed: 12/21/2022]
Abstract
MicroRNA let-7 family acts as the key regulator of the differentiation of mesenchymal stem cells (MSCs). However, the influence of let-7b on biological characteristics of stem cells from apical papilla (SCAPs) is still controversial. In this study, the expression of hsa-let-7b was obviously downregulated during the osteogenic differentiation of SCAPs. SCAPs were then infected with hsa-let-7b or hsa-let-7b inhibitor lentiviruses. The proliferation ability was determined by CCK-8 and flow cytometry. The odonto/osteogenic differentiation capacity was analyzed by alkaline phosphatase (ALP) activity, alizarin red staining, Western blot assay, and real-time RT-PCR. Bioinformatics analysis was used to screen out the target of hsa-let-7b and the target relationship was confirmed by dual luciferase reporter assay. Hsa-let-7b was of no influence on the proliferation of SCAPs. Interferential expression of hsa-let-7b increased the ALP activity as well as the formation of calcified nodules of SCAPs. Moreover, the mRNA levels of osteoblastic markers (ALP, RUNX2, OSX, OPN, and OCN) were upregulated while the protein levels of DSPP, ALP, RUNX2, OSX, OPN, and OCN also increased considerably. Conversely, overexpression of hsa-let-7b inhibited the odonto/osteogenic differentiation capacity of SCAPs. Bioinformatics analysis revealed a putative binding site of hsa-let-7b in the matrix metalloproteinase 1 (MMP1) 3'-untranslated region (3'-UTR). Dual luciferase reporter assay confirmed that hsa-let-7b targets MMP1. The odonto/osteogenic differentiation ability of SCAPs ascended after repression of hsa-let-7b, which was then reversed after co-transfection with siMMP1. Together, hsa-let-7b can suppress the odonto/osteogenic differentiation capacity of SCAPs by targeting MMP1.
Collapse
Affiliation(s)
- Yanqiu Wang
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Endodontic, School of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiyao Pang
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Endodontic, School of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jintao Wu
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Endodontic, School of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lin Jin
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, Jiangsu, China.,Nantong Stomatological Hospital, Nantong, Jiangsu, China
| | - Yan Yu
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Endodontic, School of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Romila Gobin
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jinhua Yu
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Endodontic, School of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
58
|
Lv YJ, Yang Y, Sui BD, Hu CH, Zhao P, Liao L, Chen J, Zhang LQ, Yang TT, Zhang SF, Jin Y. Resveratrol counteracts bone loss via mitofilin-mediated osteogenic improvement of mesenchymal stem cells in senescence-accelerated mice. Theranostics 2018; 8:2387-2406. [PMID: 29721087 PMCID: PMC5928897 DOI: 10.7150/thno.23620] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/18/2018] [Indexed: 01/08/2023] Open
Abstract
Rational: Senescence of mesenchymal stem cells (MSCs) and the related functional decline of osteogenesis have emerged as the critical pathogenesis of osteoporosis in aging. Resveratrol (RESV), a small molecular compound that safely mimics the effects of dietary restriction, has been well documented to extend lifespan in lower organisms and improve health in aging rodents. However, whether RESV promotes function of senescent stem cells in alleviating age-related phenotypes remains largely unknown. Here, we intend to investigate whether RESV counteracts senescence-associated bone loss via osteogenic improvement of MSCs and the underlying mechanism. Methods: MSCs derived from bone marrow (BMMSCs) and the bone-specific, senescence-accelerated, osteoblastogenesis/osteogenesis-defective mice (the SAMP6 strain) were used as experimental models. In vivo application of RESV was performed at 100 mg/kg intraperitoneally once every other day for 2 months, and in vitro application of RESV was performed at 10 μM. Bone mass, bone formation rates and osteogenic differentiation of BMMSCs were primarily evaluated. Metabolic statuses of BMMSCs and the mitochondrial activity, transcription and morphology were also examined. Mitofilin expression was assessed at both mRNA and protein levels, and short hairpin RNA (shRNA)-based gene knockdown was applied for mechanistic experiments. Results: Chronic intermittent application of RESV enhances bone formation and counteracts accelerated bone loss, with RESV improving osteogenic differentiation of senescent BMMSCs. Furthermore, in rescuing osteogenic decline under BMMSC senescence, RESV restores cellular metabolism through mitochondrial functional recovery via facilitating mitochondrial autonomous gene transcription. Molecularly, in alleviating senescence-associated mitochondrial disorders of BMMSCs, particularly the mitochondrial morphological alterations, RESV upregulates Mitofilin, also known as inner membrane protein of mitochondria (Immt) or Mic60, which is the core component of the mitochondrial contact site and cristae organizing system (MICOS). Moreover, Mitofilin is revealed to be indispensable for mitochondrial homeostasis and osteogenesis of BMMSCs, and that insufficiency of Mitofilin leads to BMMSC senescence and bone loss. More importantly, Mitofilin mediates resveratrol-induced mitochondrial and osteogenic improvements of BMMSCs in senescence. Conclusion: Our findings uncover osteogenic functional improvements of senescent MSCs as critical impacts in anti-osteoporotic practice of RESV, and unravel Mitofilin as a novel mechanism mediating RESV promotion on mitochondrial function in stem cell senescence.
Collapse
|
59
|
Expression pattern of YAP and TAZ during orthodontic tooth movement in rats. J Mol Histol 2018; 49:123-131. [DOI: 10.1007/s10735-017-9752-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/30/2017] [Indexed: 12/29/2022]
|
60
|
Zhou HS, Li M, Sui BD, Wei L, Hou R, Chen WS, Li Q, Bi SH, Zhang JZ, Yi DH. Lipopolysaccharide impairs permeability of pulmonary microvascular endothelial cells via Connexin40. Microvasc Res 2018; 115:58-67. [PMID: 28870649 DOI: 10.1016/j.mvr.2017.08.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/25/2017] [Accepted: 08/30/2017] [Indexed: 12/27/2022]
Abstract
The endotoxin lipopolysaccharide (LPS)-induced pulmonary endothelial barrier disruption is a key pathogenesis of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). However, the molecular mechanisms underlying LPS-impaired permeability of pulmonary microvascular endothelial cells (PMVECs) are not fully understood. Gap junctions, particularly Connexin40 (Cx40), are necessary for the maintenance of normal vascular function. In this study, we for the first time investigated the role of Cx40 in LPS-impaired permeability of PMVECs and provided potential therapeutic approaches based on mechanistic findings of Cx40 regulation by LPS stimuli. Rat PMVECs were isolated, cultured and identified with cell morphology, specific markers, ultrastructural characteristics and functional tests. Western blot analysis demonstrated that Cx40 is the major connexin highly expressed in PMVECs. Furthermore, by inhibiting Cx40 in a time-dependent manner, LPS impaired gap junction function and induced permeability injury of PMVECs. The key role of Cx40 decline in mediating detrimental effects of LPS was further confirmed in rescue experiments through Cx40 overexpression. Mechanistically, LPS stress on PMVECs inhibited the protein kinase C (PKC) pathway, which may synergize with the inflammatory nuclear factor kappaB (NFκB) signaling activation in suppressing Cx40 expression level and phosphorylation. Moreover, through pharmacological PKC activation or NFκB inhibition, Cx40 activity in PMVECs could be restored, leading to maintained barrier function under LPS stress. Our findings uncover a previously unrecognized role of Cx40 and its regulatory mechanisms in impaired endothelial integrity under endotoxin and inflammation, shedding light on intervention approaches to improve pulmonary endothelial barrier function in ALI and ARDS.
Collapse
Affiliation(s)
- Hua-Song Zhou
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Meng Li
- State Key Laboratory of Military Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Bing-Dong Sui
- State Key Laboratory of Military Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China; Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104, USA
| | - Lei Wei
- Xi'an Satellite Control Centre Clinic, Xi'an, Shaanxi 710043, China
| | - Rui Hou
- State Key Laboratory of Military Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Wen-Sheng Chen
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Qiang Li
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Sheng-Hui Bi
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jin-Zhou Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Ding-Hua Yi
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
61
|
Abstract
The niche plays critical roles in regulating functionality and determining regenerative outcomes of stem cells, for which establishment of favorable microenvironments is in demand in translational medicine. In recent years, the cell aggregate technology has shown immense potential to reconstruct a beneficial topical niche for stem cell-mediated regeneration, which has been recognized as a promising concept for high-density stem cell delivery with preservation of the self-produced, tissue-specific extracellular matrix microenvironments. Here, we describe the basic methodology of stem cell aggregate-based niche engineering and quality check indexes prior to application.
Collapse
|
62
|
Yu W, Zheng Y, Yang Z, Fei H, Wang Y, Hou X, Sun X, Shen Y. N-AC-l-Leu-PEI-mediated miR-34a delivery improves osteogenic differentiation under orthodontic force. Oncotarget 2017; 8:110460-110473. [PMID: 29299161 PMCID: PMC5746396 DOI: 10.18632/oncotarget.22790] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/14/2017] [Indexed: 01/08/2023] Open
Abstract
Rare therapeutic genes or agents are reported to control orthodontic bone remodeling. MicroRNAs have recently been associated with bone metabolism. Here, we report the in vitro and in vivo effects of miR-34a on osteogenic differentiation under orthodontic force using an N-acetyl-L-leucine-modified polyethylenimine (N-Ac-l-Leu-PEI) carrier. N-Ac-l-Leu-PEI exhibited low cytotoxicity and high miR-34a transfection efficiency in rat bone mineral stem cells and local alveolar bone tissue. After transfection, miR-34a enhanced the osteogenic differentiation of Runx2 and ColI, Runx2 and ColI protein levels, and early osteogenesis function under orthodontic strain in vitro. MiR-34a also enhanced alveolar bone remodeling under orthodontic force in vivo, as evidenced by elevated gene and protein expression, upregulated indices of alveolar bone anabolism, and diminished tooth movement. We determined that the mechanism miR-34a in osteogenesis under orthodontic force may be associated with GSK-3β. These results suggested that miR-34a delivered by N-Ac-l-Leu-PEI could be a potential therapeutic target for orthodontic treatment.
Collapse
Affiliation(s)
- Wenwen Yu
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Yi Zheng
- Department of Periodontics, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Zhujun Yang
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Hongbo Fei
- Department of Periodontics, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Yang Wang
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Xu Hou
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Xinhua Sun
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Yuqin Shen
- Department of Periodontics, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| |
Collapse
|
63
|
Sui BD, Hu CH, Liu AQ, Zheng CX, Xuan K, Jin Y. Stem cell-based bone regeneration in diseased microenvironments: Challenges and solutions. Biomaterials 2017; 196:18-30. [PMID: 29122279 DOI: 10.1016/j.biomaterials.2017.10.046] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/21/2017] [Accepted: 10/28/2017] [Indexed: 12/17/2022]
Abstract
Restoration of extensive bone loss and defects remain as an unfulfilled challenge in modern medicine. Given the critical contributions to bone homeostasis and diseases, mesenchymal stem cells (MSCs) have shown great promise to jumpstart and facilitate bone healing, with immense regenerative potential in both pharmacology-based endogenous MSC rescue/mobilization in skeletal diseases and emerging application of MSC transplantation in bone tissue engineering and cytotherapy. However, efficacy of MSC-based bone regeneration was not always achieved; particularly, fulfillment of MSC-mediated bone healing in diseased microenvironments of host comorbidities remains as a major challenge. Indeed, impacts of diseased microenvironments on MSC function rely not only on the dynamic regulation of resident MSCs by surrounding niche to convoy pathological signals of bone, but also on the profound interplay between transplanted MSCs and recipient components that mediates and modulates therapeutic effects on skeletal conditions. Accordingly, novel solutions have recently been developed, including improving resistance of MSCs to diseased microenvironments, recreating beneficial microenvironments to guarantee MSC-based regeneration, and usage of subcellular vesicles of MSCs in cell-free therapies. In this review, we summarize state-of-the-art knowledge regarding applications and challenges of MSC-mediated bone healing, further offering principles and effective strategies to optimize MSC-based bone regeneration in aging and diseases.
Collapse
Affiliation(s)
- Bing-Dong Sui
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Research and Development Center for Tissue Engineering, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Cheng-Hu Hu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi 710032, China
| | - An-Qi Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Chen-Xi Zheng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Research and Development Center for Tissue Engineering, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Kun Xuan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yan Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Research and Development Center for Tissue Engineering, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
64
|
Zhao P, Sui BD, Liu N, Lv YJ, Zheng CX, Lu YB, Huang WT, Zhou CH, Chen J, Pang DL, Fei DD, Xuan K, Hu CH, Jin Y. Anti-aging pharmacology in cutaneous wound healing: effects of metformin, resveratrol, and rapamycin by local application. Aging Cell 2017; 16:1083-1093. [PMID: 28677234 PMCID: PMC5595695 DOI: 10.1111/acel.12635] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2017] [Indexed: 12/17/2022] Open
Abstract
Cutaneous wounds are among the most common soft tissue injuries and are particularly hard to heal in aging. Caloric restriction (CR) is well documented to extend longevity; pharmacologically, profound rejuvenative effects of CR mimetics have been uncovered, especially metformin (MET), resveratrol (RSV), and rapamycin (RAPA). However, locally applied impacts and functional differences of these agents on wound healing remain to be established. Here, we discovered that chronic topical administration of MET and RSV, but not RAPA, accelerated wound healing with improved epidermis, hair follicles, and collagen deposition in young rodents, and MET exerted more profound effects. Furthermore, locally applied MET and RSV improved vascularization of the wound beds, which were attributed to stimulation of adenosine monophosphate-activated protein kinase (AMPK) pathway, the key mediator of wound healing. Notably, in aged skin, AMPK pathway was inhibited, correlated with impaired vasculature and reduced healing ability. As therapeutic approaches, local treatments of MET and RSV prevented age-related AMPK suppression and angiogenic inhibition in wound beds. Moreover, in aged rats, rejuvenative effects of topically applied MET and RSV on cell viability of wound beds were confirmed, of which MET showed more prominent anti-aging effects. We further verified that only MET promoted wound healing and cutaneous integrity in aged skin. These findings clarified differential effects of CR-based anti-aging pharmacology in wound healing, identified critical angiogenic and rejuvenative mechanisms through AMPK pathway in both young and aged skin, and unraveled chronic local application of MET as the optimal and promising regenerative agent in treating cutaneous wound defects.
Collapse
Affiliation(s)
- Pan Zhao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases; Center for Tissue Engineering; School of Stomatology; Fourth Military Medical University; Xi'an Shaanxi 710032 China
- Xi'an Institute of Tissue Engineering and Regenerative Medicine; Xi'an Shaanxi 710032 China
| | - Bing-Dong Sui
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases; Center for Tissue Engineering; School of Stomatology; Fourth Military Medical University; Xi'an Shaanxi 710032 China
- Research and Development Center for Tissue Engineering; Fourth Military Medical University; Xi'an Shaanxi 710032 China
| | - Nu Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases; Center for Tissue Engineering; School of Stomatology; Fourth Military Medical University; Xi'an Shaanxi 710032 China
- Research and Development Center for Tissue Engineering; Fourth Military Medical University; Xi'an Shaanxi 710032 China
- Department of Periodontology; Stomatological Hospital; Zunyi Medical College; Zunyi Guizhou 563003 China
| | - Ya-Jie Lv
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases; Center for Tissue Engineering; School of Stomatology; Fourth Military Medical University; Xi'an Shaanxi 710032 China
- Department of Dermatology; Tangdu Hospital; Fourth Military Medical University; Xi'an Shaanxi 710069 China
| | - Chen-Xi Zheng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases; Center for Tissue Engineering; School of Stomatology; Fourth Military Medical University; Xi'an Shaanxi 710032 China
- Research and Development Center for Tissue Engineering; Fourth Military Medical University; Xi'an Shaanxi 710032 China
| | - Yong-Bo Lu
- Xi'an Institute of Tissue Engineering and Regenerative Medicine; Xi'an Shaanxi 710032 China
| | - Wen-Tao Huang
- Xi'an Institute of Tissue Engineering and Regenerative Medicine; Xi'an Shaanxi 710032 China
| | - Cui-Hong Zhou
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases; Center for Tissue Engineering; School of Stomatology; Fourth Military Medical University; Xi'an Shaanxi 710032 China
- Xi'an Institute of Tissue Engineering and Regenerative Medicine; Xi'an Shaanxi 710032 China
| | - Ji Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases; Center for Tissue Engineering; School of Stomatology; Fourth Military Medical University; Xi'an Shaanxi 710032 China
| | - Dan-Lin Pang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases; Center for Tissue Engineering; School of Stomatology; Fourth Military Medical University; Xi'an Shaanxi 710032 China
- Research and Development Center for Tissue Engineering; Fourth Military Medical University; Xi'an Shaanxi 710032 China
| | - Dong-Dong Fei
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases; Center for Tissue Engineering; School of Stomatology; Fourth Military Medical University; Xi'an Shaanxi 710032 China
| | - Kun Xuan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases; Center for Tissue Engineering; School of Stomatology; Fourth Military Medical University; Xi'an Shaanxi 710032 China
- Research and Development Center for Tissue Engineering; Fourth Military Medical University; Xi'an Shaanxi 710032 China
| | - Cheng-Hu Hu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases; Center for Tissue Engineering; School of Stomatology; Fourth Military Medical University; Xi'an Shaanxi 710032 China
- Xi'an Institute of Tissue Engineering and Regenerative Medicine; Xi'an Shaanxi 710032 China
| | - Yan Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases; Center for Tissue Engineering; School of Stomatology; Fourth Military Medical University; Xi'an Shaanxi 710032 China
- Research and Development Center for Tissue Engineering; Fourth Military Medical University; Xi'an Shaanxi 710032 China
| |
Collapse
|
65
|
Mechanosensitive miRNAs and Bone Formation. Int J Mol Sci 2017; 18:ijms18081684. [PMID: 28767056 PMCID: PMC5578074 DOI: 10.3390/ijms18081684] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/25/2017] [Accepted: 07/28/2017] [Indexed: 12/18/2022] Open
Abstract
Mechanical stimuli are required for the maintenance of skeletal integrity and bone mass. An increasing amount of evidence indicates that multiple regulators (e.g., hormone, cytoskeleton proteins and signaling pathways) are involved in the mechanical stimuli modulating the activities of osteogenic cells and the process of bone formation. Significantly, recent studies have showed that several microRNAs (miRNAs) were sensitive to various mechanical stimuli and played a crucial role in osteogenic differentiation and bone formation. However, the functional roles and further mechanisms of mechanosensitive miRNAs in bone formation are not yet completely understood. This review highlights the roles of mechanosensitive miRNAs in osteogenic differentiation and bone formation and underlines their potential therapeutic application for bone loss induced by the altering of mechanical stimuli.
Collapse
|
66
|
Yan GQ, Wang X, Yang F, Yang ML, Zhang GR, Wang GK, Zhou Q. MicroRNA-22 Promoted Osteogenic Differentiation of Human Periodontal Ligament Stem Cells by Targeting HDAC6. J Cell Biochem 2017; 118:1653-1658. [PMID: 28195408 DOI: 10.1002/jcb.25931] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/10/2017] [Indexed: 12/11/2022]
Abstract
Stem cells transplantation is a promising therapy strategy for accelerating periodontal regeneration and reconstruction. Genetic modification could induce stem cells directional differentiation to facilitate recovery of physiological functions. In this study, we investigated the role and mechanism of miR-22 on human periodontal ligament stem cells (PDLSCs). First, a cellular model of osteogenic differentiation was first established by osteogenic inductive cocktail. Real-time PCR determined that expression of miR-22 was significantly increased during PDLSCs osteogenic differentiation. Alizirin red staining showed that overexpression of miR-22 in PDLSCs induced better mineralized nodule formation. Real-time PCR and Western blot further confirmed up-regulation of osteogenic genes Runx2 and OPN in miR-22-overexpressing PDLSCs. Conversely, inhibition of miR-22 delayed the process of PDLSCs osteogenic differentiation. Furthermore, Histone deacetylase 6 (HDAC6) was identified as a target gene of miR-22. Overexpression of miR-22 not only reduced the luciferase activity of the reporter containing the 3' untranslated region of HDAC6 mRNA, but also suppressed the endogenous protein expression of HDAC6. Rescue experiment showed that the promotion role of miR-22 in osteogenic differentiation could be relieved by overexpression of HDAC6. Meanwhile, overexpression of HDAC6 alone could also delay the osteogenic differentiation process. The results demonstrated that miR-22 promoted PDLSCs osteogenic differentiation by inhibiting HDAC6 expression, suggesting that miR-22 might be developed as a target of genetic modified stem cells therapy for periodontal diseases. J. Cell. Biochem. 118: 1653-1658, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Guang-Qi Yan
- Department of Oral and Maxillofacial Surgery, Hospital of stomatology, China Medical University School, Shenyang, Liaoning, China
| | - Xue Wang
- Department of Orthodontics, Stomatology Hospital of Shenyang, Shenyang, Liaoning, China
| | - Fan Yang
- Institution of Cardiac Surgery, Department of Cardiovascular Surgery, Changhai Hospital, The Second Military Medical University, Shenyang, China
| | - Min-Liang Yang
- Department of Oral and Maxillofacial Surgery, Hospital of stomatology, China Medical University School, Shenyang, Liaoning, China
| | - Gui-Rong Zhang
- Department of Orthodontics, Stomatology Hospital of Shenyang, Shenyang, Liaoning, China
| | - Guo-Kun Wang
- Institution of Cardiac Surgery, Department of Cardiovascular Surgery, Changhai Hospital, The Second Military Medical University, Shenyang, China
| | - Qing Zhou
- Department of Oral and Maxillofacial Surgery, Hospital of stomatology, China Medical University School, Shenyang, Liaoning, China
| |
Collapse
|
67
|
Regulatory roles of microRNAs in human dental tissues. Gene 2017; 596:9-18. [DOI: 10.1016/j.gene.2016.10.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/06/2016] [Accepted: 10/06/2016] [Indexed: 01/04/2023]
|