53
|
García-Martín E, Martínez C, Serrador M, Alonso-Navarro H, Navacerrada F, Esguevillas G, García-Albea E, Agúndez JAG, Jiménez-Jiménez FJ. Gamma-Aminobutyric Acid (Gaba) Receptors Rho (Gabrr)
Gene Polymorphisms and Risk for Migraine. Headache 2017; 57:1118-1135. [DOI: 10.1111/head.13122] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 04/19/2017] [Accepted: 04/19/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Elena García-Martín
- Department of Pharmacology; University of Extremadura; Cáceres Spain
- Red de Investigación de reacciones adversas a alergenos y fármacos; Instituto de Salud Carlos III; Madrid Spain
- AMGenomics, Edificio Tajo; Avda. de la Universidad s/n Cáceres Spain
| | - Carmen Martínez
- Red de Investigación de reacciones adversas a alergenos y fármacos; Instituto de Salud Carlos III; Madrid Spain
- Department of Pharmacology; University of Extremadura; Badajoz Spain
| | - Mercedes Serrador
- Department of Family Medicine; Hospital “Príncipe de Asturias,”, Universidad de Alcalá; Alcalá de Henares Madrid Spain
| | - Hortensia Alonso-Navarro
- Section of Neurology; Hospital Universitario del Sureste; Arganda del Rey Madrid Spain
- Department of Medicine-Neurology; Hospital “Príncipe de Asturias,” Universidad de Alcalá; Alcalá de Henares Madrid Spain
| | - Francisco Navacerrada
- Section of Neurology; Hospital Universitario del Sureste; Arganda del Rey Madrid Spain
- Service of Neurology; Hospital “Ramón y Cajal,”, Universidad de Alcalá; Madrid Spain
| | - Gara Esguevillas
- Department of Pharmacology; University of Extremadura; Cáceres Spain
| | - Esteban García-Albea
- Department of Medicine-Neurology; Hospital “Príncipe de Asturias,” Universidad de Alcalá; Alcalá de Henares Madrid Spain
| | - José A. G. Agúndez
- Department of Pharmacology; University of Extremadura; Cáceres Spain
- Red de Investigación de reacciones adversas a alergenos y fármacos; Instituto de Salud Carlos III; Madrid Spain
- AMGenomics, Edificio Tajo; Avda. de la Universidad s/n Cáceres Spain
| | - Félix Javier Jiménez-Jiménez
- Section of Neurology; Hospital Universitario del Sureste; Arganda del Rey Madrid Spain
- Department of Medicine-Neurology; Hospital “Príncipe de Asturias,” Universidad de Alcalá; Alcalá de Henares Madrid Spain
| |
Collapse
|
55
|
Faragó P, Tuka B, Tóth E, Szabó N, Király A, Csete G, Szok D, Tajti J, Párdutz Á, Vécsei L, Kincses ZT. Interictal brain activity differs in migraine with and without aura: resting state fMRI study. J Headache Pain 2017; 18:8. [PMID: 28124204 PMCID: PMC5267588 DOI: 10.1186/s10194-016-0716-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/20/2016] [Indexed: 01/03/2023] Open
Abstract
Background Migraine is one of the most severe primary headache disorders. The nature of the headache and the associated symptoms during the attack suggest underlying functional alterations in the brain. In this study, we examined amplitude, the resting state fMRI fluctuation in migraineurs with and without aura (MWA, MWoA respectively) and healthy controls. Methods Resting state functional MRI images and T1 high-resolution images were acquired from all participants. For data analysis we compared the groups (MWA-Control, MWA-MWoA, MWoA-Control). The resting state networks were identified by MELODIC. The mean time courses of the networks were identified for each participant for all networks. The time-courses were decomposed into five frequency bands by discrete wavelet decomposition. The amplitude of the frequency-specific activity was compared between groups. Furthermore, the preprocessed resting state images were decomposed by wavelet analysis into five specific frequency bands voxel-wise. The voxel-wise amplitudes were compared between groups by non-parametric permutation test. Results In the MWA-Control comparison the discrete wavelet decomposition found alterations in the lateral visual network. Higher activity was measured in the MWA group in the highest frequency band (0.16–0.08 Hz). In case of the MWA-MWoA comparison all networks showed higher activity in the 0.08–0.04 Hz frequency range in MWA, and the lateral visual network in in higher frequencies. In MWoA-Control comparison only the default mode network revealed decreased activity in MWoA group in the 0.08–0.04 Hz band. The voxel-wise frequency specific analysis of the amplitudes found higher amplitudes in MWA as compared to MWoA in the in fronto-parietal regions, anterior cingulate cortex and cerebellum. Discussion The amplitude of the resting state fMRI activity fluctuation is higher in MWA than in MWoA. These results are in concordance with former studies, which found cortical hyperexcitability in MWA.
Collapse
Affiliation(s)
- Péter Faragó
- Department of Neurology, Neuroimaging Research Group, Albert Szent-Györgyi, Clinical Center, University of Szeged, Semmelweis u. 6, H-6725, Szeged, Hungary
| | - Bernadett Tuka
- Department of Neurology, Neuroimaging Research Group, Albert Szent-Györgyi, Clinical Center, University of Szeged, Semmelweis u. 6, H-6725, Szeged, Hungary.,MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| | - Eszter Tóth
- Department of Neurology, Neuroimaging Research Group, Albert Szent-Györgyi, Clinical Center, University of Szeged, Semmelweis u. 6, H-6725, Szeged, Hungary
| | - Nikoletta Szabó
- Department of Neurology, Neuroimaging Research Group, Albert Szent-Györgyi, Clinical Center, University of Szeged, Semmelweis u. 6, H-6725, Szeged, Hungary.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - András Király
- Department of Neurology, Neuroimaging Research Group, Albert Szent-Györgyi, Clinical Center, University of Szeged, Semmelweis u. 6, H-6725, Szeged, Hungary
| | - Gergő Csete
- Department of Neurology, Neuroimaging Research Group, Albert Szent-Györgyi, Clinical Center, University of Szeged, Semmelweis u. 6, H-6725, Szeged, Hungary
| | - Délia Szok
- Department of Neurology, Neuroimaging Research Group, Albert Szent-Györgyi, Clinical Center, University of Szeged, Semmelweis u. 6, H-6725, Szeged, Hungary
| | - János Tajti
- Department of Neurology, Neuroimaging Research Group, Albert Szent-Györgyi, Clinical Center, University of Szeged, Semmelweis u. 6, H-6725, Szeged, Hungary
| | - Árpád Párdutz
- Department of Neurology, Neuroimaging Research Group, Albert Szent-Györgyi, Clinical Center, University of Szeged, Semmelweis u. 6, H-6725, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Neuroimaging Research Group, Albert Szent-Györgyi, Clinical Center, University of Szeged, Semmelweis u. 6, H-6725, Szeged, Hungary.,MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| | - Zsigmond Tamás Kincses
- Department of Neurology, Neuroimaging Research Group, Albert Szent-Györgyi, Clinical Center, University of Szeged, Semmelweis u. 6, H-6725, Szeged, Hungary. .,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.
| |
Collapse
|
57
|
Becerra L, Veggeberg R, Prescot A, Jensen JE, Renshaw P, Scrivani S, Spierings ELH, Burstein R, Borsook D. A 'complex' of brain metabolites distinguish altered chemistry in the cingulate cortex of episodic migraine patients. NEUROIMAGE-CLINICAL 2016; 11:588-594. [PMID: 27158591 PMCID: PMC4846856 DOI: 10.1016/j.nicl.2016.03.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 03/14/2016] [Accepted: 03/28/2016] [Indexed: 12/22/2022]
Abstract
Despite the prevalence of migraine, the pathophysiology of the disease remains unclear. Current understanding of migraine has alluded to the possibility of a hyperexcitable brain. The aim of the current study is to investigate human brain metabolite differences in the anterior cingulate cortex (ACC) during the interictal phase in migraine patients. We hypothesized that there may be differences in levels of excitatory neurotransmitters and/or their derivatives in the migraine cohort in support of the theory of hyperexcitability in migraine. 2D J-resolved proton magnetic resonance spectroscopy (1H-MRS) data were acquired on a 3 Tesla (3 T) MRI from a voxel placed over the ACC of 32 migraine patients (MP; 23 females, 9 males, age 33 ± 9.6 years) and 33 healthy controls (HC; 25 females, 8 males, age 32 ± 9.6 years). Amplitude correlation matrices were constructed for each subject to evaluate metabolite discriminability. ProFit-estimated metabolite peak areas were normalized to a water reference signal to assess subject differences. The initial analysis of variance (ANOVA) was performed to test for group differences for all metabolites/creatine (Cre) ratios between healthy controls and migraineurs but showed no statistically significant differences. In addition, we used a multivariate approach to distinguish migraineurs from healthy subjects based on the metabolite/Cre ratio. A quadratic discriminant analysis (QDA) model was used to identify 3 metabolite ratios sufficient to minimize minimum classification error (MCE). The 3 selected metabolite ratios were aspartate (Asp)/Cre, N-acetyl aspartate (NAA)/Cre, and glutamine (Gln)/Cre. These findings are in support of a ‘complex’ of metabolite alterations, which may underlie changes in neuronal chemistry in the migraine brain. Furthermore, the parallel changes in the three-metabolite ‘complex’ may confer more subtle but biological processes that are ongoing. The data also support the current theory that the migraine brain is hyperexcitable even in the interictal state. 3 T MRI was used to acquire 2D J-resolved proton magnetic resonance spectroscopy. Metabolite alterations are reported in the anterior cingulate cortex of episodic migraineurs. The complex of metabolites may reflect multiple chemical changes in migraineurs. The observed chemical changes support the theory that the brain of migraineurs is hyperexcitable.
Collapse
Affiliation(s)
- L Becerra
- Pain/Analgesia Imaging Neuroscience (P.A.I.N.) Group, Department of Anesthesia Critical Care and Pain Medicine, Boston Children's Hospital, Center for Pain and the Brain, Harvard Medical School, Waltham, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Departments of Psychiatry and Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02114, USA
| | - R Veggeberg
- Pain/Analgesia Imaging Neuroscience (P.A.I.N.) Group, Department of Anesthesia Critical Care and Pain Medicine, Boston Children's Hospital, Center for Pain and the Brain, Harvard Medical School, Waltham, MA, USA; Brain Imaging Center, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - A Prescot
- Department of Radiology, University of Utah, School of Medicine, Salt Lake City, UT, USA; VISN 19 MIRECC, Salt Lake City, UT, USA
| | - J E Jensen
- Brain Imaging Center, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - P Renshaw
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA; VISN 19 MIRECC, Salt Lake City, UT, USA
| | - S Scrivani
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - E L H Spierings
- Department of Neurology, Tufts Medical Center, Boston, MA, USA
| | - R Burstein
- Anesthesia and Critical Care, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - D Borsook
- Pain/Analgesia Imaging Neuroscience (P.A.I.N.) Group, Department of Anesthesia Critical Care and Pain Medicine, Boston Children's Hospital, Center for Pain and the Brain, Harvard Medical School, Waltham, MA, USA; Departments of Psychiatry and Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02114, USA; Brain Imaging Center, McLean Hospital, Harvard Medical School, Belmont, MA, USA.
| |
Collapse
|