51
|
Louis F, Kitano S, Mano JF, Matsusaki M. 3D collagen microfibers stimulate the functionality of preadipocytes and maintain the phenotype of mature adipocytes for long term cultures. Acta Biomater 2019; 84:194-207. [PMID: 30502481 DOI: 10.1016/j.actbio.2018.11.048] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 12/28/2022]
Abstract
Although adipose tissue is one of the most abundant tissues of the human body, its reconstruction remains a competitive challenge. The conventional in vitro two or three-dimensional (2D or 3D) models of mature adipocytes unfortunately lead to their quick dedifferentiation after one week, and complete differentiation of adipose derived stem cells (ADSC) usually requires more than one month. In this context, we developed biomimetic 3D adipose tissues with high density collagen by mixing type I collagen microfibers with primary mouse mature adipocytes or human ADSC in transwells. These 3D-tissues ensured a better long-term maintained phenotype of unilocular mature adipocytes, compared to 2D, with a viability of 96 ± 2% at day 14 and a good perilipin immunostaining, - the protein necessary for stabilizing the fat vesicles. For comparison, in 2D culture, mature adipocytes released their fat until splitting their single adipose vesicle into several ones with significantly 4 times smaller size. Concerning ADSC, the adipogenic genes expression in 3D-tissues was found at least doubled throughout the differentiation (over 8 times higher for GLUT4 at day 21), along with it, almost 4 times larger fat vesicles were observed (10 ± 4 µm at day 14). Perilipin immunostaining and leptin secretion, the satiety protein, attested the significantly doubled better functionality of ADSC in 3D adipose tissues. These obtained long-term maintained phenotype and fast adipogenesis make this model relevant for either cosmetic/pharmaceutical assays or plastic surgery purposes. STATEMENT OF SIGNIFICANCE: Adipose tissue has important roles in our organism, providing energy from its lipids storage and secreting many vital proteins. However, its reconstruction in a functional in vitro adipose tissue is still a challenge. Mature adipocytes directly extracted from surgery liposuctions quickly lose their lipids after a week in vitro and the use of differentiated adipose stem cells is too time-consuming. We developed a new artificial fat tissue using collagen microfibers. These tissues allowed the maintenance of viable big unilocular mature adipocytes up to two weeks and the faster adipogenic differentiation of adipose stem cells. Moreover, the adipose functionality confirmed by perilipin and leptin assessments makes this model suitable for further applications in cosmetic/pharmaceutical drug assays or for tissue reconstruction.
Collapse
Affiliation(s)
- Fiona Louis
- Osaka University, Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Japan
| | - Shiro Kitano
- Osaka University, Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Japan
| | - João F Mano
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Portugal
| | - Michiya Matsusaki
- Osaka University, Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Japan; Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Japan; JST, PRESTO, Japan.
| |
Collapse
|
52
|
Pahoff S, Meinert C, Bas O, Nguyen L, Klein TJ, Hutmacher DW. Effect of gelatin source and photoinitiator type on chondrocyte redifferentiation in gelatin methacryloyl-based tissue-engineered cartilage constructs. J Mater Chem B 2019; 7:1761-1772. [DOI: 10.1039/c8tb02607f] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This work investigates neocartilage formation in bovine and porcine gelatin methacryloyl-based hydrogels photocrosslinked using ultraviolet or visible light photoinitiator systems.
Collapse
Affiliation(s)
- Stephen Pahoff
- Institute of Health and Biomedical Innovation
- Queensland University of Technology
- 60 Musk Avenue
- Kelvin Grove
- Brisbane
| | - Christoph Meinert
- Institute of Health and Biomedical Innovation
- Queensland University of Technology
- 60 Musk Avenue
- Kelvin Grove
- Brisbane
| | - Onur Bas
- Institute of Health and Biomedical Innovation
- Queensland University of Technology
- 60 Musk Avenue
- Kelvin Grove
- Brisbane
| | - Long Nguyen
- Institute of Health and Biomedical Innovation
- Queensland University of Technology
- 60 Musk Avenue
- Kelvin Grove
- Brisbane
| | - Travis J. Klein
- Institute of Health and Biomedical Innovation
- Queensland University of Technology
- 60 Musk Avenue
- Kelvin Grove
- Brisbane
| | - Dietmar W. Hutmacher
- Institute of Health and Biomedical Innovation
- Queensland University of Technology
- 60 Musk Avenue
- Kelvin Grove
- Brisbane
| |
Collapse
|
53
|
|
54
|
Sewald L, Claaßen C, Götz T, Claaßen MH, Truffault V, Tovar GEM, Southan A, Borchers K. Beyond the Modification Degree: Impact of Raw Material on Physicochemical Properties of Gelatin Type A and Type B Methacryloyls. Macromol Biosci 2018; 18:e1800168. [DOI: 10.1002/mabi.201800168] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/24/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Lisa Sewald
- Institute of Interfacial Process Engineering and Plasma Technology IGVPUniversity of Stuttgart Nobelstraße 12 70569 Stuttgart Germany
| | - Christiane Claaßen
- Institute of Interfacial Process Engineering and Plasma Technology IGVPUniversity of Stuttgart Nobelstraße 12 70569 Stuttgart Germany
| | - Tobias Götz
- Institute of Interfacial Process Engineering and Plasma Technology IGVPUniversity of Stuttgart Nobelstraße 12 70569 Stuttgart Germany
| | - Marc H. Claaßen
- Max Planck Institute for Developmental Biology Max‐Planck‐Ring 5 72076 Tübingen Germany
| | - Vincent Truffault
- Max Planck Institute for Developmental Biology Max‐Planck‐Ring 5 72076 Tübingen Germany
| | - Günter E. M. Tovar
- Institute of Interfacial Process Engineering and Plasma Technology IGVPUniversity of Stuttgart Nobelstraße 12 70569 Stuttgart Germany
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB Nobelstraße 12 70569 Stuttgart Germany
| | - Alexander Southan
- Institute of Interfacial Process Engineering and Plasma Technology IGVPUniversity of Stuttgart Nobelstraße 12 70569 Stuttgart Germany
| | - Kirsten Borchers
- Institute of Interfacial Process Engineering and Plasma Technology IGVPUniversity of Stuttgart Nobelstraße 12 70569 Stuttgart Germany
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB Nobelstraße 12 70569 Stuttgart Germany
| |
Collapse
|
55
|
Contessi Negrini N, Tarsini P, Tanzi MC, Farè S. Chemically crosslinked gelatin hydrogels as scaffolding materials for adipose tissue engineering. J Appl Polym Sci 2018. [DOI: 10.1002/app.47104] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- N. Contessi Negrini
- Department of ChemistryMaterials and Chemical Engineering “G. Natta”, Politecnico di Milano Piazza Leonardo da Vinci 32, 20133, Milan Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), via Giuseppe Giusti 9, 50121 Florence Italy
| | - P. Tarsini
- Department of ChemistryMaterials and Chemical Engineering “G. Natta”, Politecnico di Milano Piazza Leonardo da Vinci 32, 20133, Milan Italy
| | - M. C. Tanzi
- National Interuniversity Consortium of Materials Science and Technology (INSTM), via Giuseppe Giusti 9, 50121 Florence Italy
| | - S. Farè
- Department of ChemistryMaterials and Chemical Engineering “G. Natta”, Politecnico di Milano Piazza Leonardo da Vinci 32, 20133, Milan Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), via Giuseppe Giusti 9, 50121 Florence Italy
| |
Collapse
|
56
|
Wenz A, Tjoeng I, Schneider I, Kluger PJ, Borchers K. Improved vasculogenesis and bone matrix formation through coculture of endothelial cells and stem cells in tissue-specific methacryloyl gelatin-based hydrogels. Biotechnol Bioeng 2018; 115:2643-2653. [PMID: 29981277 DOI: 10.1002/bit.26792] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/12/2018] [Accepted: 07/02/2018] [Indexed: 01/21/2023]
Abstract
The coculture of osteogenic and angiogenic cells and the resulting paracrine signaling via soluble factors are supposed to be crucial for successfully engineering vascularized bone tissue equivalents. In this study, a coculture system combining primary human adipose-derived stem cells (hASCs) and primary human dermal microvascular endothelial cells (HDMECs) within two types of hydrogels based on methacryloyl-modified gelatin (GM) as three-dimensional scaffolds was examined for its support of tissue specific cell functions. HDMECs, together with hASCs as supporting cells, were encapsulated in soft GM gels and were indirectly cocultured with hASCs encapsulated in stiffer GM hydrogels additionally containing methacrylate-modified hyaluronic acid and hydroxyapatite particles. After 14 days, the hASC in the stiffer gels (constituting the "bone gels") expressed matrix proteins like collagen type I and fibronectin, as well as bone-specific proteins osteopontin and alkaline phosphatase. After 14 days of coculture with HDMEC-laden hydrogels, the viscoelastic properties of the bone gels were significantly higher compared with the gels in monoculture. Within the soft vascularization gels, the formed capillary-like networks were significantly longer after 14 days of coculture than the structures in the control gels. In addition, the stability as well as the complexity of the vascular networks was significantly increased by coculture. We discussed and concluded that osteogenic and angiogenic signals from the culture media as well as from cocultured cell types, and tissue-specific hydrogel composition all contribute to stimulate the interplay between osteogenesis and angiogenesis in vitro and are a basis for engineering vascularized bone.
Collapse
Affiliation(s)
- Annika Wenz
- Department of Materials Science, Institute of Interfacial Engineering and Plasmatechnology IGVP, University of Stuttgart, Stuttgart, Germany
| | - Iva Tjoeng
- Department of Interfacial Engineering and Material Science, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Isabelle Schneider
- Department of Interfacial Engineering and Material Science, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Petra J Kluger
- Department of Interfacial Engineering and Material Science, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany.,Department of Smart Biomaterials, Reutlingen University, Reutlingen, Germany
| | - Kirsten Borchers
- Department of Materials Science, Institute of Interfacial Engineering and Plasmatechnology IGVP, University of Stuttgart, Stuttgart, Germany.,Department of Interfacial Engineering and Material Science, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| |
Collapse
|
57
|
Claaßen C, Southan A, Grübel J, Tovar GEM, Borchers K. Interactions of methacryloylated gelatin and heparin modulate physico-chemical properties of hydrogels and release of vascular endothelial growth factor. Biomed Mater 2018; 13:055008. [DOI: 10.1088/1748-605x/aacdb2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
58
|
Qi D, Wu S, Kuss MA, Shi W, Chung S, Deegan PT, Kamenskiy A, He Y, Duan B. Mechanically robust cryogels with injectability and bioprinting supportability for adipose tissue engineering. Acta Biomater 2018; 74:131-142. [PMID: 29842971 DOI: 10.1016/j.actbio.2018.05.044] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/15/2018] [Accepted: 05/25/2018] [Indexed: 12/15/2022]
Abstract
Bioengineered adipose tissues have gained increased interest as a promising alternative to autologous tissue flaps and synthetic adipose fillers for soft tissue augmentation and defect reconstruction in clinic. Although many scaffolding materials and biofabrication methods have been investigated for adipose tissue engineering in the last decades, there are still challenges to recapitulate the appropriate adipose tissue microenvironment, maintain volume stability, and induce vascularization to achieve long-term function and integration. In the present research, we fabricated cryogels consisting of methacrylated gelatin, methacrylated hyaluronic acid, and 4arm poly(ethylene glycol) acrylate (PEG-4A) by using cryopolymerization. The cryogels were repeatedly injectable and stretchable, and the addition of PEG-4A improved the robustness and mechanical properties. The cryogels supported human adipose progenitor cell (HWA) and adipose derived mesenchymal stromal cell adhesion, proliferation, and adipogenic differentiation and maturation, regardless of the addition of PEG-4A. The HWA laden cryogels facilitated the co-culture of human umbilical vein endothelial cells (HUVEC) and capillary-like network formation, which in return also promoted adipogenesis. We further combined cryogels with 3D bioprinting to generate handleable adipose constructs with clinically relevant size. 3D bioprinting enabled the deposition of multiple bioinks onto the cryogels. The bioprinted flap-like constructs had an integrated structure without delamination and supported vascularization. STATEMENT OF SIGNIFICANCE Adipose tissue engineering is promising for reconstruction of soft tissue defects, and also challenging for restoring and maintaining soft tissue volume and shape, and achieving vascularization and integration. In this study, we fabricated cryogels with mechanical robustness, injectability, and stretchability by using cryopolymerization. The cryogels promoted cell adhesion, proliferation, and adipogenic differentiation and maturation of human adipose progenitor cells and adipose derived mesenchymal stromal cells. Moreover, the cryogels also supported 3D bioprinting on top, forming vascularized adipose constructs. This study demonstrates the potential of the implementation of cryogels for generating volume-stable adipose tissue constructs and provides a strategy to fabricate vascularized flap-like constructs for complex soft tissue regeneration.
Collapse
|
59
|
Claaßen C, Claaßen MH, Gohl F, Tovar GEM, Borchers K, Southan A. Photoinduced Cleavage and Hydrolysis of o
-Nitrobenzyl Linker and Covalent Linker Immobilization in Gelatin Methacryloyl Hydrogels. Macromol Biosci 2018; 18:e1800104. [DOI: 10.1002/mabi.201800104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/14/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Christiane Claaßen
- Institute of Interfacial Process Engineering and Plasma Technology IGVP; University of Stuttgart; Nobelstr. 12 70569 Stuttgart Germany
| | - Marc H. Claaßen
- Max Planck Institute for Developmental Biology; Max-Planck-Ring 5 72076 Tübingen Germany
| | - Fabian Gohl
- Institute of Interfacial Process Engineering and Plasma Technology IGVP; University of Stuttgart; Nobelstr. 12 70569 Stuttgart Germany
| | - Günter E. M. Tovar
- Institute of Interfacial Process Engineering and Plasma Technology IGVP; University of Stuttgart; Nobelstr. 12 70569 Stuttgart Germany
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB; Nobelstr. 12 70569 Stuttgart Germany
| | - Kirsten Borchers
- Institute of Interfacial Process Engineering and Plasma Technology IGVP; University of Stuttgart; Nobelstr. 12 70569 Stuttgart Germany
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB; Nobelstr. 12 70569 Stuttgart Germany
| | - Alexander Southan
- Institute of Interfacial Process Engineering and Plasma Technology IGVP; University of Stuttgart; Nobelstr. 12 70569 Stuttgart Germany
| |
Collapse
|
60
|
Jimenez-Rosales A, Flores-Merino MV. A Brief Review of the Pathophysiology of Non-melanoma Skin Cancer and Applications of Interpenetrating and Semi-interpenetrating Polymer Networks in Its Treatment. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2018. [DOI: 10.1007/s40883-018-0061-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
61
|
Kuss M, Kim J, Qi D, Wu S, Lei Y, Chung S, Duan B. Effects of tunable, 3D-bioprinted hydrogels on human brown adipocyte behavior and metabolic function. Acta Biomater 2018; 71:486-495. [PMID: 29555462 DOI: 10.1016/j.actbio.2018.03.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/07/2018] [Accepted: 03/08/2018] [Indexed: 12/16/2022]
Abstract
Obesity and its related health complications cause billions of dollars in healthcare costs annually in the United States, and there are yet to be safe and long-lasting anti-obesity approaches. Using brown adipose tissue (BAT) is a promising approach, as it uses fats for energy expenditure. However, the effect of the microenvironment on human thermogenic brown adipogenesis and how to generate clinically relevant sized and functioning BAT are still unknown. In our current study, we evaluated the effects of endothelial growth medium exposure on brown adipogenesis of human brown adipose progenitors (BAP). We found that pre-exposing BAP to angiogenic factors promoted brown adipogenic differentiation and metabolic activity. We further 3D bioprinted brown and white adipose progenitors within hydrogel-based bioink with controllable physicochemical properties and evaluated the cell responses in 3D bioprinted environments. We used soft, stiff, and stiff-porous constructs to encapsulate the cells. All three types had high cell viability and allowed for varying levels of function for both white and brown adipocytes. We found that the soft hydrogel constructs promoted white adipogenesis, while the stiff-porous hydrogel constructs improved both white and brown adipogenesis and were the optimal condition for promoting brown adipogenesis. Consistently, stiff-porous hydrogel constructs showed higher metabolic activities than stiff hydrogel constructs, as assessed by 2-deoxy glucose uptake (2-DOG) and oxygen consumption rate (OCR). These findings show that the physicochemical environments affect the brown adipogenesis and metabolic function, and further tuning will be able to optimize their functions. Our results also demonstrate that 3D bioprinting of brown adipose tissues with clinically relevant size and metabolic activity has the potential to be a viable option in the treatment of obesity and type 2 diabetes. STATEMENT OF SIGNIFICANCE One promising strategy for the treatment or prevention of obesity-mediated health complications is augmenting brown adipose tissues (BAT), which is a specialized fat that actively dissipate energy in the form of heat and maintain energy balance. In this study, we determined how pre-exposing human brown adipose progenitors (BAP) to angiogenic factors in 2D and how bioprinted microenvironments in 3D affected brown adipogenic differentiation and metabolic activity. We demonstrated that white and brown adipogenesis, and thermogenesis were regulated by tuning the bioprintable matrix stiffness and construct structure. This study not only unveils the interaction between BAP and 3D physiological microenvironments, but also presents a novel tissue engineered strategy to manage obesity and other related metabolic disorders.
Collapse
|
62
|
Completely serum-free and chemically defined adipocyte development and maintenance. Cytotherapy 2018; 20:576-588. [DOI: 10.1016/j.jcyt.2018.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/29/2017] [Accepted: 01/02/2018] [Indexed: 11/24/2022]
|
63
|
Derakhshanfar S, Mbeleck R, Xu K, Zhang X, Zhong W, Xing M. 3D bioprinting for biomedical devices and tissue engineering: A review of recent trends and advances. Bioact Mater 2018; 3:144-156. [PMID: 29744452 PMCID: PMC5935777 DOI: 10.1016/j.bioactmat.2017.11.008] [Citation(s) in RCA: 503] [Impact Index Per Article: 83.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/25/2017] [Accepted: 11/25/2017] [Indexed: 02/07/2023] Open
Abstract
3D printing, an additive manufacturing based technology for precise 3D construction, is currently widely employed to enhance applicability and function of cell laden scaffolds. Research on novel compatible biomaterials for bioprinting exhibiting fast crosslinking properties is an essential prerequisite toward advancing 3D printing applications in tissue engineering. Printability to improve fabrication process and cell encapsulation are two of the main factors to be considered in development of 3D bioprinting. Other important factors include but are not limited to printing fidelity, stability, crosslinking time, biocompatibility, cell encapsulation and proliferation, shear-thinning properties, and mechanical properties such as mechanical strength and elasticity. In this review, we recite recent promising advances in bioink development as well as bioprinting methods. Also, an effort has been made to include studies with diverse types of crosslinking methods such as photo, chemical and ultraviolet (UV). We also propose the challenges and future outlook of 3D bioprinting application in medical sciences and discuss the high performance bioinks. The most recent promising advances in three-dimensional bioprinting are reviewed. Extrusion, inkjet, stereolithography, and laser bioprinting studies are cited. Challenges toward successful employment of bioprinting are discussed.
Collapse
Affiliation(s)
- Soroosh Derakhshanfar
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Rene Mbeleck
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Kaige Xu
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Xingying Zhang
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Wen Zhong
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, R3T 2N2, Canada
| |
Collapse
|
64
|
Claaßen C, Claaßen MH, Truffault V, Sewald L, Tovar GEM, Borchers K, Southan A. Quantification of Substitution of Gelatin Methacryloyl: Best Practice and Current Pitfalls. Biomacromolecules 2017; 19:42-52. [PMID: 29211461 DOI: 10.1021/acs.biomac.7b01221] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cross-linkable gelatin methacryloyl (GM) is widely used for the generation of artificial extracellular matrix (ECM) in tissue engineering. However, the quantification of modified groups in GM is still an unsolved issue, although this is the key factor for tailoring the physicochemical material properties. In this contribution, 1H-13C-HSQC NMR spectra are used to gain detailed structural information on GMs and of 2-fold modified gelatin containing methacryloyl and acetyl groups (GMAs). Distinctive identification of methacrylate, methacrylamide, and acetyl groups present in GMs and GMAs revealed an overlap of methacrylamide and modified hydroxyproline signals in the 1H NMR spectrum. Considering this, we suggest a method to quantify methacrylate and methacrylamide groups in GMs precisely based on simple 1H NMR spectroscopy with an internal standard. Quantification of acetylation in GMAs is also possible, yet, 2D NMR spectra are necessary. The described methods allow direct quantification of modified groups in gelatin derivatives, making them superior to other, indirect methods known so far.
Collapse
Affiliation(s)
- Christiane Claaßen
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart ; Nobelstr. 12, 70569 Stuttgart, Germany
| | - Marc H Claaßen
- Max Planck Institute for Developmental Biology ; Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Vincent Truffault
- Max Planck Institute for Developmental Biology ; Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Lisa Sewald
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart ; Nobelstr. 12, 70569 Stuttgart, Germany
| | - Günter E M Tovar
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart ; Nobelstr. 12, 70569 Stuttgart, Germany.,Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB ; Nobelstr. 12, 70569 Stuttgart, Germany
| | - Kirsten Borchers
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart ; Nobelstr. 12, 70569 Stuttgart, Germany.,Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB ; Nobelstr. 12, 70569 Stuttgart, Germany
| | - Alexander Southan
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart ; Nobelstr. 12, 70569 Stuttgart, Germany
| |
Collapse
|
65
|
Kessler L, Gehrke S, Winnefeld M, Huber B, Hoch E, Walter T, Wyrwa R, Schnabelrauch M, Schmidt M, Kückelhaus M, Lehnhardt M, Hirsch T, Jacobsen F. Methacrylated gelatin/hyaluronan-based hydrogels for soft tissue engineering. J Tissue Eng 2017; 8:2041731417744157. [PMID: 29318000 PMCID: PMC5753891 DOI: 10.1177/2041731417744157] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/25/2017] [Indexed: 12/15/2022] Open
Abstract
In vitro–generated soft tissue could provide alternate therapies for soft tissue defects. The aim of this study was to evaluate methacrylated gelatin/hyaluronan as scaffolds for soft tissue engineering and their interaction with human adipose–derived stem cells (hASCs). ASCs were incorporated into methacrylated gelatin/hyaluronan hydrogels. The gels were photocrosslinked with a lithium phenyl-2,4,6-trimethylbenzoylphosphinate photoinitiator and analyzed for cell viability and adipogenic differentiation of ASCs over a period of 30 days. Additionally, an angiogenesis assay was performed to assess their angiogenic potential. After 24 h, ASCs showed increased viability on composite hydrogels. These results were consistent over 21 days of culture. By induction of adipogenic differentiation, the mature adipocytes were observed after 7 days of culture, their number significantly increased until day 28 as well as expression of fatty acid binding protein 4 and adiponectin. Our scaffolds are promising as building blocks for adipose tissue engineering and allowed long viability, proliferation, and differentiation of ASCs.
Collapse
Affiliation(s)
- Lukas Kessler
- Department of Plastic Surgery and Burn Centre, BG University Hospital Bergmannsheil GmbH, Ruhr University Bochum, Bochum, Germany
| | - Sandra Gehrke
- Research and Development, Beiersdorf AG, Hamburg, Germany
| | - Marc Winnefeld
- Research and Development, Beiersdorf AG, Hamburg, Germany
| | - Birgit Huber
- Institute for Interfacial Engineering and Plasma Technology, University of Stuttgart, Stuttgart, Germany
| | - Eva Hoch
- Institute for Interfacial Engineering and Plasma Technology, University of Stuttgart, Stuttgart, Germany
| | | | - Ralf Wyrwa
- Biomaterials Department, INNOVENT e. V., Jena, Germany
| | | | - Malte Schmidt
- Department of Plastic Surgery and Burn Centre, BG University Hospital Bergmannsheil GmbH, Ruhr University Bochum, Bochum, Germany
| | - Maximilian Kückelhaus
- Department of Plastic Surgery and Burn Centre, BG University Hospital Bergmannsheil GmbH, Ruhr University Bochum, Bochum, Germany
| | - Marcus Lehnhardt
- Department of Plastic Surgery and Burn Centre, BG University Hospital Bergmannsheil GmbH, Ruhr University Bochum, Bochum, Germany
| | - Tobias Hirsch
- Department of Plastic Surgery and Burn Centre, BG University Hospital Bergmannsheil GmbH, Ruhr University Bochum, Bochum, Germany
| | - Frank Jacobsen
- Department of Plastic Surgery and Burn Centre, BG University Hospital Bergmannsheil GmbH, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
66
|
Wenz A, Borchers K, Tovar GEM, Kluger PJ. Bone matrix production in hydroxyapatite-modified hydrogels suitable for bone bioprinting. Biofabrication 2017; 9:044103. [DOI: 10.1088/1758-5090/aa91ec] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
67
|
O’Halloran N, Courtney D, Kerin MJ, Lowery AJ. Adipose-Derived Stem Cells in Novel Approaches to Breast Reconstruction: Their Suitability for Tissue Engineering and Oncological Safety. Breast Cancer (Auckl) 2017; 11:1178223417726777. [PMID: 29104428 PMCID: PMC5562338 DOI: 10.1177/1178223417726777] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/13/2017] [Indexed: 12/13/2022] Open
Abstract
Adipose-derived stem cells (ADSCs) are rapidly becoming the gold standard cell source for tissue engineering strategies and hold great potential for novel breast reconstruction strategies. However, their use in patients with breast cancer is controversial and their oncological safety, particularly in relation to local disease recurrence, has been questioned. In vitro, in vivo, and clinical studies using ADSCs report conflicting data on their suitability for adipose tissue regeneration in patients with cancer. This review aims to provide an overview of the potential role for ADSCs in breast reconstruction and to examine the evidence relating to the oncologic safety of their use in patients with breast cancer.
Collapse
Affiliation(s)
- Niamh O’Halloran
- Discipline of Surgery, Lambe Institute for Translational Research, National University of Ireland, Galway, Galway, Ireland
| | - Donald Courtney
- Discipline of Surgery, Lambe Institute for Translational Research, National University of Ireland, Galway, Galway, Ireland
| | - Michael J Kerin
- Discipline of Surgery, Lambe Institute for Translational Research, National University of Ireland, Galway, Galway, Ireland
| | - Aoife J Lowery
- Graduate Entry Medical School, University of Limerick, Limerick, Ireland
| |
Collapse
|
68
|
|
69
|
Ruff S, Keller S, Wieland D, Wittmann V, Tovar G, Bach M, Kluger P. clickECM: Development of a cell-derived extracellular matrix with azide functionalities. Acta Biomater 2017; 52:159-170. [PMID: 27965173 DOI: 10.1016/j.actbio.2016.12.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/21/2016] [Accepted: 12/07/2016] [Indexed: 01/06/2023]
Abstract
In vitro cultured cells produce a complex extracellular matrix (ECM) that remains intact after decellularization. The biological complexity derived from the variety of distinct ECM molecules makes these matrices ideal candidates for biomaterials. Biomaterials with the ability to guide cell function are a topic of high interest in biomaterial development. However, these matrices lack specific addressable functional groups, which are often required for their use as a biomaterial. Due to the biological complexity of the cell-derived ECM, it is a challenge to incorporate such functional groups without affecting the integrity of the biomolecules within the ECM. The azide-alkyne cycloaddition (click reaction, Huisgen-reaction) is an efficient and specific ligation reaction that is known to be biocompatible when strained alkynes are used to avoid the use of copper (I) as a catalyst. In our work, the ubiquitous modification of a fibroblast cell-derived ECM with azides was achieved through metabolic oligosaccharide engineering by adding the azide-modified monosaccharide Ac4GalNAz (1,3,4,6-tetra-O-acetyl-N-azidoacetylgalactosamine) to the cell culture medium. The resulting azide-modified network remained intact after removing the cells by lysis and the molecular structure of the ECM proteins was unimpaired after a gentle homogenization process. The biological composition was characterized in order to show that the functionalization does not impair the complexity and integrity of the ECM. The azides within this "clickECM" could be accessed by small molecules (such as an alkyne-modified fluorophore) or by surface-bound cyclooctynes to achieve a covalent coating with clickECM. STATEMENT OF SIGNIFICANCE The clickECM was produced by the incorporation of azide-functionalized sugar analogues into the extracellular glycans of fibroblast cell cultures by metabolic oligosaccharide engineering. By introducing these azide groups into the glycan structures, we enabled this cell-derived ECM for bioorthogonal click reactions. Click chemistry provides extremely specific reactions with high efficiency, high selectivity, and high reaction yields. We could show that the azide functionalities within the clickECM are chemically accessible. Based on our here described clickECM technique it will be possible to create and investigate new clickECM materials with tunable bioactive properties and additional functionalities, which offers a promising approach for basic and applied research in the field of biomaterial science, biomedical applications, and tissue engineering.
Collapse
|
70
|
Henriksson I, Gatenholm P, Hägg DA. Increased lipid accumulation and adipogenic gene expression of adipocytes in 3D bioprinted nanocellulose scaffolds. Biofabrication 2017; 9:015022. [PMID: 28140346 DOI: 10.1088/1758-5090/aa5c1c] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Compared to standard 2D culture systems, new methods for 3D cell culture of adipocytes could provide more physiologically accurate data and a deeper understanding of metabolic diseases such as diabetes. By resuspending living cells in a bioink of nanocellulose and hyaluronic acid, we were able to print 3D scaffolds with uniform cell distribution. After one week in culture, cell viability was 95%, and after two weeks the cells displayed a more mature phenotype with larger lipid droplets than standard 2D cultured cells. Unlike cells in 2D culture, the 3D bioprinted cells did not detach upon lipid accumulation. After two weeks, the gene expression of the adipogenic marker genes PPARγ and FABP4 was increased 2.0- and 2.2-fold, respectively, for cells in 3D bioprinted constructs compared with 2D cultured cells. Our 3D bioprinted culture system produces better adipogenic differentiation of mesenchymal stem cells and a more mature cell phenotype than conventional 2D culture systems.
Collapse
Affiliation(s)
- I Henriksson
- 3D Bioprinting Center, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, Sweden. Cellink, 470 Ramona Street, Palo Alto 94391, CA, United States of America
| | | | | |
Collapse
|
71
|
Huber B, Link A, Linke K, Gehrke SA, Winnefeld M, Kluger PJ. Integration of Mature Adipocytes to Build-Up a Functional Three-Layered Full-Skin Equivalent. Tissue Eng Part C Methods 2016; 22:756-64. [PMID: 27334067 PMCID: PMC4991605 DOI: 10.1089/ten.tec.2016.0141] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Large, deep full-thickness skin wounds from high-graded burns or trauma are not able to reepithelialize sufficiently, resulting in scar formation, mobility limitations, and cosmetic deformities. In this study, in vitro-constructed tissue replacements are needed. Furthermore, such full-skin equivalents would be helpful as in vivo-like test systems for toxicity, cosmetic, and pharmaceutical testing. Up to date, no skin equivalent is available containing the underlying subcutaneous fatty tissue. In this study, we composed a full-skin equivalent and evaluated three different media for the coculture of mature adipocytes, fibroblasts, and keratinocytes. Therefore, adipocyte medium was supplemented with ascorbyl-2-phosphate and calcium chloride, which are important for successful epidermal stratification (Air medium). This medium was further supplemented with two commercially available factor combinations often used for the in vitro culture of keratinocytes (Air-HKGS and Air-KGM medium). We showed that in all media, keratinocytes differentiated successfully to build a stratified epidermal layer and expressed cytokeratin 10 and 14. Perilipin A-positive adipocytes could be found in all tissue models for up to 14 days, whereas adipocytes in the Air-HKGS and Air-KGM medium seemed to be smaller. Adipocytes in all tissue models were able to release adipocyte-specific factors, whereas the supplementation of keratinocyte-specific factors had a slightly negative effect on adipocyte functionality. The permeability of the epidermis of all models was comparable since they were able to withstand a deep penetration of cytotoxic Triton X in the same manner. Taken together, we were able to compose functional three-layered full-skin equivalents by using the Air medium.
Collapse
Affiliation(s)
- Birgit Huber
- 1 Institute of Interfacial Process Engineering and Plasma Technology, University of Stuttgart , Stuttgart, Germany
| | - Antonia Link
- 2 Reutlingen University , School of Applied Chemistry, Reutlingen, Germany .,3 Fraunhofer Institut for Interfacial Engineering and Biotechnology IGB, Department Cell and Tissue Engineering, Stuttgart, Germany
| | - Kirstin Linke
- 3 Fraunhofer Institut for Interfacial Engineering and Biotechnology IGB, Department Cell and Tissue Engineering, Stuttgart, Germany
| | - Sandra A Gehrke
- 4 Beiersdorf AG, Research and Development , Hamburg, Germany
| | - Marc Winnefeld
- 4 Beiersdorf AG, Research and Development , Hamburg, Germany
| | - Petra J Kluger
- 2 Reutlingen University , School of Applied Chemistry, Reutlingen, Germany .,3 Fraunhofer Institut for Interfacial Engineering and Biotechnology IGB, Department Cell and Tissue Engineering, Stuttgart, Germany
| |
Collapse
|
72
|
Klotz BJ, Gawlitta D, Rosenberg AJWP, Malda J, Melchels FPW. Gelatin-Methacryloyl Hydrogels: Towards Biofabrication-Based Tissue Repair. Trends Biotechnol 2016; 34:394-407. [PMID: 26867787 PMCID: PMC5937681 DOI: 10.1016/j.tibtech.2016.01.002] [Citation(s) in RCA: 504] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 12/22/2015] [Accepted: 01/08/2016] [Indexed: 02/03/2023]
Abstract
Research over the past decade on the cell-biomaterial interface has shifted to the third dimension. Besides mimicking the native extracellular environment by 3D cell culture, hydrogels offer the possibility to generate well-defined 3D biofabricated tissue analogs. In this context, gelatin-methacryloyl (gelMA) hydrogels have recently gained increased attention. This interest is sparked by the combination of the inherent bioactivity of gelatin and the physicochemical tailorability of photo-crosslinkable hydrogels. GelMA is a versatile matrix that can be used to engineer tissue analogs ranging from vasculature to cartilage and bone. Convergence of biological and biofabrication approaches is necessary to progress from merely proving cell functionality or construct shape fidelity towards regenerating tissues. GelMA has a critical pioneering role in this process and could be used to accelerate the development of clinically relevant applications.
Collapse
Affiliation(s)
- Barbara J Klotz
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, PO 85500, Utrecht, GA, 3508, The Netherlands
| | - Debby Gawlitta
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, PO 85500, Utrecht, GA, 3508, The Netherlands
| | - Antoine J W P Rosenberg
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, PO 85500, Utrecht, GA, 3508, The Netherlands
| | - Jos Malda
- Department of Orthopaedics, University Medical Center Utrecht, PO Box 85500, Utrecht, GA, 3508, The Netherlands; Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, Utrecht, CM, 3584, The Netherlands.
| | - Ferry P W Melchels
- Department of Orthopaedics, University Medical Center Utrecht, PO Box 85500, Utrecht, GA, 3508, The Netherlands; Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| |
Collapse
|
73
|
Huber B, Czaja AM, Kluger PJ. Influence of epidermal growth factor (EGF) and hydrocortisone on the co-culture of mature adipocytes and endothelial cells for vascularized adipose tissue engineering. Cell Biol Int 2016; 40:569-78. [DOI: 10.1002/cbin.10595] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 02/14/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Birgit Huber
- Institute for Interfacial Process Engineering and Plasma Technology; University of Stuttgart; Nobelstraße 12 Stuttgart 70569 Germany
| | - Alina Maria Czaja
- Esslingen University of Applied Sciences; Kanalstraße 33 Esslingen 73728 Germany
| | - Petra Juliane Kluger
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB; Nobelstraße 12 Stuttgart 70569 Germany
- Reutlingen University; Alteburgstr. 150 Reutlingen 72762 Germany
| |
Collapse
|
74
|
Wang XF, Lu PJ, Song Y, Sun YC, Wang YG, Wang Y. Nano hydroxyapatite particles promote osteogenesis in a three-dimensional bio-printing construct consisting of alginate/gelatin/hASCs. RSC Adv 2016. [DOI: 10.1039/c5ra21527g] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
To design a hydrogel material containing nano hydroxyapatite particles for three-dimensional (3D) bio-printing and to explore whether nano hydroxyapatite particles can promote osteogenic differentiation of 3D bio-printing construct consisting of hASCs in vivo and in vitro.
Collapse
Affiliation(s)
- Xiao-Fei Wang
- Center of Digital Dentistry
- Faculty of Prosthodontics
- Peking University School and Hospital of Stomatology
- National Engineering Laboratory for Digital and Material Technology of Stomatology
- Research Center of Engineering and Technology for Digital Dentistry of Ministry of Health
| | - Pei-Jun Lu
- Center of Digital Dentistry
- Faculty of Prosthodontics
- Peking University School and Hospital of Stomatology
- National Engineering Laboratory for Digital and Material Technology of Stomatology
- Research Center of Engineering and Technology for Digital Dentistry of Ministry of Health
| | - Yang Song
- Center of Digital Dentistry
- Faculty of Prosthodontics
- Peking University School and Hospital of Stomatology
- National Engineering Laboratory for Digital and Material Technology of Stomatology
- Research Center of Engineering and Technology for Digital Dentistry of Ministry of Health
| | - Yu-Chun Sun
- Center of Digital Dentistry
- Faculty of Prosthodontics
- Peking University School and Hospital of Stomatology
- National Engineering Laboratory for Digital and Material Technology of Stomatology
- Research Center of Engineering and Technology for Digital Dentistry of Ministry of Health
| | - Yu-Guang Wang
- Center of Digital Dentistry
- Faculty of Prosthodontics
- Peking University School and Hospital of Stomatology
- National Engineering Laboratory for Digital and Material Technology of Stomatology
- Research Center of Engineering and Technology for Digital Dentistry of Ministry of Health
| | - Yong Wang
- Center of Digital Dentistry
- Faculty of Prosthodontics
- Peking University School and Hospital of Stomatology
- National Engineering Laboratory for Digital and Material Technology of Stomatology
- Research Center of Engineering and Technology for Digital Dentistry of Ministry of Health
| |
Collapse
|
75
|
Understanding the effects of mature adipocytes and endothelial cells on fatty acid metabolism and vascular tone in physiological fatty tissue for vascularized adipose tissue engineering. Cell Tissue Res 2015; 362:269-79. [PMID: 26340984 DOI: 10.1007/s00441-015-2274-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 07/31/2015] [Indexed: 01/27/2023]
Abstract
Engineering of large vascularized adipose tissue constructs is still a challenge for the treatment of extensive high-graded burns or the replacement of tissue after tumor removal. Communication between mature adipocytes and endothelial cells is important for homeostasis and the maintenance of adipose tissue mass but, to date, is mainly neglected in tissue engineering strategies. Thus, new co-culture strategies are needed to integrate adipocytes and endothelial cells successfully into a functional construct. This review focuses on the cross-talk of mature adipocytes and endothelial cells and considers their influence on fatty acid metabolism and vascular tone. In addition, the properties and challenges with regard to these two cell types for vascularized tissue engineering are highlighted.
Collapse
|