51
|
Liu D, Chu X, Wang H, Dong J, Ge SQ, Zhao ZY, Peng HL, Sun M, Wu LJ, Song MS, Guo XH, Meng Q, Wang YX, Lauc G, Wang W. The changes of immunoglobulin G N-glycosylation in blood lipids and dyslipidaemia. J Transl Med 2018; 16:235. [PMID: 30157878 PMCID: PMC6114873 DOI: 10.1186/s12967-018-1616-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/23/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Alternative N-glycosylation has significant structural and functional consequences on immunoglobulin G (IgG) and can affect immune responses, acting as a switch between pro- and anti-inflammatory IgG functionality. Studies have demonstrated that IgG N-glycosylation is associated with ageing, body mass index, type 2 diabetes and hypertension. METHODS Herein, we have demonstrated patterns of IgG glycosylation that are associated with blood lipids in a cross-sectional study including 598 Han Chinese aged 20-68 years. The IgG glycome composition was analysed by ultra-performance liquid chromatography. RESULTS Blood lipids were positively correlated with glycan peak GP6, whereas they were negatively correlated with GP18 (P < 0.05/57). The canonical correlation analysis indicated that initial N-glycan structures, including GP4, GP6, GP9-12, GP14, GP17, GP18 and GP23, were significantly correlated with blood lipids, including total cholesterol, total triglycerides (TG) and low-density lipoprotein (r = 0.390, P < 0.001). IgG glycans patterns were able to distinguish patients with dyslipidaemia from the controls, with an area under the curve of 0.692 (95% confidence interval 0.644-0.740). CONCLUSIONS Our findings indicated that a possible association between blood lipids and the observed loss of galactose and sialic acid, as well as the addition of bisecting GlcNAcs, which might be related to the chronic inflammation accompanying with the development and procession of dyslipidaemia.
Collapse
Affiliation(s)
- Di Liu
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, 10 Youanmen Xitoutiao, Beijing, 100069 China
| | - Xi Chu
- Center for Physical Examination, Xuanwu Hospital, Capital Medical University, Beijing, 100050 China
| | - Hao Wang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, 10 Youanmen Xitoutiao, Beijing, 100069 China
- School of Medical Sciences, Edith Cowan University, Perth, WA 6027 Australia
| | - Jing Dong
- Center for Physical Examination, Xuanwu Hospital, Capital Medical University, Beijing, 100050 China
| | - Si-Qi Ge
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, 10 Youanmen Xitoutiao, Beijing, 100069 China
- School of Medical Sciences, Edith Cowan University, Perth, WA 6027 Australia
| | - Zhong-Yao Zhao
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, 10 Youanmen Xitoutiao, Beijing, 100069 China
| | - Hong-Li Peng
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, 10 Youanmen Xitoutiao, Beijing, 100069 China
| | - Ming Sun
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, 10 Youanmen Xitoutiao, Beijing, 100069 China
| | - Li-Juan Wu
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, 10 Youanmen Xitoutiao, Beijing, 100069 China
| | - Man-Shu Song
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, 10 Youanmen Xitoutiao, Beijing, 100069 China
| | - Xiu-Hua Guo
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, 10 Youanmen Xitoutiao, Beijing, 100069 China
| | - Qun Meng
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, 10 Youanmen Xitoutiao, Beijing, 100069 China
| | - You-Xin Wang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, 10 Youanmen Xitoutiao, Beijing, 100069 China
- School of Medical Sciences, Edith Cowan University, Perth, WA 6027 Australia
| | - Gordan Lauc
- Genos Glycobiology Research Laboratory, 10000 Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Wei Wang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, 10 Youanmen Xitoutiao, Beijing, 100069 China
- School of Medical Sciences, Edith Cowan University, Perth, WA 6027 Australia
| |
Collapse
|
52
|
Magorivska I, Döncző B, Dumych T, Karmash A, Boichuk M, Hychka K, Mihalj M, Szabó M, Csánky E, Rech J, Guttman A, Vari SG, Bilyy R. Glycosylation of random IgG distinguishes seropositive and seronegative rheumatoid arthritis. Autoimmunity 2018; 51:111-117. [PMID: 29733234 DOI: 10.1080/08916934.2018.1468886] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The N-glycosylation of human immunoglobulins, especially IgGs, plays a critical role in determining affinity of IgGs towards their effector (pro- and anti-inflammatory) receptors. However, it is still not clear whether altered glycosylation is involved in only antibody-dependent disorders like seropositive rheumatoid arthritis (RA) or also in pathologies with similar clinical manifestations, but no specific autoantibodies like seronegative RA. The clarification of that uncertainty was the aim of the current study. Another study aim was the detection of specific glycan forms responsible for altered exposure of native glycoepitopes. We studied sera from seropositive RA (n = 15) and seronegative RA (n = 12) patients for exposure of glycans in native IgG molecules, followed by determination of specific glycans by capillary electrophoresis with laser-induced fluorescent detection (CE-LIF). Aged-matched groups of normal healthy donors (NHD) and samples of intravenous immunoglobulin IgG preparations (IVIG) served as controls. There was significantly stronger binding of Lens culinaris agglutinin (LCA) and Aleuria aurantia lectin (AAL) lectins towards IgG from seropositive RA compared to seronegative RA or NHD. CE-LIF analysis revealed statistically significant increases in bisecting glycans FA2BG2 (p = .006) and FABG2S1 (p = .005) seropositive RA, accompanied by decrease of bisecting monogalactosylated glycan FA2(6)G1 (p = .074) and non-bisecting monosialylated glycan FA2(3)G1S1 (p = .055). The results suggest that seropositive RA is distinct from seronegative RA in terms of IgG glycan moieties, attributable to specific immunoglobulin molecules present in seropositive disease. These glycans were determined to be bisecting GlcNAc-bearing forms FA2BG2 and FABG2S1, and their appearance increased the availability of LCA and AAL lectin-binding sites in native IgG glycoepitopes.
Collapse
Affiliation(s)
- I Magorivska
- a Department of Internal Medicine 3 - Rheumatology and Immunology , Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen , Erlangen , Germany
| | - B Döncző
- b Research Centre for Molecular Medicine, Horváth Laboratory of Bioseparation Sciences, Faculty of Medicine , University of Debrecen , Debrecen , Hungary
| | - T Dumych
- c Danylo Halytsky Lviv National Medical University , Lviv , Ukraine
| | - A Karmash
- c Danylo Halytsky Lviv National Medical University , Lviv , Ukraine
| | - M Boichuk
- c Danylo Halytsky Lviv National Medical University , Lviv , Ukraine
| | - K Hychka
- c Danylo Halytsky Lviv National Medical University , Lviv , Ukraine
| | - M Mihalj
- d Faculty of Medicine , Josip Juraj Strossmayer University of Osijek , Osijek , Croatia.,e University hospital Osijek , Osijek , Croatia
| | - M Szabó
- f Department of Pulmonology , Semmelweis Hospital , Miskolc , Hungary
| | - E Csánky
- f Department of Pulmonology , Semmelweis Hospital , Miskolc , Hungary
| | - J Rech
- a Department of Internal Medicine 3 - Rheumatology and Immunology , Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen , Erlangen , Germany
| | - A Guttman
- b Research Centre for Molecular Medicine, Horváth Laboratory of Bioseparation Sciences, Faculty of Medicine , University of Debrecen , Debrecen , Hungary.,g MTA-PE Translational Glycomics Group, MUKKI , University of Pannonia , Veszprem , Hungary
| | - S G Vari
- h International Research and Innovation in Medicine Program , Cedars-Sinai Medical Center , Los Angeles , CA , USA
| | - R Bilyy
- a Department of Internal Medicine 3 - Rheumatology and Immunology , Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen , Erlangen , Germany.,d Faculty of Medicine , Josip Juraj Strossmayer University of Osijek , Osijek , Croatia
| |
Collapse
|
53
|
Dekkers G, Rispens T, Vidarsson G. Novel Concepts of Altered Immunoglobulin G Galactosylation in Autoimmune Diseases. Front Immunol 2018; 9:553. [PMID: 29616041 PMCID: PMC5867308 DOI: 10.3389/fimmu.2018.00553] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/05/2018] [Indexed: 12/22/2022] Open
Abstract
The composition of the conserved N297 glycan in immunoglobulin G (IgG) has been shown to affect antibody effector functions via C1q of the complement system and Fc gamma receptors (FcγR) on immune cells. Changes in the general levels of IgG-glycoforms, such as lowered total IgG galactosylation observed in many autoimmune diseases have been associated with elevated disease severity. Agalactosyslated IgG has therefore been regarded and classified by many as pro-inflammatory. However, and somewhat counterintuitively, agalactosylation has been shown by several groups to decrease affinity for FcγRIII and decrease C1q binding and downstream activation, which seems at odds with this proposed pro-inflammatory nature. In this review, we discuss these circumstances where altered IgG galactosylation/glycosylation is found. We propose a novel model based on these observations and current biochemical evidence, where the levels of IgG galactosylation found in the total bulk IgG affect the threshold required to achieve immune activation by autoantibodies through either C1q or FcγR. Although this model needs experimental verification, it is supported by several clinical observations and reconciles apparent discrepancies in the literature, and suggests a general mechanism in IgG-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Gillian Dekkers
- Sanquin Research and Landsteiner Laboratory, Department of Experimental Immunohematology, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands.,Sanquin Research and Landsteiner Laboratory, Department of Immunopathology, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Theo Rispens
- Sanquin Research and Landsteiner Laboratory, Department of Immunopathology, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Gestur Vidarsson
- Sanquin Research and Landsteiner Laboratory, Department of Experimental Immunohematology, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
54
|
Seeling M, Brückner C, Nimmerjahn F. Differential antibody glycosylation in autoimmunity: sweet biomarker or modulator of disease activity? Nat Rev Rheumatol 2017; 13:621-630. [DOI: 10.1038/nrrheum.2017.146] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
55
|
Patients with IgG1-anti-red blood cell autoantibodies show aberrant Fc-glycosylation. Sci Rep 2017; 7:8187. [PMID: 28811589 PMCID: PMC5557851 DOI: 10.1038/s41598-017-08654-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/17/2017] [Indexed: 01/07/2023] Open
Abstract
Autoimmune hemolytic anemia (AIHA) is a potentially severe disease in which red blood cells (RBC) are destroyed by IgG anti-RBC autoantibodies which can lead to hemolysis. We recently found IgG Fc-glycosylation towards platelet and RBC alloantigens to be skewed towards decreased fucosylation, increased galactosylation and sialylation. The lowered core-fucosylation increases the affinity of the pathogenic alloantibodies to FcγRIIIa/b, and hence RBC destruction. It is known that in autoimmune diseases plasma IgG1 galactosylation and sialylation are lowered, but Fc-glycosylation of RBC-specific autoantibodies has never been thoroughly analyzed. We investigated by mass spectrometry the N-linked RBC autoantibody and plasma IgG1 Fc-glycosylation in relation to occurrence of hemolysis for 103 patients with a positive direct antiglobulin test (DAT). We observed that total IgG1 purified from plasma of patients with RBC-bound antibodies showed significantly decreased galactosylation and sialylation levels compared to healthy controls, similar to what previously has been shown for other autoimmune diseases. The anti-RBC- autoantibodies showed a profile with even lower galactosylation, but higher sialylation and lower bisection levels. In contrast to alloantibodies against RBCs, RBC-bound IgG1 Fc-fucosylation was not different between healthy controls and patients. Analysis of anti-RBC Fc-glycoprofiles suggested that lower bisection and higher galactosylation associate with lower Hb levels.
Collapse
|
56
|
Stümer J, Biermann MHC, Knopf J, Magorivska I, Kastbom A, Svärd A, Janko C, Bilyy R, Schett G, Sjöwall C, Herrmann M, Muñoz LE. Altered glycan accessibility on native immunoglobulin G complexes in early rheumatoid arthritis and its changes during therapy. Clin Exp Immunol 2017; 189:372-382. [PMID: 28509333 DOI: 10.1111/cei.12987] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2017] [Indexed: 12/31/2022] Open
Abstract
The goal of this study was to investigate the glycosylation profile of native immunoglobulin (Ig)G present in serum immune complexes in patients with rheumatoid arthritis (RA). To accomplish this, lectin binding assays, detecting the accessibility of glycans present on IgG-containing immune complexes by biotinylated lectins, were employed. Lectins capturing fucosyl residues (AAL), fucosylated tri-mannose N-glycan core sites (LCA), terminal sialic acid residues (SNA) and O-glycosidically linked galactose/N-acetylgalactosamine (GalNac-L) were used. Patients with recent-onset RA at baseline and after 3-year follow-up were investigated. We found that native IgG was complexed significantly more often with IgM, C1q, C3c and C-reactive protein (CRP) in RA patients, suggesting alterations of the native structure of IgG. The total accessibility of fucose residues on captured immune complexes to the respective lectin was significantly higher in patients with RA. Moreover, fucose accessibility on IgG-containing immune complexes correlated positively with the levels of antibodies to cyclic citrullinated peptides (anti-CCP). We also observed a significantly higher accessibility to sialic acid residues and galactose/GalNAc glyco-epitopes in native complexed IgG of patients with RA at baseline. While sialic acid accessibility increased during treatment, the accessibility of galactose/GalNAc decreased. Hence, successful treatment of RA was associated with an increase in the SNA/GalNAc-L ratio. Interestingly, the SNA/GalNAc-L ratio in particular rises after glucocorticoid treatment. In summary, this study shows the exposure of glycans in native complexed IgG of patients with early RA, revealing particular glycosylation patterns and its changes following pharmaceutical treatment.
Collapse
Affiliation(s)
- J Stümer
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - M H C Biermann
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - J Knopf
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - I Magorivska
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany.,Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - A Kastbom
- Rheumatology/Division of Neuro and Inflammation Sciences, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - A Svärd
- Rheumatology Clinic, Falun Hospital, Falun, Sweden
| | - C Janko
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany.,Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), University Hospital Erlangen, Erlangen, Germany
| | - R Bilyy
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany.,Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - G Schett
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - C Sjöwall
- Rheumatology/Division of Neuro and Inflammation Sciences, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - M Herrmann
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - L E Muñoz
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
57
|
Russell AC, Šimurina M, Garcia MT, Novokmet M, Wang Y, Rudan I, Campbell H, Lauc G, Thomas MG, Wang W. The N-glycosylation of immunoglobulin G as a novel biomarker of Parkinson's disease. Glycobiology 2017; 27:501-510. [DOI: 10.1093/glycob/cwx022] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 02/21/2017] [Indexed: 12/11/2022] Open
Affiliation(s)
- Alyce C Russell
- School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia
- Parkinson's Centre, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia
| | - Mirna Šimurina
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000, Zagreb, Croatia
| | - Monique T Garcia
- School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia
| | - Mislav Novokmet
- Genos Glycoscience Research Laboratory, Hondlova 2/11, I.V. kat, 10000, Zagreb, Croatia
| | - Youxin Wang
- Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Fengtai Qu, Beijing Shi, 100054, China
| | - Igor Rudan
- Centre for Global Health Research, The Usher Institute, University of Edinburgh, 9 Little France Road, Edinburgh, EH16 4UX, UK
| | - Harry Campbell
- Centre for Global Health Research, The Usher Institute, University of Edinburgh, 9 Little France Road, Edinburgh, EH16 4UX, UK
| | - Gordan Lauc
- School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000, Zagreb, Croatia
- Genos Glycoscience Research Laboratory, Hondlova 2/11, I.V. kat, 10000, Zagreb, Croatia
| | - Meghan G Thomas
- Parkinson's Centre, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia
| | - Wei Wang
- School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia
- Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Fengtai Qu, Beijing Shi, 100054, China
| |
Collapse
|
58
|
Jefferis R. Recombinant Proteins and Monoclonal Antibodies. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 175:281-318. [DOI: 10.1007/10_2017_32] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|