51
|
Müller Kratz J, Garcia Bournissen F, Forsyth CJ, Sosa-Estani S. Clinical and pharmacological profile of benznidazole for treatment of Chagas disease. Expert Rev Clin Pharmacol 2018; 11:943-957. [DOI: 10.1080/17512433.2018.1509704] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Jadel Müller Kratz
- Chagas Clinical Program, Drugs for Neglected Disease initiative (DNDi), Geneva, Switzerland
| | - Facundo Garcia Bournissen
- Parasitology and Chagas Service, Buenos Aires Children Hospital Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Colin J. Forsyth
- Chagas Clinical Program, Drugs for Neglected Disease initiative (DNDi), Geneva, Switzerland
| | - Sergio Sosa-Estani
- Chagas Clinical Program, Drugs for Neglected Disease initiative (DNDi), Geneva, Switzerland
- Epidemiology and Public Health Research Center, CONICET, Buenos Aires, Argentina
| |
Collapse
|
52
|
Fonseca-Berzal C, Arán VJ, Escario JA, Gómez-Barrio A. Experimental models in Chagas disease: a review of the methodologies applied for screening compounds against Trypanosoma cruzi. Parasitol Res 2018; 117:3367-3380. [PMID: 30232605 DOI: 10.1007/s00436-018-6084-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/11/2018] [Indexed: 01/29/2023]
Abstract
One of the main problems of Chagas disease (CD), the parasitic infection caused by Trypanosoma cruzi, is the lack of a completely satisfactory treatment, which is currently based on two old nitroheterocyclic drugs (i.e., nifurtimox and benznidazole) that show important limitations for treating patients. In this context, many laboratories look for alternative therapies potentially applicable to the treatment, and therefore, research in CD chemotherapy works in the design of experimental protocols for detecting molecules with activity against T. cruzi. Phenotypic assays are considered the most valuable strategy for screening these antiparasitic compounds. Among them, in vitro experiments are the first step to test potential anti-T. cruzi drugs directly on the different parasite forms (i.e., epimastigotes, trypomastigotes, and amastigotes) and to detect cytotoxicity. Once the putative trypanocidal drug has been identified in vitro, it must be moved to in vivo models of T. cruzi infection, to explore (i) acute toxicity, (ii) efficacy during the acute infection, and (iii) efficacy in the chronic disease. Moreover, in silico approaches for predicting activity have emerged as a supporting tool for drug screening procedures. Accordingly, this work reviews those in vitro, in vivo, and in silico methods that have been routinely applied during the last decades, aiming to discover trypanocidal compounds that contribute to developing more effective CD treatments.
Collapse
Affiliation(s)
- Cristina Fonseca-Berzal
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain.
| | - Vicente J Arán
- Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), c/ Juan de la Cierva 3, 28006, Madrid, Spain
| | - José A Escario
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Alicia Gómez-Barrio
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain
| |
Collapse
|
53
|
Martín-Escolano R, Aguilera-Venegas B, Marín C, Martín-Montes Á, Martín-Escolano J, Medina-Carmona E, Arán VJ, Sánchez-Moreno M. Synthesis and Biological in vitro and in vivo Evaluation of 2-(5-Nitroindazol-1-yl)ethylamines and Related Compounds as Potential Therapeutic Alternatives for Chagas Disease. ChemMedChem 2018; 13:2104-2118. [PMID: 30098232 DOI: 10.1002/cmdc.201800512] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Indexed: 12/17/2022]
Abstract
Chagas disease, a neglected tropical disease caused by infection with the protozoan parasite Trypanosoma cruzi, is a potentially life-threatening illness that affects 5-8 million people in Latin America, and more than 10 million people worldwide. It is characterized by an acute phase, which is partly resolved by the immune system, but then develops as a chronic disease without an effective treatment. There is an urgent need for new antiprotozoal agents, as the current standard therapeutic options based on benznidazole and nifurtimox are characterized by limited efficacy, toxicity, and frequent failures in treatment. In vitro and in vivo assays were used to identify some new low-cost 5-nitroindazoles as a potential antichagasic therapeutic alternative. Compound 16 (3-benzyloxy-5-nitro-1-vinyl-1H-indazole) showed improved efficiency and lower toxicity than benznidazole in both in vitro and in vivo experiments, and its trypanocidal activity seems to be related to its effect at the mitochondrial level. Therefore, compound 16 is a promising candidate for the development of a new anti-Chagas agent, and further preclinical evaluation should be considered.
Collapse
Affiliation(s)
- Rubén Martín-Escolano
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios de Granada, University of Granada, c/ Severo Ochoa s/n, 18071, Granada, Spain
| | - Benjamín Aguilera-Venegas
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Box 233, Santiago, 8380492, Chile
| | - Clotilde Marín
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios de Granada, University of Granada, c/ Severo Ochoa s/n, 18071, Granada, Spain
| | - Álvaro Martín-Montes
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios de Granada, University of Granada, c/ Severo Ochoa s/n, 18071, Granada, Spain
| | - Javier Martín-Escolano
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios de Granada, University of Granada, c/ Severo Ochoa s/n, 18071, Granada, Spain
| | - Encarnación Medina-Carmona
- Department of Physical Chemistry, Faculty of Sciences, University of Granada, Av. Fuentenueva s/n, 18071, Granada, Spain
| | - Vicente J Arán
- Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), c/ Juan de la Cierva 3, 28006, Madrid, Spain
| | - Manuel Sánchez-Moreno
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios de Granada, University of Granada, c/ Severo Ochoa s/n, 18071, Granada, Spain
| |
Collapse
|
54
|
Calvo-Alvarez E, Cren-Travaillé C, Crouzols A, Rotureau B. A new chimeric triple reporter fusion protein as a tool for in vitro and in vivo multimodal imaging to monitor the development of African trypanosomes and Leishmania parasites. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2018; 63:391-403. [PMID: 29339220 DOI: 10.1016/j.meegid.2018.01.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 12/20/2022]
Abstract
Trypanosomiases and leishmaniases, caused by a group of related protist parasites, are Neglected Tropical Diseases currently threatening >500 million people worldwide. Reporter proteins have revolutionised the research on infectious diseases and have opened up new advances in the understanding of trypanosomatid-borne diseases in terms of both biology, pathogenesis and drug development. Here, we describe the generation and some applications of a new chimeric triple reporter fusion protein combining the red-shifted firefly luciferase PpyREH9 and the tdTomato red fluorescent protein, fused by the TY1 tag. Expressed in both Trypanosoma brucei brucei and Leishmania major transgenic parasites, this construct was successfully assessed on different state-of-the-art imaging technologies, at different scales ranging from whole organism to cellular level, both in vitro and in vivo in murine models. For T. b. brucei, the usefulness of this triple marker to monitor the entire parasite cycle in both tsetse flies and mice was further demonstrated. This stable reporter allows to qualitatively and quantitatively scrutinize in real-time several crucial aspects of the parasite's development, including the development of African trypanosomes in the dermis of the mammalian host. We briefly discuss developments in bio-imaging technologies and highlight how we could improve our understanding of parasitism by combining the genetic engineering of parasites to the one of the hosting organisms in which they complete their developmental program.
Collapse
Affiliation(s)
- Estefania Calvo-Alvarez
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Institut Pasteur and INSERM U1201, Paris, France.
| | - Christelle Cren-Travaillé
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Institut Pasteur and INSERM U1201, Paris, France
| | - Aline Crouzols
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Institut Pasteur and INSERM U1201, Paris, France
| | - Brice Rotureau
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Institut Pasteur and INSERM U1201, Paris, France
| |
Collapse
|
55
|
Hennessey KM, Rogiers IC, Shih HW, Hulverson MA, Choi R, McCloskey MC, Whitman GR, Barrett LK, Merritt EA, Paredez AR, Ojo KK. Screening of the Pathogen Box for inhibitors with dual efficacy against Giardia lamblia and Cryptosporidium parvum. PLoS Negl Trop Dis 2018; 12:e0006673. [PMID: 30080847 PMCID: PMC6095626 DOI: 10.1371/journal.pntd.0006673] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 08/16/2018] [Accepted: 07/09/2018] [Indexed: 12/13/2022] Open
Abstract
There is need for a more efficient cell-based assay amenable to high-throughput drug screening against Giardia lamblia. Here, we report the development of a screening method utilizing G. lamblia engineered to express red-shifted firefly luciferase. Parasite growth and replication were quantified using D-luciferin as a substrate in a bioluminescent read-out plateform. This assay was validated for reproducibility and reliability against the Medicines for Malaria Venture (MMV) Pathogen Box compounds. For G. lamblia, forty-three compounds showed ≥ 75% inhibition of parasite growth in the initial screen (16 μM), with fifteen showing ≥ 95% inhibition. The Pathogen Box was also screened against Nanoluciferase expressing (Nluc) C. parvum, yielding 85 compounds with ≥ 75% parasite growth inhibition at 10 μM, with six showing ≥ 95% inhibition. A representative set of seven compounds with activity against both parasites were further analyzed to determine the effective concentration that causes 50% growth inhibition (EC50) and cytotoxicity against mammalian HepG2 cells. Four of the seven compounds were previously known to be effective in treating either Giardia or Cryptosporidium. The remaining three shared no obvious chemical similarity with any previously characterized anti-parasite diarrheal drugs and offer new medicinal chemistry opportunities for therapeutic development. These results suggest that the bioluminescent assays are suitable for large-scale screening of chemical libraries against both C. parvum and G. lamblia.
Collapse
Affiliation(s)
- Kelly M. Hennessey
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Ilse C. Rogiers
- Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, Washington, United States of America
- Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Han-Wei Shih
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Matthew A. Hulverson
- Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, Washington, United States of America
| | - Ryan Choi
- Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, Washington, United States of America
| | - Molly C. McCloskey
- Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, Washington, United States of America
| | - Grant R. Whitman
- Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, Washington, United States of America
| | - Lynn K. Barrett
- Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, Washington, United States of America
| | - Ethan A. Merritt
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Alexander R. Paredez
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Kayode K. Ojo
- Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
56
|
Weng HB, Chen HX, Wang MW. Innovation in neglected tropical disease drug discovery and development. Infect Dis Poverty 2018; 7:67. [PMID: 29950174 PMCID: PMC6022351 DOI: 10.1186/s40249-018-0444-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 05/23/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Neglected tropical diseases (NTDs) are closely related to poverty and affect over a billion people in developing countries. The unmet treatment needs cause high mortality and disability thereby imposing a huge burden with severe social and economic consequences. Although coordinated by the World Health Organization, various philanthropic organizations, national governments and the pharmaceutical industry have been making efforts in improving the situation, the control of NTDs is still inadequate and extremely difficult today. The lack of safe, effective and affordable medicines is a key contributing factor. This paper reviews the recent advances and some of the challenges that we are facing in the fight against NTDs. MAIN BODY In recent years, a number of innovations have demonstrated propensity to promote drug discovery and development for NTDs. Implementation of multilateral collaborations leads to continued efforts and plays a crucial role in drug discovery. Proactive approaches and advanced technologies are urgently needed in drug innovation for NTDs. However, the control and elimination of NTDs remain a formidable task as it requires persistent international cooperation to make sustainable progresses for a long period of time. Some currently employed strategies were proposed and verified to be successful, which involve both mechanisms of 'Push' which aims at cutting the cost of research and development for industry and 'Pull' which aims at increasing market attractiveness. Coupled to this effort should be the exercise of shared responsibility globally to reduce risks, overcome obstacles and maximize benefits. Since NTDs are closely associated with poverty, it is absolutely essential that the stakeholders take concerted and long-term measures to meet multifaceted challenges by alleviating extreme poverty, strengthening social intervention, adapting climate changes, providing effective monitoring and ensuring timely delivery. CONCLUSIONS The ongoing endeavor at the global scale will ultimately benefit the patients, the countries they are living and, hopefully, the manufacturers who provide new preventive, diagnostic and therapeutic products.
Collapse
Affiliation(s)
- Hong-Bo Weng
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong New District, Shanghai, 201203 China
| | - Hai-Xia Chen
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong New District, Shanghai, 201203 China
| | - Ming-Wei Wang
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong New District, Shanghai, 201203 China
- The National Center for Drug Screening and the CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 189 Guoshoujing Road, Pudong New District, Shanghai, 201203 China
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong New District, Shanghai, 201210 China
| |
Collapse
|
57
|
Scarim CB, Ribeiro AR, Rosa JAD, Chin CM. Response to different benznidazole doses in animal models of chronic phase Chagas disease: a critical review. Rev Soc Bras Med Trop 2018; 51:133-140. [DOI: 10.1590/0037-8682-0337-2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 04/18/2018] [Indexed: 01/23/2023] Open
Affiliation(s)
| | | | | | - Chung Man Chin
- Universidade Estadual Paulista Júlio de Mesquita Filho, Brazil
| |
Collapse
|
58
|
Chen P, Liu Y, Zhao J, Pang X, Zhang P, Hou X, Chen P, He CY, Wang Z, Chen ZY. The synthesis of amphiphilic polyethyleneimine/calcium phosphate composites for bispecific T-cell engager based immunogene therapy. Biomater Sci 2018; 6:633-641. [DOI: 10.1039/c7bm01143a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Bispecific T-cell engagers (BiTEs) are single chain variable fragments, which could connect the surface antigen on cancer cells and CD3 ligands on T cells, and then engage the T cells for cancer immunotherapy.
Collapse
Affiliation(s)
- Pingzhang Chen
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
- Shenzhen College of Advanced Technology
- University of Chinese Academy of Sciences
| | - Yunhong Liu
- Department of Clinical Laboratory
- The People's Hospital of Longhua
- Shenzhen
- China
| | - Jing Zhao
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| | | | - Peifa Zhang
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| | - Xiaohu Hou
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| | - Ping Chen
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| | - Cheng-yi He
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| | - Zhiyong Wang
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
- School of Materials Science and Engineering
- Sun Yat-sen University
| | - Zhi-ying Chen
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
- Shenzhen College of Advanced Technology
- University of Chinese Academy of Sciences
| |
Collapse
|
59
|
Calvet CM, Choi JY, Thomas D, Suzuki B, Hirata K, Lostracco-Johnson S, de Mesquita LB, Nogueira A, Meuser-Batista M, Silva TA, Siqueira-Neto JL, Roush WR, de Souza Pereira MC, McKerrow JH, Podust LM. 4-aminopyridyl-based lead compounds targeting CYP51 prevent spontaneous parasite relapse in a chronic model and improve cardiac pathology in an acute model of Trypanosoma cruzi infection. PLoS Negl Trop Dis 2017; 11:e0006132. [PMID: 29281643 PMCID: PMC5744913 DOI: 10.1371/journal.pntd.0006132] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 11/22/2017] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Chagas disease, caused by the protozoan Trypanosoma cruzi, is the leading cause of heart failure in Latin America. The clinical treatment of Chagas disease is limited to two 60 year-old drugs, nifurtimox and benznidazole, that have variable efficacy against different strains of the parasite and may lead to severe side effects. CYP51 is an enzyme in the sterol biosynthesis pathway that has been exploited for the development of therapeutics for fungal and parasitic infections. In a target-based drug discovery program guided by x-ray crystallography, we identified the 4-aminopyridyl-based series of CYP51 inhibitors as being efficacious versus T.cruzi in vitro; two of the most potent leads, 9 and 12, have now been evaluated for toxicity and efficacy in mice. METHODOLOGY/PRINCIPAL FINDINGS Both acute and chronic animal models infected with wild type or transgenic T. cruzi strains were evaluated. There was no evidence of toxicity in the 28-day dosing study of uninfected animals, as judged by the monitoring of multiple serum and histological parameters. In two acute models of Chagas disease, 9 and 12 drastically reduced parasitemia, increased survival of mice, and prevented liver and heart injury. None of the compounds produced long term sterile cure. In the less severe acute model using the transgenic CL-Brenner strain of T.cruzi, parasitemia relapsed upon drug withdrawal. In the chronic model, parasitemia fell to a background level and, as evidenced by the bioluminescence detection of T. cruzi expressing the red-shifted luciferase marker, mice remained negative for 4 weeks after drug withdrawal. Two immunosuppression cycles with cyclophosphamide were required to re-activate the parasites. Although no sterile cure was achieved, the suppression of parasitemia in acutely infected mice resulted in drastically reduced inflammation in the heart. CONCLUSIONS/SIGNIFICANCE The positive outcomes achieved in the absence of sterile cure suggest that the target product profile in anti-Chagasic drug discovery should be revised in favor of safe re-administration of the medication during the lifespan of a Chagas disease patient. A medication that reduces parasite burden may halt or slow progression of cardiomyopathy and therefore improve both life expectancy and quality of life.
Collapse
Affiliation(s)
- Claudia Magalhaes Calvet
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
- Cellular Ultra-Structure Laboratory, Oswaldo Cruz Institute (IOC), FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jun Yong Choi
- Department of Chemistry, Scripps Florida, Jupiter, Florida, United States of America
| | - Diane Thomas
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Brian Suzuki
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Ken Hirata
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Sharon Lostracco-Johnson
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Liliane Batista de Mesquita
- Cellular Ultra-Structure Laboratory, Oswaldo Cruz Institute (IOC), FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alanderson Nogueira
- Cellular Ultra-Structure Laboratory, Oswaldo Cruz Institute (IOC), FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo Meuser-Batista
- Department of Pathologic Anatomy, Fernandes Figueira Institute (IFF), FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tatiana Araujo Silva
- Cellular Ultra-Structure Laboratory, Oswaldo Cruz Institute (IOC), FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jair Lage Siqueira-Neto
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - William R. Roush
- Department of Chemistry, Scripps Florida, Jupiter, Florida, United States of America
| | | | - James H. McKerrow
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Larissa M. Podust
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
60
|
Abstract
In the last 2 decades, renewed attention to neglected tropical diseases (NTDs) has spurred the development of antiparasitic agents, especially in light of emerging drug resistance. The need for new drugs has required in vitro screening methods using parasite culture. Furthermore, clinical laboratories sought to correlate in vitro susceptibility methods with treatment outcomes, most notably with malaria. Parasites with their various life cycles present greater complexity than bacteria, for which standardized susceptibility methods exist. This review catalogs the state-of-the-art methodologies used to evaluate the effects of drugs on key human parasites from the point of view of drug discovery as well as the need for laboratory methods that correlate with clinical outcomes.
Collapse
|
61
|
Genome-wide mutagenesis and multi-drug resistance in American trypanosomes induced by the front-line drug benznidazole. Sci Rep 2017; 7:14407. [PMID: 29089615 PMCID: PMC5663738 DOI: 10.1038/s41598-017-14986-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/18/2017] [Indexed: 12/28/2022] Open
Abstract
Chagas disease is caused by the protozoan parasite Trypanosoma cruzi and affects 5–8 million people in Latin America. Although the nitroheterocyclic compound benznidazole has been the front-line drug for several decades, treatment failures are common. Benznidazole is a pro-drug and is bio-activated within the parasite by the mitochondrial nitroreductase TcNTR-1, leading to the generation of reactive metabolites that have trypanocidal activity. To better assess drug action and resistance, we sequenced the genomes of T. cruzi Y strain (35.5 Mb) and three benznidazole-resistant clones derived from a single drug-selected population. This revealed the genome-wide accumulation of mutations in the resistant parasites, in addition to variations in DNA copy-number. We observed mutations in DNA repair genes, linked with increased susceptibility to DNA alkylating and inter-strand cross-linking agents. Stop-codon-generating mutations in TcNTR-1 were associated with cross-resistance to other nitroheterocyclic drugs. Unexpectedly, the clones were also highly resistant to the ergosterol biosynthesis inhibitor posaconazole, a drug proposed for use against T. cruzi infections, in combination with benznidazole. Our findings therefore identify the highly mutagenic activity of benznidazole metabolites in T. cruzi, demonstrate that this can result in multi-drug resistance, and indicate that vigilance will be required if benznidazole is used in combination therapy.
Collapse
|
62
|
The Trypomastigote Small Surface Antigen from Trypanosoma cruzi Improves Treatment Evaluation and Diagnosis in Pediatric Chagas Disease. J Clin Microbiol 2017; 55:3444-3453. [PMID: 28978686 DOI: 10.1128/jcm.01317-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 09/27/2017] [Indexed: 02/06/2023] Open
Abstract
Chagas disease is caused by the protozoan parasite Trypanosoma cruzi Assessment of parasitological cure upon treatment with available drugs relies on achieving consistent negative results in conventional parasitological and serological tests, which may take years to assess. Here, we evaluated the use of a recombinant T. cruzi antigen termed trypomastigote small surface antigen (TSSA) as an early serological marker of drug efficacy in T. cruzi-infected children. A cohort of 78 pediatric patients born to T. cruzi-infected mothers was included in this study. Only 39 of the children were infected with T. cruzi, and they were immediately treated with trypanocidal drugs. Serological responses against TSSA were evaluated in infected and noninfected populations during the follow-up period using an in-house enzyme-linked immunosorbent assay (ELISA) and compared to conventional serological methods. Anti-TSSA antibody titers decreased significantly faster than anti-whole parasite antibodies detected by conventional serology both in T. cruzi-infected patients undergoing effective treatment and in those not infected. The differential kinetics allowed a significant reduction in the required follow-up periods to evaluate therapeutic responses or to rule out maternal-fetal transmission. Finally, we present the case of a congenitally infected patient with an atypical course in whom TSSA provided an early marker for T. cruzi infection. In conclusion, we showed that TSSA was efficacious both for rapid assessment of treatment efficiency and for early negative diagnosis in infants at risk of congenital T. cruzi infection. Based upon these findings we propose the inclusion of TSSA for refining the posttherapeutic cure criterion and other diagnostic needs in pediatric Chagas disease.
Collapse
|
63
|
Abstract
Chagas disease is caused by infection with the insect-transmitted protozoan Trypanosoma cruzi, and is the most important parasitic infection in Latin America. The current drugs, benznidazole and nifurtimox, are characterized by limited efficacy and toxic side-effects, and treatment failures are frequently observed. The urgent need for new therapeutic approaches is being met by a combined effort from the academic and commercial sectors, together with major input from not-for-profit drug development consortia. With the disappointing outcomes of recent clinical trials against chronic Chagas disease, it has become clear that an incomplete understanding of parasite biology and disease pathogenesis is impacting negatively on the development of more effective drugs. In addition, technical issues, including difficulties in establishing parasitological cure in both human patients and animal models, have greatly complicated the assessment of drug efficacy. Here, we outline the major questions that need to be addressed and discuss technical innovations that can be exploited to accelerate the drug development pipeline.
Collapse
|
64
|
Vasconcelos JF, Meira CS, Silva DN, Nonaka CKV, Daltro PS, Macambira SG, Domizi PD, Borges VM, Ribeiro-Dos-Santos R, de Freitas Souza BS, Soares MBP. Therapeutic effects of sphingosine kinase inhibitor N,N-dimethylsphingosine (DMS) in experimental chronic Chagas disease cardiomyopathy. Sci Rep 2017; 7:6171. [PMID: 28733584 PMCID: PMC5522404 DOI: 10.1038/s41598-017-06275-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 06/12/2017] [Indexed: 11/09/2022] Open
Abstract
Chagas disease cardiomyopathy is a parasite-driven inflammatory disease to which there are no effective treatments. Here we evaluated the therapeutic potential of N,N-dimethylsphingosine(DMS), which blocks the production of sphingosine-1-phosphate(S1P), a mediator of cellular events during inflammatory responses, in a model of chronic Chagas disease cardiomyopathy. DMS-treated, Trypanosoma cruzi-infected mice had a marked reduction of cardiac inflammation, fibrosis and galectin-3 expression when compared to controls. Serum concentrations of galectin-3, IFNγ and TNFα, as well as cardiac gene expression of inflammatory mediators were reduced after DMS treatment. The gene expression of M1 marker, iNOS, was decreased, while the M2 marker, arginase1, was increased. DMS-treated mice showed an improvement in exercise capacity. Moreover, DMS caused a reduction in parasite load in vivo. DMS inhibited the activation of lymphocytes, and reduced cytokines and NO production in activated macrophage cultures in vitro, while increasing IL-1β production. Analysis by qRT-PCR array showed that DMS treatment modulated inflammasome activation induced by T. cruzi on macrophages. Altogether, our results demonstrate that DMS, through anti-parasitic and immunomodulatory actions, can be beneficial in the treatment of chronic phase of T. cruzi infection and suggest that S1P-activated processes as possible therapeutic targets for the treatment of Chagas disease cardiomyopathy.
Collapse
Affiliation(s)
- Juliana Fraga Vasconcelos
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, FIOCRUZ, Salvador, BA, 40296-710, Brazil.,Centro de Biotecnologia e Terapia Celular, Hospital São Rafael, Salvador, BA, 41253-190, Brazil.,Escola de Ciências da saúde, Universidade Salvador, Salvador, BA, 41720-200, Brazil
| | - Cássio Santana Meira
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, FIOCRUZ, Salvador, BA, 40296-710, Brazil.,Centro de Biotecnologia e Terapia Celular, Hospital São Rafael, Salvador, BA, 41253-190, Brazil
| | | | | | - Pâmela Santana Daltro
- Centro de Biotecnologia e Terapia Celular, Hospital São Rafael, Salvador, BA, 41253-190, Brazil
| | - Simone Garcia Macambira
- Centro de Biotecnologia e Terapia Celular, Hospital São Rafael, Salvador, BA, 41253-190, Brazil.,Departamento de Bioquímica e Biofísica, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, BA, 40110-100, Brazil
| | - Pablo Daniel Domizi
- Centro de Ciências da Saúde, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21944-970, Brazil
| | - Valéria Matos Borges
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, FIOCRUZ, Salvador, BA, 40296-710, Brazil
| | | | - Bruno Solano de Freitas Souza
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, FIOCRUZ, Salvador, BA, 40296-710, Brazil.,Centro de Biotecnologia e Terapia Celular, Hospital São Rafael, Salvador, BA, 41253-190, Brazil
| | - Milena Botelho Pereira Soares
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, FIOCRUZ, Salvador, BA, 40296-710, Brazil. .,Centro de Biotecnologia e Terapia Celular, Hospital São Rafael, Salvador, BA, 41253-190, Brazil.
| |
Collapse
|
65
|
Silva DG, Gillespie JR, Ranade RM, Herbst ZM, Nguyen UTT, Buckner FS, Montanari CA, Gelb MH. New Class of Antitrypanosomal Agents Based on Imidazopyridines. ACS Med Chem Lett 2017; 8:766-770. [PMID: 28740614 DOI: 10.1021/acsmedchemlett.7b00202] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/27/2017] [Indexed: 12/11/2022] Open
Abstract
The present work describes the synthesis of 22 new imidazopyridine analogues arising from medicinal chemistry optimization at different sites on the molecule. Seven and 12 compounds exhibited an in vitro EC50 ≤ 1 μM against Trypanosoma cruzi (T. cruzi) and Trypanosoma brucei (T. brucei) parasites, respectively. Based on promising results of in vitro activity (EC50 < 100 nM), cytotoxicity, metabolic stability, protein binding, and pharmacokinetics (PK) properties, compound 20 was selected as a candidate for in vivo efficacy studies. This compound was screened in an acute mouse model against T.cruzi (Tulahuen strain). After established infection, mice were dosed twice a day for 5 days, and then monitored for 6 weeks using an in vivo imaging system (IVIS). Compound 20 demonstrated parasite inhibition comparable to the benznidazole treatment group. Compound 20 represents a potential lead for the development of drugs to treat trypanosomiasis.
Collapse
Affiliation(s)
- Daniel G. Silva
- Grupo
de Química Medicinal do IQSC/USP, Instituto de Química de São Carlos 13566-590, Universidade de São Paulo, São
Carlos, São Paulo Brazil
| | | | | | | | | | | | - Carlos A. Montanari
- Grupo
de Química Medicinal do IQSC/USP, Instituto de Química de São Carlos 13566-590, Universidade de São Paulo, São
Carlos, São Paulo Brazil
| | | |
Collapse
|
66
|
Field MC, Horn D, Fairlamb AH, Ferguson MAJ, Gray DW, Read KD, De Rycker M, Torrie LS, Wyatt PG, Wyllie S, Gilbert IH. Anti-trypanosomatid drug discovery: an ongoing challenge and a continuing need. Nat Rev Microbiol 2017; 15:217-231. [PMID: 28239154 PMCID: PMC5582623 DOI: 10.1038/nrmicro.2016.193] [Citation(s) in RCA: 265] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The WHO recognizes human African trypanosomiasis, Chagas disease and the leishmaniases as neglected tropical diseases. These diseases are caused by parasitic trypanosomatids and range in severity from mild and self-curing to near invariably fatal. Public health advances have substantially decreased the effect of these diseases in recent decades but alone will not eliminate them. In this Review, we discuss why new drugs against trypanosomatids are required, approaches that are under investigation to develop new drugs and why the drug discovery pipeline remains essentially unfilled. In addition, we consider the important challenges to drug discovery strategies and the new technologies that can address them. The combination of new drugs, new technologies and public health initiatives is essential for the management, and hopefully eventual elimination, of trypanosomatid diseases from the human population.
Collapse
Affiliation(s)
- Mark C Field
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee DD1 5EH, UK
| | - David Horn
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee DD1 5EH, UK
| | - Alan H Fairlamb
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee DD1 5EH, UK
| | - Michael A J Ferguson
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee DD1 5EH, UK
| | - David W Gray
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee DD1 5EH, UK
| | - Kevin D Read
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee DD1 5EH, UK
| | - Manu De Rycker
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee DD1 5EH, UK
| | - Leah S Torrie
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee DD1 5EH, UK
| | - Paul G Wyatt
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee DD1 5EH, UK
| | - Susan Wyllie
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee DD1 5EH, UK
| | - Ian H Gilbert
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
67
|
Myburgh E, Ritchie R, Goundry A, O’Neill K, Marchesi F, Devaney E. Attempts to Image the Early Inflammatory Response during Infection with the Lymphatic Filarial Nematode Brugia pahangi in a Mouse Model. PLoS One 2016; 11:e0168602. [PMID: 27992545 PMCID: PMC5161388 DOI: 10.1371/journal.pone.0168602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/02/2016] [Indexed: 11/30/2022] Open
Abstract
Helminth parasites remain a major constraint upon human health and well-being in many parts of the world. Treatment of these infections relies upon a very small number of therapeutics, most of which were originally developed for use in animal health. A lack of high throughput screening systems, together with limitations of available animal models, has restricted the development of novel chemotherapeutics. This is particularly so for filarial nematodes, which are long-lived parasites with a complex cycle of development. In this paper, we describe attempts to visualise the immune response elicited by filarial parasites in infected mice using a non-invasive bioluminescence imaging reagent, luminol, our aim being to determine whether such a model could be developed to discriminate between live and dead worms for in vivo compound screening. We show that while imaging can detect the immune response elicited by early stages of infection with L3, it was unable to detect the presence of adult worms or, indeed, later stages of infection with L3, despite the presence of worms within the lymphatic system of infected animals. In the future, more specific reagents that detect secreted products of adult worms may be required for developing screens based upon live imaging of infected animals.
Collapse
Affiliation(s)
- Elmarie Myburgh
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- * E-mail: (EM); (ED); (FM)
| | - Ryan Ritchie
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Amy Goundry
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kerry O’Neill
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Garscube Estate, Glasgow, United Kingdom
| | - Francesco Marchesi
- School of Veterinary Medicine, University of Glasgow, Garscube Estate, Glasgow
- * E-mail: (EM); (ED); (FM)
| | - Eileen Devaney
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Garscube Estate, Glasgow, United Kingdom
- * E-mail: (EM); (ED); (FM)
| |
Collapse
|
68
|
Balouz V, Agüero F, Buscaglia CA. Chagas Disease Diagnostic Applications: Present Knowledge and Future Steps. ADVANCES IN PARASITOLOGY 2016; 97:1-45. [PMID: 28325368 PMCID: PMC5363286 DOI: 10.1016/bs.apar.2016.10.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chagas disease, caused by the protozoan Trypanosoma cruzi, is a lifelong and debilitating illness of major significance throughout Latin America and an emergent threat to global public health. Being a neglected disease, the vast majority of Chagasic patients have limited access to proper diagnosis and treatment, and there is only a marginal investment into R&D for drug and vaccine development. In this context, identification of novel biomarkers able to transcend the current limits of diagnostic methods surfaces as a main priority in Chagas disease applied research. The expectation is that these novel biomarkers will provide reliable, reproducible and accurate results irrespective of the genetic background, infecting parasite strain, stage of disease, and clinical-associated features of Chagasic populations. In addition, they should be able to address other still unmet diagnostic needs, including early detection of congenital T. cruzi transmission, rapid assessment of treatment efficiency or failure, indication/prediction of disease progression and direct parasite typification in clinical samples. The lack of access of poor and neglected populations to essential diagnostics also stresses the necessity of developing new methods operational in point-of-care settings. In summary, emergent diagnostic tests integrating these novel and tailored tools should provide a significant impact on the effectiveness of current intervention schemes and on the clinical management of Chagasic patients. In this chapter, we discuss the present knowledge and possible future steps in Chagas disease diagnostic applications, as well as the opportunity provided by recent advances in high-throughput methods for biomarker discovery.
Collapse
Affiliation(s)
- Virginia Balouz
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, B 1650 HMP, Buenos Aires, Argentina
| | - Fernán Agüero
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, B 1650 HMP, Buenos Aires, Argentina
| | - Carlos A. Buscaglia
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, B 1650 HMP, Buenos Aires, Argentina
| |
Collapse
|
69
|
Francisco AF, Jayawardhana S, Lewis MD, White KL, Shackleford DM, Chen G, Saunders J, Osuna-Cabello M, Read KD, Charman SA, Chatelain E, Kelly JM. Nitroheterocyclic drugs cure experimental Trypanosoma cruzi infections more effectively in the chronic stage than in the acute stage. Sci Rep 2016; 6:35351. [PMID: 27748443 PMCID: PMC5066210 DOI: 10.1038/srep35351] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/28/2016] [Indexed: 01/08/2023] Open
Abstract
The insect-transmitted protozoan parasite Trypanosoma cruzi is the causative agent of Chagas disease, and infects 5-8 million people in Latin America. Chagas disease is characterised by an acute phase, which is partially resolved by the immune system, but then develops as a chronic life-long infection. There is a consensus that the front-line drugs benznidazole and nifurtimox are more effective against the acute stage in both clinical and experimental settings. However, confirmative studies have been restricted by difficulties in demonstrating sterile parasitological cure. Here, we describe a systematic study of nitroheterocyclic drug efficacy using highly sensitive bioluminescence imaging of murine infections. Unexpectedly, we find both drugs are more effective at curing chronic infections, judged by treatment duration and therapeutic dose. This was not associated with factors that differentially influence plasma drug concentrations in the two disease stages. We also observed that fexinidazole and fexinidazole sulfone are more effective than benznidazole and nifurtimox as curative treatments, particularly for acute stage infections, most likely as a result of the higher and more prolonged exposure of the sulfone derivative. If these findings are translatable to human patients, they will have important implications for treatment strategies.
Collapse
Affiliation(s)
- Amanda Fortes Francisco
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Shiromani Jayawardhana
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Michael D Lewis
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Karen L White
- Centre for Drug Candidate Optimisation, Monash University, 381 Royal Parade, Parkville 3052, Australia
| | - David M Shackleford
- Centre for Drug Candidate Optimisation, Monash University, 381 Royal Parade, Parkville 3052, Australia
| | - Gong Chen
- Centre for Drug Candidate Optimisation, Monash University, 381 Royal Parade, Parkville 3052, Australia
| | - Jessica Saunders
- Centre for Drug Candidate Optimisation, Monash University, 381 Royal Parade, Parkville 3052, Australia
| | - Maria Osuna-Cabello
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Kevin D Read
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Susan A Charman
- Centre for Drug Candidate Optimisation, Monash University, 381 Royal Parade, Parkville 3052, Australia
| | - Eric Chatelain
- Drugs for Neglected Diseases Initiative (DNDi), 15 Chemin Louis-Dunant, 1202 Geneva, Switzerland
| | - John M Kelly
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| |
Collapse
|
70
|
Lewis MD, Francisco AF, Taylor MC, Jayawardhana S, Kelly JM. Host and parasite genetics shape a link between Trypanosoma cruzi infection dynamics and chronic cardiomyopathy. Cell Microbiol 2016; 18:1429-43. [PMID: 26918803 PMCID: PMC5031194 DOI: 10.1111/cmi.12584] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 02/21/2016] [Indexed: 12/15/2022]
Abstract
Host and parasite diversity are suspected to be key factors in Chagas disease pathogenesis. Experimental investigation of underlying mechanisms is hampered by a lack of tools to detect scarce, pleiotropic infection foci. We developed sensitive imaging models to track Trypanosoma cruzi infection dynamics and quantify tissue-specific parasite loads, with minimal sampling bias. We used this technology to investigate cardiomyopathy caused by highly divergent parasite strains in BALB/c, C3H/HeN and C57BL/6 mice. The gastrointestinal tract was unexpectedly found to be the primary site of chronic infection in all models. Immunosuppression induced expansion of parasite loads in the gut and was followed by widespread dissemination. These data indicate that differential immune control of T. cruzi occurs between tissues and shows that the large intestine and stomach provide permissive niches for active infection. The end-point frequency of heart-specific infections ranged from 0% in TcVI-CLBR-infected C57BL/6 to 88% in TcI-JR-infected C3H/HeN mice. Nevertheless, infection led to fibrotic cardiac pathology in all models. Heart disease severity was associated with the model-dependent frequency of dissemination outside the gut and inferred cumulative heart-specific parasite loads. We propose a model of cardiac pathogenesis driven by periodic trafficking of parasites into the heart, occurring at a frequency determined by host and parasite genetics.
Collapse
Affiliation(s)
- Michael D Lewis
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, 20892, USA.
| | - Amanda Fortes Francisco
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Martin C Taylor
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Shiromani Jayawardhana
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - John M Kelly
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| |
Collapse
|
71
|
Santoro AL, Carrilho E, Lanças FM, Montanari CA. Quantitative structure–retention relationships of flavonoids unraveled by immobilized artificial membrane chromatography. Eur J Pharm Sci 2016; 88:147-57. [DOI: 10.1016/j.ejps.2015.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 11/09/2015] [Accepted: 12/06/2015] [Indexed: 01/27/2023]
|
72
|
Rogers N. Bugging out over Chagas: Bioluminescent protozoans and old drugs might help unravel kissing-bug disease. Nat Med 2015; 21:1108-10. [DOI: 10.1038/nm1015-1108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
73
|
Different Therapeutic Outcomes of Benznidazole and VNI Treatments in Different Genders in Mouse Experimental Models of Trypanosoma cruzi Infection. Antimicrob Agents Chemother 2015; 59:7564-70. [PMID: 26416857 DOI: 10.1128/aac.01294-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/19/2015] [Indexed: 01/17/2023] Open
Abstract
The lack of translation between preclinical assays and clinical trials for novel therapies for Chagas disease (CD) indicates a need for more feasible and standardized protocols and experimental models. Here, we investigated the effects of treatment with benznidazole (Bz) and with the potent experimental T. cruzi CYP51 inhibitor VNI in mouse models of Chagas disease by using different animal genders and parasite strains and employing distinct types of therapeutic schemes. Our findings confirm that female mice are less vulnerable to the infection than males, show that male models are less susceptible to treatment with both Bz and VNI, and thus suggest that male models are much more suitable for selection of the most promising antichagasic agents. Additionally, we have found that preventive protocols (compound given at 1 dpi) result in higher treatment success rates, which also should be avoided during advanced steps of in vivo trials of novel anti-T. cruzi drug candidates. Another consideration is the relevance of immunosuppression methods in order to verify the therapeutic profile of novel compounds, besides the usefulness of molecular diagnostic tools (quantitative PCR) to ascertain compound efficacy in experimental animals. Our study aims to contribute to the development of more reliable methods and decision gates for in vivo assays of novel antiparasitic compounds in order to move them from preclinical to clinical trials for CD.
Collapse
|
74
|
Chatelain E, Konar N. Translational challenges of animal models in Chagas disease drug development: a review. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:4807-23. [PMID: 26316715 PMCID: PMC4548737 DOI: 10.2147/dddt.s90208] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chagas disease, or American trypanosomiasis, caused by Trypanosoma cruzi parasite infection is endemic in Latin America and presents an increasing clinical challenge due to migrating populations. Despite being first identified over a century ago, only two drugs are available for its treatment, and recent outcomes from the first clinical trials in 40 years were lackluster. There is a critical need to develop new drugs to treat Chagas disease. This requires a better understanding of the progression of parasite infection, and standardization of animal models designed for Chagas disease drug discovery. Such measures would improve comparison of generated data and the predictability of test hypotheses and models designed for translation to human disease. Existing animal models address both disease pathology and treatment efficacy. Available models have limited predictive value for the preclinical evaluation of novel therapies and need to more confidently predict the efficacy of new drug candidates in clinical trials. This review highlights the overall lack of standardized methodology and assessment tools, which has hampered the development of efficacious compounds to treat Chagas disease. We provide an overview of animal models for Chagas disease, and propose steps that could be undertaken to reduce variability and improve predictability of drug candidate efficacy. New technological developments and tools may contribute to a much needed boost in the drug discovery process.
Collapse
Affiliation(s)
- Eric Chatelain
- Drugs for Neglected Diseases initiative (DND i ), Geneva, Switzerland
| | | |
Collapse
|
75
|
Martin-Plaza J, Chatelain E. Novel therapeutic approaches for neglected infectious diseases. ACTA ACUST UNITED AC 2015; 20:3-5. [PMID: 25542923 DOI: 10.1177/1087057114559907] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | - Eric Chatelain
- Drugs for Neglected Disease initiative (DNDi), Geneva, Switzerland
| |
Collapse
|
76
|
Messenger LA, Miles MA, Bern C. Between a bug and a hard place: Trypanosoma cruzi genetic diversity and the clinical outcomes of Chagas disease. Expert Rev Anti Infect Ther 2015; 13:995-1029. [PMID: 26162928 PMCID: PMC4784490 DOI: 10.1586/14787210.2015.1056158] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Over the last 30 years, concomitant with successful transnational disease control programs across Latin America, Chagas disease has expanded from a neglected, endemic parasitic infection of the rural poor to an urbanized chronic disease, and now a potentially emergent global health problem. Trypanosoma cruzi infection has a highly variable clinical course, ranging from complete absence of symptoms to severe and often fatal cardiovascular and/or gastrointestinal manifestations. To date, few correlates of clinical disease progression have been identified. Elucidating a putative role for T. cruzi strain diversity in Chagas disease pathogenesis is complicated by the scarcity of parasites in clinical specimens and the limitations of our contemporary genotyping techniques. This article systematically reviews the historical literature, given our current understanding of parasite genetic diversity, to evaluate the evidence for any association between T. cruzi genotype and chronic clinical outcome, risk of congenital transmission or reactivation and orally transmitted outbreaks.
Collapse
Affiliation(s)
- Louisa A Messenger
- Department of Pathogen Molecular Biology, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Michael A Miles
- Department of Pathogen Molecular Biology, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Caryn Bern
- Global Health Sciences, Department of Epidemiology and Biostatistics, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
77
|
Avelar LAA, Camilo CD, de Albuquerque S, Fernandes WB, Gonçalez C, Kenny PW, Leitão A, McKerrow JH, Montanari CA, Orozco EVM, Ribeiro JFR, Rocha JR, Rosini F, Saidel ME. Molecular Design, Synthesis and Trypanocidal Activity of Dipeptidyl Nitriles as Cruzain Inhibitors. PLoS Negl Trop Dis 2015; 9:e0003916. [PMID: 26173110 PMCID: PMC4501791 DOI: 10.1371/journal.pntd.0003916] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 06/16/2015] [Indexed: 12/01/2022] Open
Abstract
A series of compounds based on the dipeptidyl nitrile scaffold were synthesized and assayed for their inhibitory activity against the T. cruzi cysteine protease cruzain. Structure activity relationships (SARs) were established using three, eleven and twelve variations respectively at the P1, P2 and P3 positions. A Ki value of 16 nM was observed for the most potent of these inhibitors which reflects a degree of non-additivity in the SAR. An X-ray crystal structure was determined for the ligand-protein complex for the structural prototype for the series. Twenty three inhibitors were also evaluated for their anti-trypanosomal effects and an EC50 value of 28 μM was observed for the most potent of these. Although there remains scope for further optimization, the knowledge gained from this study is also transferable to the design of cruzain inhibitors based on warheads other than nitrile as well as alternative scaffolds. Chagas disease is a parasitic infection with high morbidity and mortality that is endemic in much of Latin America where it remains a serious public health problem. With increased migration, Chagas disease represents an emerging worldwide challenge and there is an urgent, unmet need for safe and effective medication. The available drugs to treat Chagas disease may be effective in the acute phase of the disease, but efficacy in the chronic phase remains controversial. They can cause serious side effects that lead sufferers to abandon treatment. Using a hypothesis-driven approach to molecular design and drawing on cysteine protease cruzain structural information, we have mapped structure-activity relationships for a dipeptidyl nitrile scaffold and demonstrated that compounds are competitive inhibitors, bind reversibly and bear trypanocidal activity. The binding mode revealed by the crystal structure of the protein-ligand complex for one of the inhibitors shows that binding involves the formation of a covalent bond between the catalytic cysteine and the nitrile carbon. As such, we believe that our study represents a valuable step in the search for new drugs for the treatment of a neglected disease that continues to affect the lives of millions of people.
Collapse
Affiliation(s)
- Leandro A. A. Avelar
- Grupo de Química Medicinal do IQSC/USP, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| | - Cristian D. Camilo
- Grupo de Química Medicinal do IQSC/USP, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| | - Sérgio de Albuquerque
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - William B. Fernandes
- Grupo de Química Medicinal do IQSC/USP, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
- University of California San Diego Skaggs School of Pharmacy and Pharmaceutical Sciences, San Diego, California, United States of America
| | - Cristiana Gonçalez
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Peter W. Kenny
- Grupo de Química Medicinal do IQSC/USP, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
- * E-mail: (PWK); (CAM)
| | - Andrei Leitão
- Grupo de Química Medicinal do IQSC/USP, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| | - James H. McKerrow
- University of California San Diego Skaggs School of Pharmacy and Pharmaceutical Sciences, San Diego, California, United States of America
| | - Carlos A. Montanari
- Grupo de Química Medicinal do IQSC/USP, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
- * E-mail: (PWK); (CAM)
| | - Erika V. Meñaca Orozco
- Grupo de Química Medicinal do IQSC/USP, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| | - Jean F. R. Ribeiro
- Grupo de Química Medicinal do IQSC/USP, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| | - Josmar R. Rocha
- Grupo de Química Medicinal do IQSC/USP, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| | - Fabiana Rosini
- Grupo de Química Medicinal do IQSC/USP, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| | - Marta E. Saidel
- Grupo de Química Medicinal do IQSC/USP, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| |
Collapse
|