51
|
Keller L, Kuchler‐Bopp S, Lesot H. Whole‐Tooth Engineering and Cell Sources. STEM CELLS IN CRANIOFACIAL DEVELOPMENT AND REGENERATION 2013:431-446. [DOI: 10.1002/9781118498026.ch24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
52
|
Nasu M, Nakahara T, Tominaga N, Tamaki Y, Ide Y, Tachibana T, Ishikawa H. Isolation and characterization of vascular endothelial cells derived from fetal tooth buds of miniature swine. In Vitro Cell Dev Biol Anim 2013; 49:189-95. [PMID: 23435856 DOI: 10.1007/s11626-013-9584-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 01/25/2013] [Indexed: 12/23/2022]
|
53
|
Rothová M, Peterková R, Tucker AS. Fate map of the dental mesenchyme: dynamic development of the dental papilla and follicle. Dev Biol 2012; 366:244-54. [PMID: 22542602 DOI: 10.1016/j.ydbio.2012.03.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 03/01/2012] [Accepted: 03/30/2012] [Indexed: 11/18/2022]
Abstract
At the bud stage of tooth development the neural crest derived mesenchyme condenses around the dental epithelium. As the tooth germ develops and proceeds to the cap stage, the epithelial cervical loops grow and appear to wrap around the condensed mesenchyme, enclosing the cells of the forming dental papilla. We have fate mapped the dental mesenchyme, using in vitro tissue culture combined with vital cell labelling and tissue grafting, and show that the dental mesenchyme is a much more dynamic population then previously suggested. At the bud stage the mesenchymal cells adjacent to the tip of the bud form both the dental papilla and dental follicle. At the early cap stage a small population of highly proliferative mesenchymal cells in close proximity to the inner dental epithelium and primary enamel knot provide the major contribution to the dental papilla. These cells are located between the cervical loops, within a region we have called the body of the enamel organ, and proliferate in concert with the epithelium to create the dental papilla. The condensed dental mesenchymal cells that are not located between the body of the enamel organ, and therefore are at a distance from the primary enamel knot, contribute to the dental follicle, and also the apical part of the papilla, where the roots will ultimately develop. Some cells in the presumptive dental papilla at the cap stage contribute to the follicle at the bell stage, indicating that the dental papilla and dental follicle are still not defined populations at this stage. These lineage-tracing experiments highlight the difficulty of targeting the papilla and presumptive odontoblasts at early stages of tooth development. We show that at the cap stage, cells destined to form the follicle are still competent to form dental papilla specific cell types, such as odontoblasts, and produce dentin, if placed in contact with the inner dental epithelium. Cell fate of the dental mesenchyme at this stage is therefore determined by the epithelium.
Collapse
Affiliation(s)
- Michaela Rothová
- Department of Craniofacial Development, King's College London, Floor 27 Guy's Tower, Guy's Hospital, London Bridge, SE1 9RT, London, UK.
| | | | | |
Collapse
|
54
|
Yuan Z, Nie H, Wang S, Lee CH, Li A, Fu SY, Zhou H, Chen L, Mao JJ. Biomaterial selection for tooth regeneration. TISSUE ENGINEERING PART B-REVIEWS 2012; 17:373-88. [PMID: 21699433 DOI: 10.1089/ten.teb.2011.0041] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Biomaterials are native or synthetic polymers that act as carriers for drug delivery or scaffolds for tissue regeneration. When implanted in vivo, biomaterials should be nontoxic and exert intended functions. For tooth regeneration, biomaterials have primarily served as a scaffold for (1) transplanted stem cells and/or (2) recruitment of endogenous stem cells. This article critically synthesizes our knowledge of biomaterial use in tooth regeneration, including the selection of native and/or synthetic polymers, three-dimensional scaffold fabrication, stem cell transplantation, and stem cell homing. A tooth is a complex biological organ. Tooth loss represents the most common organ failure. Tooth regeneration encompasses not only regrowth of an entire tooth as an organ, but also biological restoration of individual components of the tooth including enamel, dentin, cementum, or dental pulp. Regeneration of tooth root represents perhaps more near-term opportunities than the regeneration of the whole tooth. In the adult, a tooth owes its biological vitality, arguably more, to the root than the crown. Biomaterials are indispensible for the regeneration of tooth root, tooth crown, dental pulp, or an entire tooth.
Collapse
Affiliation(s)
- Zhenglin Yuan
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Hübner S, Efthymiadis A. Recent progress in histochemistry and cell biology. Histochem Cell Biol 2012; 137:403-57. [PMID: 22366957 DOI: 10.1007/s00418-012-0933-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2012] [Indexed: 01/06/2023]
Abstract
Studies published in Histochemistry and Cell Biology in the year 2011 represent once more a manifest of established and newly sophisticated techniques being exploited to put tissue- and cell type-specific molecules into a functional context. The review is therefore the Histochemistry and Cell Biology's yearly intention to provide interested readers appropriate summaries of investigations touching the areas of tissue biology, developmental biology, the biology of the immune system, stem cell research, the biology of subcellular compartments, in order to put the message of such studies into natural scientific-/human- and also pathological-relevant correlations.
Collapse
Affiliation(s)
- Stefan Hübner
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany.
| | | |
Collapse
|
56
|
Matalova E, Svandova E, Tucker AS. Apoptotic signaling in mouse odontogenesis. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2011; 16:60-70. [PMID: 22204278 DOI: 10.1089/omi.2011.0039] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Apoptosis is an important morphogenetic event in embryogenesis as well as during postnatal life. In the last 2 decades, apoptosis in tooth development (odontogenesis) has been investigated with gradually increasing focus on the mechanisms and signaling pathways involved. The molecular machinery responsible for apoptosis exhibits a high degree of conservation but also organ and tissue specific patterns. This review aims to discuss recent knowledge about apoptotic signaling networks during odontogenesis, concentrating on the mouse, which is often used as a model organism for human dentistry. Apoptosis accompanies the entire development of the tooth and corresponding remodeling of the surrounding bony tissue. It is most evident in its role in the elimination of signaling centers within developing teeth, removal of vestigal tooth germs, and in odontoblast and ameloblast organization during tooth mineralization. Dental apoptosis is caspase dependent and proceeds via mitochondrial mediated cell death with possible amplification by Fas-FasL signaling modulated by Bcl-2 family members.
Collapse
Affiliation(s)
- Eva Matalova
- Institute of Animal Physiology and Genetics, v.v.i., Academy of Sciences, Brno, Czech Republic.
| | | | | |
Collapse
|
57
|
Abstract
The currently available options for tooth-loss are prostheses, implants, or surgery (auto-transplantation). They all have their limitations. The emergence of tissue engineering, 15 years ago, was made possible by a better knowledge of the various stages of dental development, and the mastery of stem cell differentiation. It opened a new alternative approach for tooth regeneration. Even if animal experiments have demonstrated that it was possible to obtain a biological tooth from stem cells, two major issues remain to be discussed. Is it possible to use induced pluripotent stem cells instead of embryonic stem cells, which raise an ethical problem? Is it possible to reproduce a dental crown with an adapted shape and colour? Or should we consider the simpler creation of a biological root secondarily covered by a ceramic prosthesis? Our study mentions the main landmarks and the key cells involved in the embryological development of the tooth, establishes a mapping and a list of the various types of stem cells. It details the various methods used to create a biological implant.
Collapse
Affiliation(s)
- H Magloire
- Institut de génomique fonctionnelle de Lyon, « équipe physiopathologie de l'odontoblaste », UMR CNRS 5242, École normale supérieure de Lyon, 46, allée d'Italie, 69364 Lyon cedex 08, France.
| | | |
Collapse
|
58
|
Keller L, Kuchler-Bopp S, Mendoza SA, Poliard A, Lesot H. Tooth engineering: searching for dental mesenchymal cells sources. Front Physiol 2011; 2:7. [PMID: 21483728 PMCID: PMC3070478 DOI: 10.3389/fphys.2011.00007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 02/17/2011] [Indexed: 12/18/2022] Open
Abstract
The implantation of cultured re-associations between embryonic dental mesenchymal cells and epithelial cells from mouse molars at embryonic day 14 (ED14) allowed making full teeth with crown, root, periodontal ligament fibers, and bone. Although representing valuable tools to set up methodologies embryonic cells are not easily available. This work thus aimed to replace the embryonic cells by dental mesenchymal cell lines or cultured expanded embryonic cells, and to test their ability to mediate tooth development in vitro when re-associated with a competent dental epithelium. Histology, immunostaining and RT-PCR allowed getting complementary sets of results. Two different immortalized cell lines from ED18 dental mesenchyme failed in mediating tooth formation. The potentialities of embryonic dental mesenchymal cells decreased from ED14 to ED16 and were lost at ED18. This is likely related to a change in the mesenchymal cell phenotype and/or populations during development. Attempts to cultivate ED14 or ED16 embryonic dental mesenchymal cells prior to re-association led to the loss of their ability to support tooth development. This was accompanied by a down-regulation of Fgf3 transcription. Supplementation of the culture medium with FGF2 allowed restoring Fgf3 expression, but not the ability of mesenchymal cells to engage in tooth formation. Altogether, these observations suggest that a competent cell population exists in the dental mesenchyme at ED14, progressively decreases during development, and cannot as such be maintained in vitro. This study evidenced the need for specific conditions to maintain the ability of dental mesenchymal cells to initiate whole tooth formation, when re-associated with an odontogenic epithelium. Efforts to improve the culture conditions will have to be combined with attempts to characterize the competent cells within the dental mesenchyme.
Collapse
|
59
|
Leptin and vascular endothelial growth factor regulate angiogenesis in tooth germs. Histochem Cell Biol 2011; 135:281-92. [PMID: 21340571 DOI: 10.1007/s00418-011-0789-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2011] [Indexed: 01/06/2023]
|
60
|
Nait Lechguer A, Couble ML, Labert N, Kuchler-Bopp S, Keller L, Magloire H, Bleicher F, Lesot H. Cell differentiation and matrix organization in engineered teeth. J Dent Res 2011; 90:583-9. [PMID: 21297012 DOI: 10.1177/0022034510391796] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Embryonic dental cells were used to check a series of criteria to be achieved for tooth engineering. Implantation of cultured cell-cell re-associations led to crown morphogenesis, epithelial histogenesis, organ vascularization, and root and periodontium development. The present work aimed to investigate the organization of predentin/dentin, enamel, and cementum which formed and mineralized after implantation. These implants were processed for histology, transmission electron microscopy, x-ray microanalysis, and electron diffraction. After two weeks of implantation, the re-associations showed gradients of differentiating odontoblasts. There were ciliated, polarized, and extended cell processes in predentin/dentin. Ameloblasts became functional. Enamel crystals showed a typical oriented arrangement in the inner and outer enamel. In the developing root, odontoblasts differentiated, cementogenesis occurred, and periodontal ligament fibroblasts interacted with the root surface and newly formed bone. The implantation of cultured dental cell re-associations allows for reproduction of complete functional differentiation at the cell, matrix, and mineral levels.
Collapse
Affiliation(s)
- A Nait Lechguer
- INSERM UMR 977, Faculté de Médecine, 11, rue Humann, F-67085 Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Ohara T, Itaya T, Usami K, Ando Y, Sakurai H, Honda MJ, Ueda M, Kagami H. Evaluation of scaffold materials for tooth tissue engineering. J Biomed Mater Res A 2010; 94:800-5. [PMID: 20336748 DOI: 10.1002/jbm.a.32749] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Recently, the possibility of tooth tissue engineering has been reported. Although there are a number of available materials, information about scaffolds for tooth tissue engineering is still limited. To improve the manageability of tooth tissue engineering, the effect of scaffolds on in vivo tooth regeneration was evaluated. Collagen and fibrin were selected for this study based on the biocompatibility to dental papilla-derived cells and the results were compared with those of polyglycolic acid (PGA) fiber and beta-tricalcium phosphate (beta-TCP) porous block, which are commonly used for tooth, dentin and bone tissue engineering. Isolated porcine tooth germ-derived cells were seeded onto one of those scaffolds and transplanted to the back of nude mice. Tooth bud-like structures were observed more frequently in collagen and fibrin gels than on PGA or beta-TCP, while the amount of hard tissue formation was less. The results showed that collagen and fibrin gel support the initial regeneration process of tooth buds possibly due to their ability to support the growth of epithelial and mesenchymal cells. On the other hand, maturation of tooth buds was difficult in fibrin and collagen gels, which may require other factors.
Collapse
Affiliation(s)
- Takayuki Ohara
- Research and Development Center, Hitachi Medical Corporation, Kashiwa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Heparanase, heparan sulfate and perlecan distribution along with the vascular penetration during stellate reticulum retraction in the mouse enamel organ. Arch Oral Biol 2010; 55:778-87. [PMID: 20684947 DOI: 10.1016/j.archoralbio.2010.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2010] [Revised: 06/22/2010] [Accepted: 07/06/2010] [Indexed: 11/24/2022]
|
63
|
Kim K, Lee CH, Kim BK, Mao JJ. Anatomically shaped tooth and periodontal regeneration by cell homing. J Dent Res 2010; 89:842-7. [PMID: 20448245 DOI: 10.1177/0022034510370803] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Tooth regeneration by cell delivery encounters translational hurdles. We hypothesized that anatomically correct teeth can regenerate in scaffolds without cell transplantation. Novel, anatomically shaped human molar scaffolds and rat incisor scaffolds were fabricated by 3D bioprinting from a hybrid of poly-epsilon-caprolactone and hydroxyapatite with 200-microm-diameter interconnecting microchannels. In each of 22 rats, an incisor scaffold was implanted orthotopically following mandibular incisor extraction, whereas a human molar scaffold was implanted ectopically into the dorsum. Stromal-derived factor-1 (SDF1) and bone morphogenetic protein-7 (BMP7) were delivered in scaffold microchannels. After 9 weeks, a putative periodontal ligament and new bone regenerated at the interface of rat incisor scaffold with native alveolar bone. SDF1 and BMP7 delivery not only recruited significantly more endogenous cells, but also elaborated greater angiogenesis than growth-factor-free control scaffolds. Regeneration of tooth-like structures and periodontal integration by cell homing provide an alternative to cell delivery, and may accelerate clinical applications.
Collapse
Affiliation(s)
- K Kim
- Columbia University College of Dental Medicine, 630 W. 168th St., PH7E - CDM, New York, NY 10032, USA
| | | | | | | |
Collapse
|
64
|
Fleischmannova J, Matalova E, Sharpe PT, Misek I, Radlanski RJ. Formation of the tooth-bone interface. J Dent Res 2009; 89:108-15. [PMID: 20042740 DOI: 10.1177/0022034509355440] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Not only are teeth essential for mastication, but also missing teeth are considered a social handicap due to speech and aesthetic problems, with a resulting high impact on emotional well-being. Several treatment procedures are currently available for tooth replacement with mostly inert prosthetic materials and implants. Natural tooth substitution based on copying the developmental process of tooth formation is particularly challenging and creates a rapidly developing area of molecular dentistry. In any approach, functional interactions among the tooth, the surrounding bone, and the periodontium must be established. Therefore, recent research in craniofacial genetics searches for mechanisms responsible for correct cell and tissue interactions, not only within a specific structure, but also in the context of supporting structures. A tooth crown that is not functionally anchored to roots and bone is useless. This review aims to summarize the developmental and tissue homeostatic aspects of the tooth-bone interface, from the initial patterning toward tooth eruption and lifelong interactions between the tooth and its surrounding alveolar bone.
Collapse
Affiliation(s)
- J Fleischmannova
- Institute of Animal Physiology and Genetics CAS v.v.i., Brno, Czech Republic.
| | | | | | | | | |
Collapse
|