51
|
Tochigi H, Kajihara T, Mizuno Y, Mizuno Y, Tamaru S, Kamei Y, Okazaki Y, Brosens JJ, Ishihara O. Loss of miR-542-3p enhances IGFBP-1 expression in decidualizing human endometrial stromal cells. Sci Rep 2017; 7:40001. [PMID: 28051155 PMCID: PMC5209665 DOI: 10.1038/srep40001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 12/01/2016] [Indexed: 12/26/2022] Open
Abstract
Endometrial decidualization represents an essential step for the successful implantation of the embryo; however, the molecular mechanism behind this differentiation process remains unclear. This study aimed to identify novel microRNAs (miRNAs) involved in the regulation of decidual gene expression in human endometrial stromal cells (HESCs). An in vitro analysis of primary undifferentiated and decidualizing HESCs was conducted. HESCs were isolated from hysterectomy specimens from normally cycling premenopausal women with uterine fibroids, who were not on hormonal treatment at the time of surgery. Primary HESCs were expanded in culture and decidualized with 8-bromo-cyclic adenosine monophosphate and medroxyprogesterone acetate. Microarray analysis identified six miRNAs differentially expressed in response to decidualization of HESCs. All but one miRNA were downregulated upon decidualization, including miR-542-3p. We demonstrated that miR-542-3p overexpression inhibits the induction of major decidual marker genes, including IGFBP1, WNT4 and PRL. In addition, miR-542-3p overexpression inhibited the morphological transformation of HESCs in response to deciduogenic cues. A luciferase reporter assay confirmed that the 3′-untranslated region of IGFBP1 mRNA is targeted by miR-542-3p. The results suggest that miR-542-3p plays an important role in endometrial decidualization by regulating the expression of major decidual marker genes.
Collapse
Affiliation(s)
- Hideno Tochigi
- Department of Obstetrics and Gynecology, Saitama Medical University, 38 Morohongo, Moroyama, Iruma-gun, Saitama, Japan.,Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka city, Saitama, Japan
| | - Takeshi Kajihara
- Department of Obstetrics and Gynecology, Saitama Medical University, 38 Morohongo, Moroyama, Iruma-gun, Saitama, Japan
| | - Yosuke Mizuno
- Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka city, Saitama, Japan
| | - Yumi Mizuno
- Department of Obstetrics and Gynecology, Saitama Medical University, 38 Morohongo, Moroyama, Iruma-gun, Saitama, Japan
| | - Shunsuke Tamaru
- Department of Obstetrics and Gynecology, Saitama Medical University, 38 Morohongo, Moroyama, Iruma-gun, Saitama, Japan.,Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka city, Saitama, Japan
| | - Yoshimasa Kamei
- Department of Obstetrics and Gynecology, Saitama Medical University, 38 Morohongo, Moroyama, Iruma-gun, Saitama, Japan
| | - Yasushi Okazaki
- Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka city, Saitama, Japan.,Division of Translational Research, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka city, Saitama, Japan
| | - Jan J Brosens
- Division of Reproductive Health, Warwick Medical School, Clinical Sciences Research Laboratories, University Hospital, Coventry CV2 2DX, UK.,Tommy's National Miscarriage Research Centre, University Hospital Coventry and Warwickshire, Coventry CV2 2DX, UK
| | - Osamu Ishihara
- Department of Obstetrics and Gynecology, Saitama Medical University, 38 Morohongo, Moroyama, Iruma-gun, Saitama, Japan
| |
Collapse
|
52
|
Wongwananuruk T, Sato T, Kajihara T, Matsumoto S, Akita M, Tamura K, Brosens JJ, Ishihara O. Endometrial androgen signaling and decidualization regulate trophoblast expansion and invasion in co-culture: A time-lapse study. Placenta 2016; 47:56-62. [PMID: 27780540 DOI: 10.1016/j.placenta.2016.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/26/2016] [Accepted: 09/07/2016] [Indexed: 11/17/2022]
Abstract
INTRODUCTION To elucidate whether trophoblast expansion and invasion are modulated by androgen signaling in an in vitro co-culture model system with decidualizing endometrial stromal cells (ESCs). METHODS We employed an in vitro co-culture model of early embryo implantation, consisting of human ESCs (EtsT499 cells) and spheroids generated by extravillous trophoblast (EVT) derived HTR8/Svneo. The ESCs were decidualized with 8-bromo-cAMP (8-br-cAMP) in the presence or absence of dihydrotestosterone (DHT) at various concentrations for 5 days before co-culture with EVT spheroids. Trophoblast expansion was monitored by fluorescent time-lapse imaging microscopy. ESCs motility was visualized by using CellTracker™ Orange CMRA fluorescent probe. Apoptosis of ESCs was detected by CellEvent™ Caspase-3/7® green detection reagent. Invasion assays were performed to quantify EVT invasion through a chemotaxis cell membrane. RESULTS Expansion of EVT spheroids was significantly enhanced by decidualized compared to undifferentiated ESCs. This process was further stimulated if ESCs were first decidualized in the presence of DHT. In contrast to decidualized ESCs, undifferentiated cells actively migrated away from expanding EVT spheroids. Invasiveness of EVT toward decidualized ESCs was significantly attenuated in comparison to undifferentiated ESCs. DHT had no effect on EVT invasion. However, an inhibitor of intercellular gap junction communication significantly enhanced EVT invasion towards decidualized ESCs. CONCLUSIONS These results indicate distinct roles for androgen signaling and gap junction formation in decidual cells in regulating trophoblast expansion and invasion.
Collapse
Affiliation(s)
- Thanyarat Wongwananuruk
- Department of Obstetrics and Gynecology, Saitama Medical University, 38 Morohongo, Moroyama, Iruma-gun, Saitama, Japan; Department of Obstetrics and Gynecology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Tomomi Sato
- Department of Obstetrics and Gynecology, Saitama Medical University, 38 Morohongo, Moroyama, Iruma-gun, Saitama, Japan; Department of Anatomy, Saitama Medical University, 38 Morohongo, Moroyama, Iruma-gun, Saitama, Japan
| | - Takeshi Kajihara
- Department of Obstetrics and Gynecology, Saitama Medical University, 38 Morohongo, Moroyama, Iruma-gun, Saitama, Japan.
| | - Sachiko Matsumoto
- Biomedical Research Center, Division of Morphological Science, Saitama Medical University, 38 Morohongo, Moroyama, Iruma-gun, Saitama, Japan
| | - Masumi Akita
- Biomedical Research Center, Division of Morphological Science, Saitama Medical University, 38 Morohongo, Moroyama, Iruma-gun, Saitama, Japan
| | - Kazuhiro Tamura
- Department of Endocrine and Neural Pharmacology, Tokyo University of Pharmacy & Life Sciences, Horinouchi 1432-1, Hachioji, Tokyo, 192-0392, Japan
| | - Jan J Brosens
- Division of Biomedical Sciences, Warwick Medical School, Clinical Sciences Research Laboratories, University Hospital, Coventry, CV2 2DX, UK
| | - Osamu Ishihara
- Department of Obstetrics and Gynecology, Saitama Medical University, 38 Morohongo, Moroyama, Iruma-gun, Saitama, Japan
| |
Collapse
|
53
|
Gibson DA, Simitsidellis I, Saunders PTK. Regulation of androgen action during establishment of pregnancy. J Mol Endocrinol 2016; 57:R35-47. [PMID: 27067639 DOI: 10.1530/jme-16-0027] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 04/11/2016] [Indexed: 01/02/2023]
Abstract
During the establishment of pregnancy, the ovarian-derived hormones progesterone and oestradiol regulate remodelling of the endometrium to promote an environment that is able to support and maintain a successful pregnancy. Decidualisation is characterised by differentiation of endometrial stromal cells that secrete growth factors and cytokines that regulate vascular remodelling and immune cell influx. This differentiation process is critical for reproduction, and inadequate decidualisation is implicated in the aetiology of pregnancy disorders such as foetal growth restriction and preeclampsia. In contrast to progesterone and oestradiol, the role of androgens in regulating endometrial function is poorly understood. Androgen receptors are expressed in the endometrium, and androgens are reported to regulate both the transcriptome and the secretome of endometrial stromal cells. In androgen-target tissues, circulating precursors are activated to mediate local effects, and recent studies report that steroid concentrations detected in endometrial tissue are distinct to those detected in the peripheral circulation. New evidence suggests that decidualisation results in dynamic changes in the expression of androgen biosynthetic enzymes, highlighting a role for pre-receptor regulation of androgen action during the establishment of pregnancy. These results suggest that such enzymes could be future therapeutic targets for the treatment of infertility associated with endometrial dysfunction. In conclusion, these data support the hypothesis that androgens play a beneficial role in regulating the establishment and maintenance of pregnancy. Future studies should be focussed on investigating the safety and efficacy of androgen supplementation with the potential for utilisation of novel therapeutics, such as selective androgen receptor modulators, to improve reproductive outcomes in women.
Collapse
Affiliation(s)
- Douglas A Gibson
- Medical Research Council Centre for Inflammation ResearchQueen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Ioannis Simitsidellis
- Medical Research Council Centre for Inflammation ResearchQueen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Philippa T K Saunders
- Medical Research Council Centre for Inflammation ResearchQueen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
54
|
Piltonen TT. Polycystic ovary syndrome: Endometrial markers. Best Pract Res Clin Obstet Gynaecol 2016; 37:66-79. [PMID: 27156350 DOI: 10.1016/j.bpobgyn.2016.03.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 03/05/2016] [Indexed: 12/31/2022]
Abstract
Women with polycystic ovarian syndrome (PCOS) present with several endometrial abnormalities possibly explaining some of the adverse endometrium-related outcomes in these women. PCOS and an increased miscarriage rate have been suggested to coincide, but the results are conflicting. Recent studies have also shown increased risks of pregnancy-induced hypertension, preeclampsia, and premature delivery that may be related to altered decidualization/placentation in affected women. In the long run, PCOS per se is associated with the occurrence of endometrial cancer (EC), with obesity aggravating the risk. Most investigated markers of the endometrial abnormalities in women with PCOS are related to steroid hormone action (ERs (estrogen receptors), PRs (progesterone receptors), ARs (androgen receptors), and steroid receptor coactivators), endometrial receptivity/decidualization (HOXA10, αvβ3 integrin, and IGFBP-1 (insulin-like growth factor-binding protein 1)), glucose metabolism (IRs (insulin receptors), glucose transporters, IGFs) and inflammation/immune cell migration ((IL-6 (interleukin 6), CCL2 (CC motif ligand), and uNK (uterine natural killer) cells). Despite several endometrial abnormalities in women with PCOS, the clinical relevance of these findings still awaits future clarification; to date, no common screening protocols/recommendations for women with PCOS have been established.
Collapse
Affiliation(s)
- Terhi T Piltonen
- Clinical Researcher for the Finnish Medical Foundation, Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital, University of Oulu, Kajaanintie 50, BOX 5000, 90014 Oulu, Finland.
| |
Collapse
|
55
|
Gibson DA, Simitsidellis I, Cousins FL, Critchley HOD, Saunders PTK. Intracrine Androgens Enhance Decidualization and Modulate Expression of Human Endometrial Receptivity Genes. Sci Rep 2016; 6:19970. [PMID: 26817618 PMCID: PMC4730211 DOI: 10.1038/srep19970] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/22/2015] [Indexed: 11/25/2022] Open
Abstract
The endometrium is a complex, steroid-dependent tissue that undergoes dynamic cyclical remodelling. Transformation of stromal fibroblasts (ESC) into specialised secretory cells (decidualization) is fundamental to the establishment of a receptive endometrial microenvironment which can support and maintain pregnancy. Androgen receptors (AR) are present in ESC; in other tissues local metabolism of ovarian and adrenal-derived androgens regulate AR-dependent gene expression. We hypothesised that altered expression/activity of androgen biosynthetic enzymes would regulate tissue availability of bioactive androgens and the process of decidualization. Primary human ESC were treated in vitro for 1–8 days with progesterone and cAMP (decidualized) in the presence or absence of the AR antagonist flutamide. Time and treatment-dependent changes in genes essential for a) intra-tissue biosynthesis of androgens (5α-reductase/SRD5A1, aldo-keto reductase family 1 member C3/AKR1C3), b) establishment of endometrial decidualization (IGFBP1, prolactin) and c) endometrial receptivity (SPP1, MAOA, EDNRB) were measured. Decidualization of ESC resulted in significant time-dependent changes in expression of AKR1C3 and SRD5A1 and secretion of T/DHT. Addition of flutamide significantly reduced secretion of IGFBP1 and prolactin and altered the expression of endometrial receptivity markers. Intracrine biosynthesis of endometrial androgens during decidualization may play a key role in endometrial receptivity and offer a novel target for fertility treatment.
Collapse
Affiliation(s)
- Douglas A Gibson
- Medical Research Council Centre for Inflammation Research, The University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ. UK
| | - Ioannis Simitsidellis
- Medical Research Council Centre for Inflammation Research, The University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ. UK
| | - Fiona L Cousins
- Medical Research Council Centre for Inflammation Research, The University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ. UK
| | - Hilary O D Critchley
- Medical Research Council Centre for Reproductive Health, The University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ. UK
| | - Philippa T K Saunders
- Medical Research Council Centre for Inflammation Research, The University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ. UK
| |
Collapse
|
56
|
Palomba S, de Wilde MA, Falbo A, Koster MP, La Sala GB, Fauser BC. Pregnancy complications in women with polycystic ovary syndrome. Hum Reprod Update 2015; 21:575-592. [DOI: 10.1093/humupd/dmv029] [Citation(s) in RCA: 394] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
57
|
Gellersen B, Brosens JJ. Cyclic decidualization of the human endometrium in reproductive health and failure. Endocr Rev 2014; 35:851-905. [PMID: 25141152 DOI: 10.1210/er.2014-1045] [Citation(s) in RCA: 682] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Decidualization denotes the transformation of endometrial stromal fibroblasts into specialized secretory decidual cells that provide a nutritive and immunoprivileged matrix essential for embryo implantation and placental development. In contrast to most mammals, decidualization of the human endometrium does not require embryo implantation. Instead, this process is driven by the postovulatory rise in progesterone levels and increasing local cAMP production. In response to falling progesterone levels, spontaneous decidualization causes menstrual shedding and cyclic regeneration of the endometrium. A growing body of evidence indicates that the shift from embryonic to maternal control of the decidual process represents a pivotal evolutionary adaptation to the challenge posed by invasive and chromosomally diverse human embryos. This concept is predicated on the ability of decidualizing stromal cells to respond to individual embryos in a manner that either promotes implantation and further development or facilitates early rejection. Furthermore, menstruation and cyclic regeneration involves stem cell recruitment and renders the endometrium intrinsically capable of adapting its decidual response to maximize reproductive success. Here we review the endocrine, paracrine, and autocrine cues that tightly govern this differentiation process. In response to activation of various signaling pathways and genome-wide chromatin remodeling, evolutionarily conserved transcriptional factors gain access to the decidua-specific regulatory circuitry. Once initiated, the decidual process is poised to transit through distinct phenotypic phases that underpin endometrial receptivity, embryo selection, and, ultimately, resolution of pregnancy. We discuss how disorders that subvert the programming, initiation, or progression of decidualization compromise reproductive health and predispose for pregnancy failure.
Collapse
Affiliation(s)
- Birgit Gellersen
- Endokrinologikum Hamburg (B.G.), 20251 Hamburg, Germany; and Division of Reproductive Health (J.J.B.), Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | |
Collapse
|
58
|
Palomba S, Falbo A, Chiossi G, Tolino A, Tucci L, La Sala GB, Zullo F. Early trophoblast invasion and placentation in women with different PCOS phenotypes. Reprod Biomed Online 2014; 29:370-81. [DOI: 10.1016/j.rbmo.2014.04.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 04/28/2014] [Accepted: 04/30/2014] [Indexed: 02/04/2023]
|
59
|
Zhu H, Hou CC, Luo LF, Hu YJ, Yang WX. Endometrial stromal cells and decidualized stromal cells: origins, transformation and functions. Gene 2014; 551:1-14. [PMID: 25168894 DOI: 10.1016/j.gene.2014.08.047] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 07/24/2014] [Accepted: 08/24/2014] [Indexed: 10/24/2022]
Abstract
Decidualization of endometrium, which is characterized by endometrial stromal cell (ESC) decidualization, vascular reconstruction, immune cell recruitment, and plentiful molecule production, is a crucial step for uterus to become receptive for embryo. When implantation takes place, ESCs surround and directly interact with embryo. Decidualized stromal cells (DSCs) are of great importance in endometrial decidualization, having a broad function in regulating immune activity and vascular remodeling of uterus. DSCs are shown to have a higher metabolic level and looser cytoskeleton than ESCs. What's the origin of ESCs and how ESCs successfully transform into DSCs had puzzled scientists in the last decades. Breakthrough had been achieved recently, and many studies had elucidated some of the characters and functions of DSCs. However, several questions still remain unclear. This paper reviews current understanding of where ESCs come from and how ESCs differentiate into DSCs, summarizes some characters and functions of DSCs, analyzes current studies and their limitations and points out research areas that need further investigation.
Collapse
Affiliation(s)
- Ha Zhu
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Cong-Cong Hou
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ling-Feng Luo
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yan-Jun Hu
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China.
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
60
|
Shindoh H, Okada H, Tsuzuki T, Nishigaki A, Kanzaki H. Requirement of heart and neural crest derivatives-expressed transcript 2 during decidualization of human endometrial stromal cells in vitro. Fertil Steril 2014; 101:1781-90.e1-5. [PMID: 24745730 DOI: 10.1016/j.fertnstert.2014.03.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 03/04/2014] [Accepted: 03/11/2014] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To investigate the role of heart and neural crest derivatives-expressed transcript 2 (HAND2) during decidualization of human endometrial stromal cells (ESCs). DESIGN In vitro experiment. SETTING Research laboratory. PATIENT(S) Twenty-six patients undergoing hysterectomy for benign reasons. INTERVENTION(S) ESCs were cultured for 12 days with HAND2 small interfering RNA (siRNA) or nonsilencing RNA during decidualization by medroxyprogesterone acetate (MPA) and E2. MAIN OUTCOME MEASURE(S) Decidualization was monitored by changes in cellular morphology and the expression of several decidual-specific genes. RESULT(S) HAND2 siRNA effectively suppressed HAND2 levels in ESCs after 12 days of E2 + MPA treatment. ESCs cultured with HAND2 siRNA retained a long fibroblast-like shape, whereas the cells cultured with control siRNA transformed into enlarged polygonal cells. Silencing of HAND2 expression significantly reduced connexin-43 involved in the morphologic changes. HAND2 silencing significantly reduced the mRNA levels of fibulin-1, prolactin, tissue inhibitor of metalloproteinase 3, interleukin-15, and forkhead box O1A (FOXO1A), but had no effect on the mRNA levels of dickkopf-1, serum glucocorticoid kinase 1, and insulin-like growth factor-binding protein 5. HAND2 siRNA effectively suppressed the levels of nuclear FOXO1A protein as a regulator of decidualization. CONCLUSION(S) These results suggest that HAND2 plays a key role in the regulation of progestin-induced decidualization of human ESCs.
Collapse
Affiliation(s)
- Hisayuu Shindoh
- Department of Obstetrics and Gynecology, Kansai Medical University, Osaka, Japan
| | - Hidetaka Okada
- Department of Obstetrics and Gynecology, Kansai Medical University, Osaka, Japan.
| | - Tomoko Tsuzuki
- Department of Obstetrics and Gynecology, Kansai Medical University, Osaka, Japan
| | - Akemi Nishigaki
- Department of Obstetrics and Gynecology, Kansai Medical University, Osaka, Japan
| | - Hideharu Kanzaki
- Department of Obstetrics and Gynecology, Kansai Medical University, Osaka, Japan
| |
Collapse
|