51
|
Wang C, Tian C, Zhang Y. The Interaction Between Niche and Hematopoietic Stem Cells. Indian J Hematol Blood Transfus 2016; 32:377-382. [PMID: 27812244 DOI: 10.1007/s12288-016-0639-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 01/08/2016] [Indexed: 12/28/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are one of the somatic stem cells that have the ability to regenerate the entire blood system in a hierarchical way for the duration of an adult life. HSCs reside in the bone marrow niche which contain different cells and molecules that regulate the balance of HSC dormancy and activation. Here, we describe the interaction between HSCs and their niche, in particularly the involvement of some signaling pathway. Insights into the hematopoietic microenvironment will help to obtain a better understanding of normal hematopoiesis and how environmental factors affect these processes.
Collapse
Affiliation(s)
- Chaoyu Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060 China
| | - Chen Tian
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060 China
| | - Yizhuo Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060 China
| |
Collapse
|
52
|
Xie L, Lin W, Dai K. Recent Advances in αβ T Cell Biology: Wnt Signaling, Notch Signaling, Hedgehog Signaling and Their Translational Perspective. AIMS MEDICAL SCIENCE 2016. [DOI: 10.3934/medsci.2016.3.312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
53
|
Lin W, Dai K, Xie L. Recent Advances in αβ T Cell Biology: Wnt Signaling, Notch Signaling, Hedgehog Signaling and Their Translational Perspective. AIMS MEDICAL SCIENCE 2016. [DOI: 10.3934/medsci.2016.4.312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
54
|
van der Sligte NE, Scherpen FJG, Meeuwsen-de Boer TGJ, Lourens HJ, Ter Elst A, Diks SH, Guryev V, Peppelenbosch MP, van Leeuwen FN, de Bont ESJM. Kinase activity profiling reveals active signal transduction pathways in pediatric acute lymphoblastic leukemia: a new approach for target discovery. Proteomics 2015; 15:1245-54. [PMID: 25422122 DOI: 10.1002/pmic.201400286] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/14/2014] [Accepted: 11/20/2014] [Indexed: 12/23/2022]
Abstract
Still about 20% of patients with acute lymphoblastic leukemia (ALL) struggle with relapse, despite intensive chemotherapy. We and others have shown that kinase activity profiling is able to give more insights in active signal transduction pathways and point out interesting signaling hubs as well as new potential druggable targets. With this technique the gap between newly designed drugs and ALL may be bridged. The aim of this study was to perform kinome profiling on 20 pediatric ALL samples (14 BCP-ALL and six T-ALL) to identify signaling proteins relevant to ALL. We defined 250 peptides commonly activated in both BCP-ALL and T-ALL representing major signal transduction pathways including MAPK, PI3K/Akt, and regulators of the cell cycle/p53 pathway. For 27 peptides, differentially phosphorylation between BCP-ALL and T-ALL was observed. Among these, ten peptides were more highly phosphorylated in BCP-ALL while 17 peptides showed increased phosphorylation in T-ALL. Furthermore we selected one lead of the list of commonly activated peptides (HGFR_Y1235) in order to test its efficacy as a potential target and provide proof of principle for this approach. In conclusion kinome profiling is an elegant approach to study active signaling and identify interesting potential druggable targets.
Collapse
Affiliation(s)
- Naomi E van der Sligte
- Division of Pediatric Oncology/Hematology, Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Karube K, Martínez D, Royo C, Navarro A, Pinyol M, Cazorla M, Castillo P, Valera A, Carrió A, Costa D, Colomer D, Rosenwald A, Ott G, Esteban D, Giné E, López-Guillermo A, Campo E. Recurrent mutations of NOTCH genes in follicular lymphoma identify a distinctive subset of tumours. J Pathol 2014; 234:423-30. [PMID: 25141821 DOI: 10.1002/path.4428] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/30/2014] [Accepted: 08/14/2014] [Indexed: 01/27/2023]
Abstract
Follicular lymphoma (FL) is one of the most common malignant lymphomas. The t(14;18)(q32;q21) translocation is found in about 80% of cases and plays an important role in lymphomagenesis. However, the molecular mechanisms involved in the development and transformation of this lymphoma are not fully understood. Gain-of-function mutations of NOTCH1 or NOTCH2 have recently been reported in several B cell lymphoid neoplasms but the role of these mutations in FL is not known. In this study we investigated the mutational status of these genes in 112 FLs. NOTCH1 and NOTCH2 mutations were identified in five and two cases, respectively (total 7/112, 6.3%). All mutations predicted for truncated protein in the PEST domain and were identical to those identified in other B cell lymphoid neoplasms. NOTCH-mutated FL cases were characterized by lower frequency of t(14;18) (14% versus 69%, p = 0.01), higher incidence of splenic involvement (71% versus 25%, p = 0.02) and female predominance (100% versus 55%, p = 0.04). A diffuse large B cell lymphoma (DLBCL) component was more frequently identified in NOTCH-mutated FL than in wild-type cases (57% versus 18%, p = 0.03). These results indicate that NOTCH mutations are uncommon in FL but may occur in a subset of cases with distinctive, characteristic, clinicopathological features.
Collapse
Affiliation(s)
- Kennosuke Karube
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Hospital Clínic, Universitat de Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Martelli AM, Lonetti A, Buontempo F, Ricci F, Tazzari PL, Evangelisti C, Bressanin D, Cappellini A, Orsini E, Chiarini F. Targeting signaling pathways in T-cell acute lymphoblastic leukemia initiating cells. Adv Biol Regul 2014; 56:6-21. [PMID: 24819383 DOI: 10.1016/j.jbior.2014.04.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/11/2014] [Accepted: 04/16/2014] [Indexed: 06/03/2023]
Abstract
Leukemia initiating cells (LICs) represent a reservoir that is believed to drive relapse and resistance to chemotherapy in blood malignant disorders. T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive neoplastic disorder of immature hematopoietic precursors committed to the T-cell lineage. T-ALL comprises about 15% of pediatric and 25% of adult ALL cases and is prone to early relapse. Although the prognosis of T-ALL has improved especially in children due to the use of new intensified treatment protocols, the outcome of relapsed T-ALL cases is still poor. Putative LICs have been identified also in T-ALL. LICs are mostly quiescent and for this reason highly resistant to chemotherapy. Therefore, they evade treatment and give rise to disease relapse. At present great interest surrounds the development of targeted therapies against signaling networks aberrantly activated in LICs and important for their survival and drug-resistance. Both the Notch1 pathway and the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) network are involved in T-ALL LIC survival and drug-resistance and could be targeted by small molecules. Thus, Notch1 and PI3K/Akt/mTOR inhibitors are currently being developed for clinical use either as single agents or in combination with conventional chemotherapy for T-ALL patient treatment. In this review, we summarize the existing knowledge of the relevance of Notch1 and PI3K/Akt/mTOR signaling in T-ALL LICs and we examine the rationale for targeting these key signal transduction networks by means of selective pharmacological inhibitors.
Collapse
Affiliation(s)
- Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, via Irnerio 48, 40126 Bologna, Italy.
| | - Annalisa Lonetti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Francesca Buontempo
- Department of Biomedical and Neuromotor Sciences, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Francesca Ricci
- Immunohematology and Transfusion Center, Policlinico S.Orsola-Malpighi, Bologna, Italy
| | - Pier Luigi Tazzari
- Immunohematology and Transfusion Center, Policlinico S.Orsola-Malpighi, Bologna, Italy
| | - Camilla Evangelisti
- Institute of Molecular Genetics, National Research Council, via di Barbiano 1/10, 40136 Bologna, Italy; Musculoskeletal Cell Biology Laboratory, IOR, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Daniela Bressanin
- Department of Biomedical and Neuromotor Sciences, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Alessandra Cappellini
- Department of Human, Social and Health Sciences, University of Cassino, 03043 Cassino, Italy
| | - Ester Orsini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Francesca Chiarini
- Institute of Molecular Genetics, National Research Council, via di Barbiano 1/10, 40136 Bologna, Italy; Musculoskeletal Cell Biology Laboratory, IOR, via di Barbiano 1/10, 40136 Bologna, Italy
| |
Collapse
|
57
|
Dail M, Wong J, Lawrence J, O'Connor D, Nakitandwe J, Chen SC, Xu J, Lee LB, Akagi K, Li Q, Aster JC, Pear WS, Downing JR, Sampath D, Shannon K. Loss of oncogenic Notch1 with resistance to a PI3K inhibitor in T-cell leukaemia. Nature 2014; 513:512-6. [PMID: 25043004 DOI: 10.1038/nature13495] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 05/20/2014] [Indexed: 01/01/2023]
Abstract
Mutations that deregulate Notch1 and Ras/phosphoinositide 3 kinase (PI3K)/Akt signalling are prevalent in T-cell acute lymphoblastic leukaemia (T-ALL), and often coexist. Here we show that the PI3K inhibitor GDC-0941 is active against primary T-ALLs from wild-type and Kras(G12D) mice, and addition of the MEK inhibitor PD0325901 increases its efficacy. Mice invariably relapsed after treatment with drug-resistant clones, most of which unexpectedly had reduced levels of activated Notch1 protein, downregulated many Notch1 target genes, and exhibited cross-resistance to γ-secretase inhibitors. Multiple resistant primary T-ALLs that emerged in vivo did not contain somatic Notch1 mutations present in the parental leukaemia. Importantly, resistant clones upregulated PI3K signalling. Consistent with these data, inhibiting Notch1 activated the PI3K pathway, providing a likely mechanism for selection against oncogenic Notch1 signalling. These studies validate PI3K as a therapeutic target in T-ALL and raise the unexpected possibility that dual inhibition of PI3K and Notch1 signalling could promote drug resistance in T-ALL.
Collapse
Affiliation(s)
- Monique Dail
- Department of Pediatrics and Benniof Children's Hospital, University of California, San Francisco, California 94143, USA
| | - Jason Wong
- Department of Pediatrics and Benniof Children's Hospital, University of California, San Francisco, California 94143, USA
| | - Jessica Lawrence
- Department of Pediatrics and Benniof Children's Hospital, University of California, San Francisco, California 94143, USA
| | - Daniel O'Connor
- Department of Pediatrics and Benniof Children's Hospital, University of California, San Francisco, California 94143, USA
| | - Joy Nakitandwe
- Department of Pathology, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Shann-Ching Chen
- Department of Pathology, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Jin Xu
- Department of Pediatrics and Benniof Children's Hospital, University of California, San Francisco, California 94143, USA
| | - Leslie B Lee
- Department of Translational Oncology, Genentech Inc., South San Francisco, California 94080, USA
| | - Keiko Akagi
- Department of Molecular Virology, Immunology and Medical Genetics, Ohio State University, Columbus, Ohio 43210, USA
| | - Qing Li
- Division of Haematology/Oncology, Department of Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Jon C Aster
- Department of Pathology, Brigham &Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Warren S Pear
- Abramson Family Cancer Research Institute and the Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - James R Downing
- Department of Pathology, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Deepak Sampath
- Department of Translational Oncology, Genentech Inc., South San Francisco, California 94080, USA
| | - Kevin Shannon
- Department of Pediatrics and Benniof Children's Hospital, University of California, San Francisco, California 94143, USA
| |
Collapse
|
58
|
Abstract
Pathological ventricle remodelling, which follows a cardiac insult, causes heart failure. Despite the existence of multiple pharmaceutical approaches, heart failure is one of the leading causes of death worldwide and there is an urgent need to explore new therapeutic avenues. The Notch pathway is an evolutionary conserved fundamental pathway that regulates cell fate during development as well as throughout postnatal life in self-renewing tissues. In the myocardium, Notch signalling is involved in the modulation of cardiomyocytes survival, cardiac stem cells differentiation, and angiogenesis which are factors known to determine the extent of pathological cardiac remodelling. Modulation of the Notch pathway could become a tool to limit ventricle remodelling and the associated inexorable deterioration of cardiac performance.
Collapse
Affiliation(s)
- Roberto Ferrari
- Department of Cardiology and LTTA Centre, University Hospital of Ferrara, Ferrara, Italy
| | - Paola Rizzo
- GVM Care and Research, E.S: Health Science Foundation, Maria Cecilia Hospital, Cotignola, Italy
| |
Collapse
|
59
|
Evangelisti C, Evangelisti C, Chiarini F, Lonetti A, Buontempo F, Bressanin D, Cappellini A, Orsini E, McCubrey JA, Martelli AM. Therapeutic potential of targeting mTOR in T-cell acute lymphoblastic leukemia (review). Int J Oncol 2014; 45:909-18. [PMID: 24968804 DOI: 10.3892/ijo.2014.2525] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 06/12/2014] [Indexed: 11/05/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a heterogeneous neoplastic disorder of immature hematopoietic precursors committed to the T-cell lineage. T-ALL comprises about 15% of pediatric and 25% of adult ALL cases. Even if the prognosis of T-ALL has improved especially in the childhood due to the use of new intensified treatment protocols, the outcome of relapsed patients who are resistant to conventional chemotherapeutic drugs or who relapse is still poor. For this reason, there is a need for novel and less toxic targeted therapies against signaling pathways aberrantly activated in T-ALL, such as the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR). Small molecules designed to target key components of this signaling axis have proven their efficacy both in vitro and in vivo in pre-clinical settings of T-ALL. In particular, different classes of mTOR inhibitors have been disclosed by pharmaceutical companies, and they are currently being tested in clinical trials for treating T-ALL patients. One of the most promising approaches for the treatment of T-ALL seems to be the combination of mTOR inhibitors with traditional chemotherapeutic agents. This could lead to a lower drug dosage that may circumvent the systemic side effects of chemotherapeutics. In this review, we focus on the different classes of mTOR inhibitors that will possibly have an impact on the therapeutic arsenal we have at our disposal against T-ALL.
Collapse
Affiliation(s)
- Camilla Evangelisti
- Institute of Molecular Genetics, National Research Council, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Cecilia Evangelisti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Francesca Chiarini
- Institute of Molecular Genetics, National Research Council, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Annalisa Lonetti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Francesca Buontempo
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Daniela Bressanin
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandra Cappellini
- Department of Human Social and Health Sciences, University of Cassino, Cassino, Italy
| | - Ester Orsini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
60
|
Gallo Llorente L, Luther H, Schneppenheim R, Zimmermann M, Felice M, Horstmann MA. Identification of novel NOTCH1 mutations: increasing our knowledge of the NOTCH signaling pathway. Pediatr Blood Cancer 2014; 61:788-96. [PMID: 24249312 DOI: 10.1002/pbc.24852] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 10/15/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND Alterations in the NOTCH1 signaling pathway are found in about 60% of pediatric T-ALL, but its impact on prognosis remains unclear. PROCEDURE We extended the previously published CoALL cohort (n = 74) to a larger cohort (n = 127) and additionally included 38 Argentine patients from ALL IC-BFM to potentially identify novel mutations and decipher a stronger discriminatory effect on the genotype/phenotype relationship with regard to early treatment response and long-term outcome. RESULTS Overall, 101 out of 165 (61.2%) T-ALL samples revealed at least one NOTCH1 mutation, 28 of whom had combined NOTCH1 and FBXW7 mutations. Eight T-ALL samples (4.8%) exclusively revealed FBXW7 mutations. Fifty-six T-ALL (33.9%) exhibited a wild-type configuration of either gene. Four novel NOTCH1 mutations were identified localized in the C-terminal PEST domain, in the rarely affected LNR repeat domain and in the ankyrin domain. Novel LNR mutations may contribute to a better understanding of the structure of the NOTCH1 negative regulatory region (NRR) and the R1946 mutation in the ankyrin domain may represent an unusual loss-of-function mutation. CONCLUSIONS Overall, NOTCH1 pathway mutations did not affect the relapse rate and outcome of the extended T-ALL cohort uniformly treated according to CoALL protocols, although NOTCH1 mutations were associated with good response to induction therapy (P = 0.009). Individually, HD and PEST domain mutations might exert distinct functional effects on cellular homeostasis under treatment NOTCH1 pathway activity with prognostic implications.
Collapse
Affiliation(s)
- L Gallo Llorente
- Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
61
|
Van der Meulen J, Van Roy N, Van Vlierberghe P, Speleman F. The epigenetic landscape of T-cell acute lymphoblastic leukemia. Int J Biochem Cell Biol 2014; 53:547-57. [PMID: 24786297 DOI: 10.1016/j.biocel.2014.04.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/08/2014] [Accepted: 04/10/2014] [Indexed: 12/29/2022]
Abstract
The genetic landscape of T-ALL has been very actively explored during the past decades. This leads to an overwhelming body of exciting novel findings providing insight into (1) the genetic heterogeneity of the disease with marked genetic subsets, (2) the mechanisms by which aberrant T-cell development drive leukemogenesis and (3) emerging opportunities for novel therapeutic interventions. Of further interest, recent genome wide sequencing studies identified proteins that actively participate in the regulation of the T-cell epigenome as novel oncogenes and tumor suppressor genes in T-ALL. The identification of these perturbed molecular epigenetic events in the pathogenesis of T-ALL will contribute to the further exploration of novel therapies in this cancer type. As some epigenetic therapies have recently been approved for a number of hematological neoplasms, one could speculate that targeted therapies against epigenetic regulators might offer good prospects for T-ALL treatment in the near future. In this review, we summarize the epigenetic discoveries made in T-ALL hitherto and discuss possible new venues for epigenetic therapeutic intervention in this aggressive subtype of human leukemia. This article is part of a Directed Issue entitled: Rare Cancers.
Collapse
Affiliation(s)
| | - Nadine Van Roy
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| | | | - Frank Speleman
- Center for Medical Genetics, Ghent University, Ghent, Belgium.
| |
Collapse
|
62
|
Pillozzi S, Accordi B, Rebora P, Serafin V, Valsecchi MG, Basso G, Arcangeli A. Differential expression of hERG1A and hERG1B genes in pediatric acute lymphoblastic leukemia identifies different prognostic subgroups. Leukemia 2014; 28:1352-5. [PMID: 24429499 PMCID: PMC4051215 DOI: 10.1038/leu.2014.26] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- S Pillozzi
- Department of Experimental and Clinical Medicine-Section of Internal Medicine, University of Firenze, Firenze, Italy
| | - B Accordi
- Oncohematology Laboratory, Department of Woman and Child Health, University of Padova, Padova, Italy
| | - P Rebora
- Center of Biostatistics for Clinical Epidemiology, Department of Health Sciences, University of Milano-Bicocca, Monza, Italy
| | - V Serafin
- Oncohematology Laboratory, Department of Woman and Child Health, University of Padova, Padova, Italy
| | - M G Valsecchi
- Center of Biostatistics for Clinical Epidemiology, Department of Health Sciences, University of Milano-Bicocca, Monza, Italy
| | - G Basso
- Oncohematology Laboratory, Department of Woman and Child Health, University of Padova, Padova, Italy
| | - A Arcangeli
- Department of Experimental and Clinical Medicine-Section of Internal Medicine, University of Firenze, Firenze, Italy
| |
Collapse
|
63
|
Atypical case of B-cell Chronic Lymphocytic Leukemia presenting with extreme hyperleukocytosis / Hiperleucocitoză extremă într-un caz atipic de leucemie limfatică cronică cu celulă B. REV ROMANA MED LAB 2014. [DOI: 10.2478/rrlm-2014-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AbstractVery few cases of chronic lymphocytic leukemia (CLL) presenting with extreme hyperleukocytosis are reported in the literature. We describe the case of a 66 years old woman, with newly diagnosed CLL presenting with extreme hyperleukocytosis of 774.2 x 109/liter, Rai stage III and Binet stage C. The patient has no comorbidities and the CIRS score (cumulative illness rating scale) is well below 6, with normal creatinine clearance. Some other interesting aspects related with this case are the atypical immunophenotype, the expression of Cyclin D1, and the B hepatitis viral infection, which made her diagnosis and treatment challenging. The patient was tested for NOTCH1 mutation and it was positive. There is important evidence that NOTCH1 mutations are associated with rapidly progressive disease and resistance to treatment. The distinction of CLL from mantle cell lymphoma (MCL) is not always easy because some MCLs may mimic CLL clinically, histologically, and/or phenotypically. The hepatitis B prophylaxis for viral reactivation was not available an in the end the patient was treated only with fludarabine and cyclophosphamide, without rituximab. CD200 should be introduced in the routine panel for flow cytometry to distinguish CLL from mantle cell lymphoma and NOTCH1 mutation is associated with poor prognosis and should be evaluated at diagnosis. CLL with extreme hyperleukocytosis presentation is very rare and sometimes an atypical CLL may represent a diagnostic pitfall.
Collapse
|
64
|
Characterization of two distinct lymphoproliferative diseases caused by ectopic expression of the Notch ligand DLL4 on T cells. PLoS One 2013; 8:e84841. [PMID: 24386421 PMCID: PMC3874025 DOI: 10.1371/journal.pone.0084841] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 11/19/2013] [Indexed: 12/18/2022] Open
Abstract
Notch signaling is essential for the development of T cell progenitors through the interaction of NOTCH1 receptor on their surface with the ligand, Delta-like 4 (DLL4), which is expressed by the thymic epithelial cells. Notch signaling is quickly shut down once the cells pass β-selection, and CD4/CD8 double positive (DP) cells are unresponsive to Notch. Over the past two decades a number of papers reported that over-activation of Notch signaling causes T cell acute lymphoblastic leukemia (T-ALL), a cancer that prominently features circulating monoclonal CD4/CD8 double positive T cells in different mouse models. However, the possible outcomes of Notch over-activation at different stages of T cell development are unknown, and the fine timing of Notch signaling that results in T-ALL is poorly understood. Here we report, by using a murine model that ectopically expresses DLL4 on developing T cells, that the T-ALL onset is highly dependent on a sustained Notch activity throughout the DP stage, which induces additional mutations to further boost the signaling. In contrast, a shorter period of Notch activation that terminates at the DP stage causes a polyclonal, non-transmissible lymphoproliferative disorder that is also lethal. These observations resolved the discrepancy of previous papers on DLL4 driven hematological diseases in mice, and show the critical importance of the timing and duration of Notch activity.
Collapse
|
65
|
Arruga F, Gizdic B, Serra S, Vaisitti T, Ciardullo C, Coscia M, Laurenti L, D'Arena G, Jaksic O, Inghirami G, Rossi D, Gaidano G, Deaglio S. Functional impact of NOTCH1 mutations in chronic lymphocytic leukemia. Leukemia 2013; 28:1060-70. [PMID: 24170027 DOI: 10.1038/leu.2013.319] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 10/24/2013] [Indexed: 02/06/2023]
Abstract
The purpose of this study was to compare the expression and function of NOTCH1 in chronic lymphocytic leukemia (CLL) patients harboring a wild-type (WT) or mutated NOTCH1 gene. NOTCH1 mRNA and surface protein expression levels were independent of the NOTCH1 gene mutational status, consistent with the requirement for NOTCH1 signaling in this leukemia. However, compared with NOTCH1-WT CLL, mutated cases displayed biochemical and transcriptional evidence of an intense activation of the NOTCH1 pathway. In vivo, expression and activation of NOTCH1 was highest in CLL cells from the lymph nodes as confirmed by immunohistochemistry. In vitro, the NOTCH1 pathway was rapidly downregulated, suggesting that signaling relies upon micro-environmental interactions even in NOTCH1-mutated cases. Accordingly, co-culture of Jagged1(+) (the NOTCH1 ligand) nurse-like cells with autologous CLL cells sustained NOTCH1 activity over time and mediated CLL survival and resistance against pro-apoptotic stimuli, both abrogated when NOTCH1 signaling was pharmacologically switched off. Together, these results show that NOTCH1 mutations have stabilizing effects on the NOTCH1 pathway in CLL. Furthermore, micro-environmental interactions appear critical in activating the NOTCH1 pathway both in WT and mutated patients. Finally, NOTCH1 signals may create conditions that favor drug resistance, thus making NOTCH1 a potential molecular target in CLL.
Collapse
Affiliation(s)
- F Arruga
- Department of Medical Sciences, University of Turin, School of Medicine, Turin, Italy
| | - B Gizdic
- 1] Department of Medical Sciences, University of Turin, School of Medicine, Turin, Italy [2] Department of Hematology, Dubrava University Hospital, Zagreb, Croatia
| | - S Serra
- 1] Department of Medical Sciences, University of Turin, School of Medicine, Turin, Italy [2] Human Genetics Foundation (HuGeF), Turin, Italy
| | - T Vaisitti
- Department of Medical Sciences, University of Turin, School of Medicine, Turin, Italy
| | - C Ciardullo
- Division of Hematology, Department of Translational Medicine, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy
| | - M Coscia
- Division of Hematology, Laboratory of Hematology Oncology, Center of Experimental Research and Medical Studies, Cittá della Salute e della Scienza University Hospital, Turin, Italy
| | - L Laurenti
- Institute of Hematology, Catholic University of the Sacred Heart, Rome, Italy
| | - G D'Arena
- Department of Onco-Hematology, IRCCS Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture, Italy
| | - O Jaksic
- Department of Hematology, Dubrava University Hospital, Zagreb, Croatia
| | - G Inghirami
- Department of Molecular Biotechnology and Health Sciences, Center of Experimental Research and Medical Studies, University of Turin, Turin, Italy
| | - D Rossi
- Division of Hematology, Department of Translational Medicine, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy
| | - G Gaidano
- Division of Hematology, Department of Translational Medicine, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy
| | - S Deaglio
- 1] Department of Medical Sciences, University of Turin, School of Medicine, Turin, Italy [2] Human Genetics Foundation (HuGeF), Turin, Italy
| |
Collapse
|
66
|
Pinnell NE, Chiang MY. Collaborating Pathways that Functionally Amplify NOTCH1 Signals in T-Cell Acute Lymphoblastic Leukemia. JOURNAL OF HEMATOLOGY & TRANSFUSION 2013; 1:1004. [PMID: 26998506 PMCID: PMC4798248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Affiliation(s)
| | - Mark Y. Chiang
- Mark Y. Chiang. Department of Internal Medicne, Division of Hematology/Oncology, University of Michigan Cancer Center, Toubman Biomedical Science Research Building, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA, Tel: 734-615-7513;
| |
Collapse
|