51
|
Abstract
BACKGROUND RNA interference (RNAi) has become the method of choice for researchers wishing to target specific genes for silencing and has provided immense potential as therapeutic tools. This narrative review article aimed to understand potential benefits and limitations of RNAi technique for clinical application and in vivo studies through reading the articles published during the recent 3 years. MATERIALS AND METHODS Medline database was searched by using 'siRNA' or 'RNAi' and 'in vivo' with limits of dates 'published in the last 3 years', language 'English' and article type 'clinical trial' for obtaining articles on in vivo studies on the use of RNAi technique. Characteristics of clinical trials on siRNA registered at the http://www.ClinicalTrials.gov were analysed. RESULTS The only three clinical studies published so far and many in vivo studies in animals showed that the RNAi technique is safe and effective in treatment of cancers of many organ/systems and various other diseases including viral infection, arterial restenosis and some hereditary diseases with considerable benefits such as high specificity, many possible routes of administration and possibility of silencing multiple genes at the same time. Limitations and uncertainty include efficiency of cellular uptake, specific guidance to the target tissue or cell, long-term safety, sustained efficacy and rapid clearance from the body. CONCLUSIONS RNAi technique will become an important and potent weapon for fighting against various diseases. RNAi technique has benefits and limitations in its potential clinical applications. Overcoming the obstacles is still a formidable task.
Collapse
Affiliation(s)
- Shao-Hua Chen
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | | |
Collapse
|
52
|
Li F, Mahato RI. RNA interference for improving the outcome of islet transplantation. Adv Drug Deliv Rev 2011; 63:47-68. [PMID: 21156190 PMCID: PMC3065652 DOI: 10.1016/j.addr.2010.11.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 11/19/2010] [Accepted: 11/25/2010] [Indexed: 01/06/2023]
Abstract
Islet transplantation has the potential to cure type 1 diabetes. Despite recent therapeutic success, it is still not common because a large number of transplanted islets get damaged by multiple challenges including instant blood mediated inflammatory reaction, hypoxia/reperfusion injury, inflammatory cytokines, and immune rejection. RNA interference (RNAi) is a novel strategy to selectively degrade target mRNA. The use of RNAi technologies to downregulate the expression of harmful genes has the potential to improve the outcome of islet transplantation. The aim of this review is to gain a thorough understanding of biological obstacles to islet transplantation and discuss how to overcome these barriers using different RNAi technologies. This eventually will help improve islet survival and function post transplantation. Chemically synthesized small interferring RNA (siRNA), vector based short hairpin RNA (shRNA), and their critical design elements (such as sequences, promoters, and backbone) are discussed. The application of combinatorial RNAi in islet transplantation is also discussed. Last but not the least, several delivery strategies for enhanced gene silencing are discussed, including chemical modification of siRNA, complex formation, bioconjugation, and viral vectors.
Collapse
Affiliation(s)
- Feng Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38103
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38103
| |
Collapse
|
53
|
Dendritic Cells Modified by Vitamin D: Future Immunotherapy for Autoimmune Diseases. VITAMINS AND THE IMMUNE SYSTEM 2011; 86:63-82. [DOI: 10.1016/b978-0-12-386960-9.00003-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
54
|
Gene carriers and transfection systems used in the recombination of dendritic cells for effective cancer immunotherapy. Clin Dev Immunol 2010; 2010:565643. [PMID: 21197274 PMCID: PMC3010860 DOI: 10.1155/2010/565643] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 10/28/2010] [Indexed: 12/11/2022]
Abstract
Dendritic cells (DCs) are the most potent antigen-presenting cells. They play a vital role in the initiation of immune response by presenting antigens to T cells and followed by induction of T-cell response. Reported research in animal studies indicated that vaccine immunity could be a promising alternative therapy for cancer patients. However, broad clinical utility has not been achieved yet, owing to the low transfection efficiency of DCs. Therefore, it is essential to improve the transfection efficiency of DC-based vaccination in immunotherapy. In several studies, DCs were genetically engineered by tumor-associated antigens or by immune molecules such as costimulatory molecules, cytokines, and chemokines. Encouraging results have been achieved in cancer treatment using various animal models. This paper describes the recent progress in gene delivery systems including viral vectors and nonviral carriers for DC-based genetically engineered vaccines. The reverse and three-dimensional transfection systems developed in DCs are also discussed.
Collapse
|
55
|
Natarajan S, Thomson AW. Tolerogenic dendritic cells and myeloid-derived suppressor cells: potential for regulation and therapy of liver auto- and alloimmunity. Immunobiology 2010; 215:698-703. [PMID: 20605054 PMCID: PMC2918690 DOI: 10.1016/j.imbio.2010.05.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 05/20/2010] [Indexed: 02/07/2023]
Abstract
Organ transplantation is now established as an accepted treatment for end-stage liver disease, acute fulminant hepatic liver failure and hepatocellular carcinoma. While early graft acceptance rates have increased markedly due to improved immunosuppressive drug regimens, rates of late graft failure remain largely unchanged. Recent findings suggest that in addition to alloimmunity, chronic rejection of liver allografts may also reflect de novo autoimmune hepatitis or recurrence of pre-existing hepatic autoimmune disease. Dendritic cell (DC)- based therapy is a promising experimental approach to promotion of transplant tolerance and the treatment of autoimmune diseases. Newly emerging evidence also demonstrates the potential efficacy of myeloid-derived suppressor cells (MDSC) in the antigen (Ag)-specific regulation of T-cell responses. Herein, we discuss current understanding of liver autoimmunity post-transplantation, along with current approaches for the development of tolerogenic DC, and the potential use of MDSC for the development of stable, Ag-specific tolerance.
Collapse
Affiliation(s)
- Sudha Natarajan
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Angus W. Thomson
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
56
|
Abstract
RNA interference (RNAi) is a post-transcriptional gene-silencing mechanism that involves the degradation of messenger RNA in a highly sequence-specific manner. Double-stranded small interfering RNA (siRNA), consisting of 21-25 nucleotides, can induce RNAi and inhibit the expression of target proteins. Therefore, siRNA is considered a promising therapeutic for treatment of a variety of diseases, including genetic and viral diseases, and cancer. Clinical trials of siRNA are ongoing or have been planned, although some issues need to be addressed. For example, cellular uptake of naked siRNA is extremely low due to its polyanionic nature. Furthermore, siRNA is easily degraded by enzymes in blood, tissues, and cells. Several types of chemically modified siRNA have been produced and investigated to improve stability; these have involved modification of the siRNA backbone, the sugar moiety, and the nucleotide bases of antisense and/or sense strands. Because the accumulation at the target site after administration is extremely low, even if stability is improved, an effective delivery system is required to induce RNAi at the site of action. Delivery strategies can be categorized into physical methods, conjugation methods, and drug delivery system carrier-mediated methods. Physical techniques can enhance siRNA uptake at a specific tissue site using electroporation, pressure, mechanical massage, etc. Terminal modification of siRNAs can enhance their resistance to degradation by exonucleases in serum and tissue. Moreover, modification with a suitable ligand can achieve targeted delivery. Several types of carrier for drug delivery have been developed for siRNA in addition to traditional cationic liposome and cationic polymer systems. Ultrasound and microbubbles or liposomal bubbles have also been used in combination with a carrier for siRNA delivery. New materials with unique characteristics such as carbon nanotubes, gold nanoparticles, and gold nanorods have attracted attention as innovative carriers for siRNA.
Collapse
Affiliation(s)
- Yuriko Higuchi
- Institute for Innovative NanoBio Drug Discovery and Development, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan.
| | | | | |
Collapse
|
57
|
Peer D. Induction of therapeutic gene silencing in leukocyte-implicated diseases by targeted and stabilized nanoparticles: a mini-review. J Control Release 2010; 148:63-68. [PMID: 20624432 DOI: 10.1016/j.jconrel.2010.06.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Revised: 06/25/2010] [Accepted: 06/29/2010] [Indexed: 10/19/2022]
Abstract
RNA interference (RNAi) is a highly conserved endogenous mechanism that uses small RNA species to guide the sequence-specific silencing of gene expression. The discovery that RNAi functions in mammalian cells to regulate important cellular processes suggested that harnessing these endogenous gene-silencing pathways can prove to be an effective method for the targeted silencing of gene expression. Yet, the key challenge in translating the discovery of RNAi into a novel therapeutic modality is the lack of effective and safe delivery strategies. Here, we describe the major systemic delivery platforms that have been developed. Focus is given to the development of new strategies to target leukocytes, which are among the most difficult cells to transduce with RNAi. Finally, we discuss our strategies to target subsets of leukocytes using integrin-targeted and stabilized nanoparticles (I-tsNPs).
Collapse
Affiliation(s)
- Dan Peer
- Laboratory of Nanomedicine, Dept. of Cell Research and Immunology, George S. Wise Faculty of Life Science, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
58
|
Weinstein S, Peer D. RNAi nanomedicines: challenges and opportunities within the immune system. NANOTECHNOLOGY 2010; 21:232001. [PMID: 20463388 DOI: 10.1088/0957-4484/21/23/232001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
RNAi, as a novel therapeutic modality, has an enormous potential to bring the era of personalized medicine one step further from notion into reality. However, delivery of RNAi effector molecules into their target tissues and cells remain extremely challenging. Major attempts have been made in recent years to develop sophisticated nanocarriers that could overcome these hurdles. This review will present the recent progress with the challenges and opportunities in this emerging field, focusing mostly on the in vivo applications with special emphasis on the strategies for RNAi delivery into immune cells.
Collapse
Affiliation(s)
- Shiri Weinstein
- Department of Cell Research and Immunology, George S Wise Faculty of Life Science, Israel
| | | |
Collapse
|
59
|
Abstract
Delivering polynucleotides into animals has been a major challenge facing their success as therapeutic agents. Given the matured understanding of antibody‐mediated delivery techniques, it is possible to rationally design delivery vehicles that circulate in the blood stream and are specifically delivered into target organs. If the targeting moiety is designed to contain the cargo of an RNAi mediator without impacting its paratope, directed delivery can be achieved. In this article, we review the state of art in delivery technology for RNA mediators and address how this technique could soon be used to enhance the efficacy of the numerous small RNA therapeutic programs currently under evaluation. Copyright © 2010 John Wiley & Sons, Ltd. This article is categorized under:
Regulatory RNAs/RNAi/Riboswitches > RNAi: Mechanisms of Action RNA Methods > RNA Analyses in Cells RNA in Disease and Development > RNA in Disease
Collapse
Affiliation(s)
- Lance P Ford
- Bioo Scientific, 3913 Todd Lane Suite 312, Austin, TX 78744, USA.
| | | |
Collapse
|
60
|
Mukherjee G, Dilorenzo TP. The immunotherapeutic potential of dendritic cells in type 1 diabetes. Clin Exp Immunol 2010; 161:197-207. [PMID: 20491789 DOI: 10.1111/j.1365-2249.2010.04157.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Type 1 diabetes is an autoimmune disease characterized by destruction of the pancreatic islet beta cells that is mediated primarily by T cells specific for beta cell antigens. Insulin administration prolongs the life of affected individuals, but often fails to prevent the serious complications that decrease quality of life and result in significant morbidity and mortality. Thus, new strategies for the prevention and treatment of this disease are warranted. Given the important role of dendritic cells (DCs) in the establishment of peripheral T cell tolerance, DC-based strategies are a rational and exciting avenue of exploration. DCs employ a diverse arsenal to maintain tolerance, including the induction of T cell deletion or anergy and the generation and expansion of regulatory T cell populations. Here we review DC-based immunotherapeutic approaches to type 1 diabetes, most of which have been employed in non-obese diabetic (NOD) mice or other murine models of the disease. These strategies include administration of in vitro-generated DCs, deliberate exposure of DCs to antigens before transfer and the targeting of antigens to DCs in vivo. Although remarkable results have often been obtained in these model systems, the challenge now is to translate DC-based immunotherapeutic strategies to humans, while at the same time minimizing the potential for global immunosuppression or exacerbation of autoimmune responses. In this review, we have devoted considerable attention to antigen-specific DC-based approaches, as results from murine models suggest that they have the potential to result in regulatory T cell populations capable of both preventing and reversing type 1 diabetes.
Collapse
Affiliation(s)
- G Mukherjee
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
61
|
Hilkens CMU, Isaacs JD, Thomson AW. Development of dendritic cell-based immunotherapy for autoimmunity. Int Rev Immunol 2010; 29:156-83. [PMID: 20199240 DOI: 10.3109/08830180903281193] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Dendritic cells are professional antigen-presenting cells that maintain immune tolerance to self-antigens by deleting or controlling the pathogenicity of auto-reactive T-cells. Dendritic cell-based immunotherapies show great promise for the restoration of tolerance in autoimmune disease. Dendritic cells can be modified ex vivo to induce stable tolerogenic function and be used as cellular 'vaccines' or they can be targeted in vivo with sophisticated antigen delivery systems. Tolerogenic dendritic cells induce antigen-specific T-cell tolerance in vivo and have therapeutic effects in animal models of autoimmunity. The current challenge is to bring tolerogenic dendritic cell therapy to the clinic.
Collapse
Affiliation(s)
- Catharien M U Hilkens
- Institute of Cellular Medicine, Musculoskeletal Research Group, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | | | | |
Collapse
|
62
|
Suzuki M, Zheng X, Zhang X, Zhang ZX, Ichim TE, Sun H, Nakamura Y, Inagaki A, Beduhn M, Shunnar A, Garcia B, Min WP. A novel allergen-specific therapy for allergy using CD40-silenced dendritic cells. J Allergy Clin Immunol 2010; 125:737-743.e6. [PMID: 20226305 DOI: 10.1016/j.jaci.2009.11.042] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2009] [Revised: 11/05/2009] [Accepted: 11/06/2009] [Indexed: 11/24/2022]
Abstract
BACKGROUND Induction of RNA interference with small interfering RNA (siRNA) has demonstrated therapeutic potential through the knockdown of target genes. We have previously reported that systemic administration of CD40 siRNA is capable of attenuating allergic symptoms but in an allergen-nonspecific fashion. However, siRNA-based allergen-specific therapy for allergy has not been developed. OBJECTIVE We attempted to develop a new allergen-specific therapy for allergy using CD40-silenced and allergen-pulsed dendritic cells (DCs). METHODS Bone marrow-derived DCs were silenced with CD40 siRNA and pulsed with ovalbumin (OVA). Mice had allergy after intraperitoneal sensitization with OVA and keyhole limpet hemocyanin, followed by intranasal challenge with the same allergens. The mice were treated with CD40-silenced and OVA-pulsed DCs (CD40-silenced OVA DCs) either before allergic sensitization or after establishing allergic rhinitis. RESULTS Mice receiving CD40-silenced OVA DCs either before or after the establishment of allergic rhinitis showed remarkable reductions in allergic symptoms caused by OVA challenge, as well as anti-OVA IgE levels in sera. Additionally, CD40-silenced OVA DCs suppressed eosinophil infiltration at the nasal septum, OVA-specific T-cell responses, T-cell production of IL-4 and IL-5 after stimulation with OVA, and CD4(+)CD25(-) effector T-cell responses. Furthermore, CD40-silenced OVA DCs facilitated the generation of CD4(+)CD25(+) forkhead box protein 3-positive OVA-specific regulatory T cells, which inhibit allergic responses in vivo. However, CD40-silenced OVA DCs suppressed only OVA-specific allergy but did not inhibit keyhole limpet hemocyanin-induced allergy, suggesting that CD40-silenced OVA DCs induce allergen-specific tolerance. CONCLUSIONS This study is the first to demonstrate a novel allergen-specific therapy for allergy through DC-mediated immune modulation after gene silencing of CD40.
Collapse
Affiliation(s)
- Motohiko Suzuki
- Departments of Surgery, Pathology, Microbiology, and Immunology, University of Western Ontario, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Rothdiener M, Müller D, Castro PG, Scholz A, Schwemmlein M, Fey G, Heidenreich O, Kontermann RE. Targeted delivery of SiRNA to CD33-positive tumor cells with liposomal carrier systems. J Control Release 2010; 144:251-8. [PMID: 20184933 DOI: 10.1016/j.jconrel.2010.02.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 02/11/2010] [Accepted: 02/16/2010] [Indexed: 02/09/2023]
Abstract
SiRNA molecules represent promising therapeutic molecules, e.g. for cancer therapy. However, efficient delivery into tumor cells remains a major obstacle for treatment. Here, we describe a liposomal siRNA carrier system for targeted delivery of siRNA to CD33-positive acute myeloid leukemia cells. The siRNA is directed against the t(8;21) translocation resulting in the AML1/MTG8 fusion protein. The siRNA was encapsulated in free or polyethylene imine (PEI)-complexed form into PEGylated liposomes endowed subsequently with an anti-CD33 single-chain Fv fragment (scFv) for targeted delivery. The resulting siRNA-loaded immunoliposomes (IL) and immunolipoplexes (ILP) showed specific binding and internalization by CD33-expressing myeloid leukemia cell lines (SKNO-1, Kasumi-1). Targeted delivery of AML1/MTG8 siRNA, but not of mismatch control siRNA, reduced AML1/MTG8 mRNA and protein levels and decreased leukemic clonogenicity, a hallmark of leukemic self-renewal. Although this study revealed that further modifications are necessary to increase efficacy of siRNA delivery and silencing, we were able to establish a targeted liposomal siRNA delivery system combining recombinant antibody fragments for targeted delivery with tumor cell-specific siRNA molecules as therapeutic agents.
Collapse
Affiliation(s)
- Miriam Rothdiener
- Institut für Zellbiologie und Immunologie, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Abstract
Although well-recognized for their sentinel role and, when activated, their immunostimulatory function, bone marrow-derived dendritic cells (DC) possess inherent tolerogenic (tol) ability. Under quiescent conditions, these cells maintain central and peripheral self tolerance. When appropriately conditioned, in vitro or in vivo, they inhibit innate and adaptive immunity to foreign antigens, including memory T-cell responses. This suppressive function is mediated by various mechanisms, including the expansion and induction of antigen-specific regulatory T cells. Extensive experience in rodent models and recent work in nonhuman primates, indicate the potential of pharmacologically-modified, tol DC (tolDC) to regulate alloimmunity in vivo and to promote lasting, alloantigen-specific T-cell unresponsiveness and transplant survival. While there are many questions yet to be addressed concerning the functional biology of tolDC in humans, these cells offer considerable potential as natural, safe and antigen-specific regulators for long-term control of the outcome of organ and hematopoietic cell transplantation. This minireview surveys recent findings that enhance understanding of the functional biology and therapeutic application of tolDC, with special reference to transplantation.
Collapse
Affiliation(s)
- A. W. Thomson
- Starzl Transplantation Institute, Department of Surgery, and Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
65
|
Zheng X, Suzuki M, Zhang X, Ichim TE, Zhu F, Ling H, Shunnar A, Wang MH, Garcia B, Inman RD, Min WP. RNAi-mediated CD40-CD154 interruption promotes tolerance in autoimmune arthritis. Arthritis Res Ther 2010; 12:R13. [PMID: 20102615 PMCID: PMC2875641 DOI: 10.1186/ar2914] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 12/08/2009] [Accepted: 01/26/2010] [Indexed: 01/25/2023] Open
Abstract
INTRODUCTION We have previously demonstrated that ex vivo inhibition of costimulatory molecules on antigen-pulsed dendritic cells (DCs) can be useful for induction of antigen-specific immune deviation and suppression of autoimmune arthritis in the collagen induced arthritis (CIA) model. The current study evaluated a practical method of immune modulation through temporary systemic inhibition of the costimulatory molecule CD40. METHODS Mice with collagen II (CII)-induced arthritis (CIA) were administered siRNA targeting the CD40 molecule. Therapeutic effects were evaluated by clinical symptoms, histopathology, Ag-specific T cell and B cell immune responses. RESULTS Systemic administration of CD40-targeting siRNA can inhibit antigen-specific T cell response to collagen II, as well as prevent pathogenesis of disease in both a pre- and post-immunization manner in the CIA model. Disease amelioration was associated with suppression of Th1 cytokines, attenuation of antibody production, and upregulation of T regulatory cells. CONCLUSIONS These studies support the feasibility of transient gene silencing at a systemic level as a mechanism of resetting autoreactive immunity.
Collapse
Affiliation(s)
- Xiufen Zheng
- Departments of Surgery, Pathology, Microbiology and Immunology, University of Western Ontario, 1393 Western Road, London, Ontario, N6G 1G9, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Abstract
Whilst significant advances have been made in the delivery of nucleic acids to mammalian cells, most of the used strategies do not distinguish between normal and cancer cells. The same challenge is also facing radioactive- and chemo-therapies which are highly toxic and poorly tolerated due to limited tumor specificity. Regardless of the nature of the drug, there is a need for developing a technology platform which targets drugs only to tumors cells, leaving normal cells undamaged. Among the targeting strategies, receptor-targeted delivery provides an innovative strategy to selectively direct therapeutics to cancer cells. Receptor-binding ligands (e.g., peptides, antibodies, aptamers) can be incorporated into gene delivery vesicles or directly conjugated to siRNA in the hope in promoting their localization in target cell expressing the cognate receptors. The present chapter discusses the current progress made in the specific delivery of siRNAs.
Collapse
Affiliation(s)
- Mouldy Sioud
- Department of Immunology, Institute for Cancer Research, Radiumhospitalet-Rikshopitalet Universtity Hospital, Oslo, Norway
| |
Collapse
|
67
|
Binker MG, Binker-Cosen AA, Richards D, Oliver B, Cosen-Binker LI. LPS-stimulated MUC5AC production involves Rac1-dependent MMP-9 secretion and activation in NCI-H292 cells. Biochem Biophys Res Commun 2009; 386:124-9. [PMID: 19501047 DOI: 10.1016/j.bbrc.2009.05.136] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2009] [Accepted: 05/30/2009] [Indexed: 11/16/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is an inflammatory process characterized by airway mucus hypersecretion. Previous studies have reported that lipopolysaccharides (LPS) stimulate mucin 5AC (MUC5AC) production via epidermal growth factor receptor (EGFR) in human airway cells. Moreover, this production was shown to depend on the expression and activity of matrix metalloproteinase 9 (MMP-9), which is increased in COPD patients' serum. In the present study we investigated the signaling pathway mediating LPS-stimulated secretion and activation of MMP-9, and the regulatory effects of this pathway on the production of MUC5AC in the human airway cells NCI-H292. Using specific inhibitors, we found that LPS-stimulated cells secreted and activated MMP-9 via EGFR. Our results also indicate that signaling events downstream of EGFR involved PI3K-dependent activation of Rac1, which mediated the NADPH-generated reactive oxygen species responsible for MMP-9 secretion and activation. Finally, we observed that EGFR/PI3K/Rac1/NADPH/ROS/MMP-9 regulate MUC5AC production in LPS-challenged NCI-H292 cells.
Collapse
|