51
|
Kaushansky K, Zhan H. The marrow stem cell niche in normal and malignant hematopoiesis. Ann N Y Acad Sci 2019; 1466:17-23. [PMID: 30767234 DOI: 10.1111/nyas.14028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/09/2019] [Accepted: 01/23/2019] [Indexed: 02/06/2023]
Abstract
The hematopoietic niche is composed of endothelial cells, mesenchymal stromal cells of several types, and megakaryocytes, and functions to support the survival, proliferation, and differentiation of normal hematopoietic stem cells (HSCs). An abundance of evidence from a range of hematological malignancies supports the concept that the niche also participates in the pathogenesis of malignant hematopoiesis, differentially supporting malignant stem or progenitor cells over that of normal blood cell development. In 2005, patients with myeloproliferative neoplasms were reported to harbor an acquired, activating, missense V617F mutation of the cytokine-signaling Janus kinase (JAK)-2, JAK2V617F , present in virtually all patients with polycythemia vera and half of patients with essential thrombocythemia and primary myelofibrosis. Using both in vitro and in vivo methods, several investigators have shown that in addition to driving cytokine-independent proliferation in HSCs, JAK2V617F contributes to these neoplasms by altering the hematopoietic niche. The role of both endothelial cells and megakaryocytes bearing JAK2V617F will be presented, which involves altering cytokine production within the niche, resulting in their differential support of mutant kinase-bearing stem cells over their normal counterparts, and imparting relative radiation resistance to stem cells. The clinical correlates of these findings will be discussed, as will their therapeutic implications.
Collapse
Affiliation(s)
| | - Huichun Zhan
- Stony Brook University School of Medicine, Stony Brook, New York
| |
Collapse
|
52
|
Vasculogenic Stem and Progenitor Cells in Human: Future Cell Therapy Product or Liquid Biopsy for Vascular Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1201:215-237. [PMID: 31898789 DOI: 10.1007/978-3-030-31206-0_11] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
New blood vessel formation in adults was considered to result exclusively from sprouting of preexisting endothelial cells, a process referred to angiogenesis. Vasculogenesis, the formation of new blood vessels from endothelial progenitor cells, was thought to occur only during embryonic life. Discovery of adult endothelial progenitor cells (EPCs) in 1997 opened the door for cell therapy in vascular disease. Endothelial progenitor cells contribute to vascular repair and are now well established as postnatal vasculogenic cells in humans. It is now admitted that endothelial colony-forming cells (ECFCs) are the vasculogenic subtype. ECFCs could be used as a cell therapy product and also as a liquid biopsy in several vascular diseases or as vector for gene therapy. However, despite a huge interest in these cells, their tissue and molecular origin is still unclear. We recently proposed that endothelial progenitor could come from very small embryonic-like stem cells (VSELs) isolated in human from CD133 positive cells. VSELs are small dormant stem cells related to migratory primordial germ cells. They have been described in bone marrow and other organs. This chapter discusses the reported findings from in vitro data and also preclinical studies that aimed to explore stem cells at the origin of vasculogenesis in human and then explore the potential use of ECFCs to promote newly formed vessels or serve as liquid biopsy to understand vascular pathophysiology and in particular pulmonary disease and haemostasis disorders.
Collapse
|
53
|
Greenfield G, McMullin MF. Splanchnic venous thrombosis in JAK2 V617F mutation positive myeloproliferative neoplasms - long term follow-up of a regional case series. Thromb J 2018; 16:33. [PMID: 30574023 PMCID: PMC6299625 DOI: 10.1186/s12959-018-0187-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/19/2018] [Indexed: 12/15/2022] Open
Abstract
Background Splanchnic Vein Thrombosis (SVT) is strongly associated with underlying JAK2 V617F positive myeloproliferative neoplasms (MPN). Methods Patients attending the tertiary haematology service in Northern Ireland with SVT and underlying JAK2 V617F MPN were identified by consultant staff. A retrospective audit was undertaken to examine therapeutic interventions and relevant outcomes. Descriptive statistics were used for qualitative data whilst students t-test allowed comparison of quantitative data. Results We report on the medium to long term follow-up of fourteen patients presenting with SVT on the basis of JAK2 V617F positive MPN. Females comprised 78.5% of the patients and there was an average age of 47.3 years at time of diagnosis. There was significant morbidity evident at diagnosis with liver transplantation attempted in all patients with Budd Chiari (n = 3), oesophageal varices present in 57.1%, ascites present in 42.8% and splenomegaly evident in 71.4%. 42.8% of patients did not exhibit classical phenotypic blood count findings for MPN at time of diagnosis. Over a median follow-up of 88.5 months (range = 8-211 months) recurrence of SVT was only documented in the setting of interventional liver procedure. Major haemorrhagic complications were recorded in 35.7% of patients and there was an association with dual anticoagulation and antiplatelet use. Recurrent thrombosis outside of the splanchnic venous system occurred in 28.5% of patients, predominantly occurring off therapeutic anticoagulation. No deaths were recorded and one transformation to myelofibrosis was seen during follow-up. Cytoreduction therapies were routinely used but had a high discontinuation rate due to cytopenias and intolerance. Conclusion This analysis highlights the complexities of management of this group of patients over a period of long follow-up with a focus on the evidence behind therapeutic options.
Collapse
Affiliation(s)
- Graeme Greenfield
- 1Centre for Cancer Research and Cell Biology, Queen's University Belfast, University Rd, Belfast, BT7 1NN Northern Ireland
| | - Mary Frances McMullin
- 2Centre for Medical Education, Queen's University Belfast, University Rd, Belfast, BT7 1NN Northern Ireland
| |
Collapse
|
54
|
Paschalaki KE, Randi AM. Recent Advances in Endothelial Colony Forming Cells Toward Their Use in Clinical Translation. Front Med (Lausanne) 2018; 5:295. [PMID: 30406106 PMCID: PMC6205967 DOI: 10.3389/fmed.2018.00295] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/28/2018] [Indexed: 12/17/2022] Open
Abstract
The term “Endothelial progenitor cell” (EPC) has been used to describe multiple cell populations that express endothelial surface makers and promote vascularisation. However, the only population that has all the characteristics of a real “EPC” is the Endothelial Colony Forming Cells (ECFC). ECFC possess clonal proliferative potential, display endothelial and not myeloid cell surface markers, and exhibit pronounced postnatal vascularisation ability in vivo. ECFC have been used to investigate endothelial molecular dysfunction in several diseases, as they give access to endothelial cells from patients in a non-invasive way. ECFC also represent a promising tool for revascularization of damaged tissue. Here we review the translational applications of ECFC research. We discuss studies which have used ECFC to investigate molecular endothelial abnormalities in several diseases and review the evidence supporting the use of ECFC for autologous cell therapy, gene therapy and tissue regeneration. Finally, we discuss ways to improve the therapeutic efficacy of ECFC in clinical applications, as well as the challenges that must be overcome to use ECFC in clinical trials for regenerative approaches.
Collapse
Affiliation(s)
- Koralia E Paschalaki
- Vascular Sciences, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Anna M Randi
- Vascular Sciences, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
55
|
Abstract
Purpose of review In this review, we aim to discuss the role of the bone marrow microenvironment in supporting hematopoiesis, with particular focus on the contribution of the endothelial niche in dictating hematopoietic stem cell (HSC) fate. Recent findings Evidence gathered in the past two decades revealed that specific cell types within the bone marrow niche influence the hematopoietic system. Endothelial cells have emerged as a key component of the HSC niche, directly affecting stem cell quiescence, self-renewal, and lineage differentiation. Physiological alterations of the bone marrow niche occurring in aging have been described to be sufficient to promote functional aging of young HSCs. Furthermore, a growing body of evidence suggests that aberrant activation of endothelial-derived signaling pathways can aid or trigger neoplastic transformation. Summary Several groups have contributed to the characterization of the different cell types that comprise the complex bone marrow environment, whose function was long perceived as an undiscernible sum of many parts. Further studies will need to uncover niche cell-type-specific pathways, in order to provide new targets and therapeutic options that aim at withdrawing the microenvironmental support to malignant cells while sparing normal HSCs.
Collapse
|
56
|
Guy A, Gourdou-Latyszenok V, Le Lay N, Peghaire C, Kilani B, Dias JV, Duplaa C, Renault MA, Denis C, Villeval JL, Boulaftali Y, Jandrot-Perrus M, Couffinhal T, James C. Vascular endothelial cell expression of JAK2 V617F is sufficient to promote a pro-thrombotic state due to increased P-selectin expression. Haematologica 2018; 104:70-81. [PMID: 30171023 PMCID: PMC6312008 DOI: 10.3324/haematol.2018.195321] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/23/2018] [Indexed: 01/13/2023] Open
Abstract
Thrombosis is the main cause of morbidity and mortality in patients with JAK2V617F myeloproliferative neoplasms. Recent studies have reported the presence of JAK2V617F in endothelial cells of some patients with myeloproliferative neoplasms. We investigated the role of endothelial cells that express JAK2V617F in thrombus formation using an in vitro model of human endothelial cells overexpressing JAK2V617F and an in vivo model of mice with endothelial-specific JAK2V617F expression. Interestingly, these mice displayed a higher propensity for thrombus. When deciphering the mechanisms by which JAK2V617F-expressing endothelial cells promote thrombosis, we observed that they have a pro-adhesive phenotype associated with increased endothelial P-selectin exposure, secondary to degranulation of Weibel-Palade bodies. We demonstrated that P-selectin blockade was sufficient to reduce the increased propensity of thrombosis. Moreover, treatment with hydroxyurea also reduced thrombosis and decreased the pathological interaction between leukocytes and JAK2V617F-expressing endothelial cells through direct reduction of endothelial P-selectin expression. Taken together, our data provide evidence that JAK2V617F-expressing endothelial cells promote thrombosis through induction of endothelial P-selectin expression, which can be reversed by hydroxyurea. Our findings increase our understanding of thrombosis in patients with myeloproliferative neoplasms, at least those with JAK2V617F-positive endothelial cells, and highlight a new role for hydroxyurea. This novel finding provides the proof of concept that an acquired genetic mutation can affect the pro-thrombotic nature of endothelial cells, suggesting that other mutations in endothelial cells could be causal in thrombotic disorders of unknown cause, which account for 50% of recurrent venous thromboses.
Collapse
Affiliation(s)
- Alexandre Guy
- Univ. Bordeaux, Inserm, UMR1034, Biology of Cardiovascular Diseases, Pessac
| | | | | | - Claire Peghaire
- Univ. Bordeaux, Inserm, UMR1034, Biology of Cardiovascular Diseases, Pessac
| | - Badr Kilani
- Univ. Bordeaux, Inserm, UMR1034, Biology of Cardiovascular Diseases, Pessac
| | | | - Cécile Duplaa
- Univ. Bordeaux, Inserm, UMR1034, Biology of Cardiovascular Diseases, Pessac
| | - Marie-Ange Renault
- Univ. Bordeaux, Inserm, UMR1034, Biology of Cardiovascular Diseases, Pessac
| | - Cécile Denis
- Inserm U1176, Hemostasis Inflammation Thrombosis, Le Kremlin-Bicêtre
| | | | | | | | - Thierry Couffinhal
- Univ. Bordeaux, Inserm, UMR1034, Biology of Cardiovascular Diseases, Pessac.,CHU de Bordeaux, Service des Maladies Cardiaques et Vasculaires, Pessac
| | - Chloe James
- Univ. Bordeaux, Inserm, UMR1034, Biology of Cardiovascular Diseases, Pessac .,CHU de Bordeaux, Laboratoire d'Hématologie, Pessac, France
| |
Collapse
|
57
|
Poisson J, Hilscher MB, Tanguy M, Hammoutene A, Boulanger CM, Villeval JL, Simonetto DA, Valla D, Shah VH, Rautou PE. Endothelial JAK2 V617F does not enhance liver lesions in mice with Budd-Chiari syndrome. J Hepatol 2018; 68:1086-1087. [PMID: 29360553 DOI: 10.1016/j.jhep.2018.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/05/2018] [Accepted: 01/09/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Johanne Poisson
- INSERM, UMR-970, Paris Cardiovascular Research Center - PARCC, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Moira B Hilscher
- Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Marion Tanguy
- INSERM, UMR-970, Paris Cardiovascular Research Center - PARCC, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Adel Hammoutene
- INSERM, UMR-970, Paris Cardiovascular Research Center - PARCC, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Chantal M Boulanger
- INSERM, UMR-970, Paris Cardiovascular Research Center - PARCC, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jean-Luc Villeval
- INSERM, Institut Gustave Roussy, INSERM U1170, Villejuif, France; University Paris XI, Villejuif, France
| | - Douglas A Simonetto
- Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Dominique Valla
- Service d'hépatologie, DHU Unity Hôpital Beaujon, APHP, Clichy, France; Université Denis Diderot-Paris 7, Sorbonne Paris Cité, 75018 Paris, France
| | - Vijay H Shah
- Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Pierre-Emmanuel Rautou
- INSERM, UMR-970, Paris Cardiovascular Research Center - PARCC, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Service d'hépatologie, DHU Unity Hôpital Beaujon, APHP, Clichy, France; Université Denis Diderot-Paris 7, Sorbonne Paris Cité, 75018 Paris, France.
| |
Collapse
|
58
|
Zimran E, Hoffman R, Kremyanskaya M. Current approaches to challenging scenarios in myeloproliferative neoplasms. Expert Rev Anticancer Ther 2018; 18:567-578. [PMID: 29575945 DOI: 10.1080/14737140.2018.1457441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs) including polycythemia vera, essential thrombocythemia and primary myelofibrosis are clonal hematological malignancies that originate at the level of the hematopoietic stem cell, and are characterized by excessive proliferation of cells belonging to one or more of the myeloid lineages. Central to the pathogenesis of the MPNs is constitutive activation of the JAK/STAT signaling pathway due to a family of driver mutations affecting JAK2, CALR or MPL. These disorders share common clinical and laboratory features, a significant burden of systemic symptoms, increased risk of developing arterial and venous thrombotic events, and the potential to progress to myelofibrosis and acute leukemia. Areas covered: We identified four clinical situations which represent challenging management dilemmas for patients with MPNs. Our conclusions and recommendations are based on a literature search using MEDLINE and recent meeting abstracts using the keywords, focusing on publications directly addressing these scenarios and on recent contributions to the field. Expert commentary: Multi-center efforts to study large cohorts of MPN patients have led to more uniform and evidence-based approaches to key aspects in MPN management. However, treatment strategies to deal with specific clinical scenarios are lacking.
Collapse
Affiliation(s)
- Eran Zimran
- a Icahn School of Medicine at Mount Sinai , Tisch Cancer Institute , New York , NY , USA
| | - Ronald Hoffman
- a Icahn School of Medicine at Mount Sinai , Tisch Cancer Institute , New York , NY , USA
| | - Marina Kremyanskaya
- a Icahn School of Medicine at Mount Sinai , Tisch Cancer Institute , New York , NY , USA
| |
Collapse
|
59
|
Lin CHS, Zhang Y, Kaushansky K, Zhan H. JAK2V617F-bearing vascular niche enhances malignant hematopoietic regeneration following radiation injury. Haematologica 2018; 103:1160-1168. [PMID: 29567773 PMCID: PMC6029534 DOI: 10.3324/haematol.2017.185736] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/14/2018] [Indexed: 12/20/2022] Open
Abstract
Myeloproliferative neoplasms are clonal stem cell disorders characterized by hematopoietic stem/progenitor cell expansion. The acquired kinase mutation JAK2V617F plays a central role in these disorders. Abnormalities of the marrow microenvironment are beginning to be recognized as an important factor in the development of myeloproliferative neoplasms. Endothelial cells are an essential component of the hematopoietic vascular niche. Endothelial cells carrying the JAK2V617F mutation can be detected in patients with myeloproliferative neoplasms, suggesting that the mutant vascular niche is involved in the pathogenesis of these disorders. Here, using a transgenic mouse expressing JAK2V617F specifically in all hematopoietic cells (including hematopoietic stem/progenitor cells) and endothelial cells, we show that the JAK2V617F-mutant hematopoietic stem/progenitor cells are relatively protected by the JAK2V617F-bearing vascular niche from an otherwise lethal dose of irradiation during conditioning for stem cell transplantation. Gene expression analysis revealed that chemokine (C-X-C motif) ligand 12, epidermal growth factor, and pleiotrophin are up-regulated in irradiated JAK2V617F-bearing endothelial cells compared to wild-type cells. Our findings suggest that the mutant vascular niche may contribute to the high incidence of disease relapse in patients with myeloproliferative neoplasms following allogeneic stem cell transplantation, the only curative treatment for these disorders.
Collapse
Affiliation(s)
| | - Yu Zhang
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Kenneth Kaushansky
- Office of the Sr. Vice President, Health Sciences, Stony Brook School of Medicine, NY, USA
| | - Huichun Zhan
- Department of Medicine, Stony Brook School of Medicine, NY, USA .,Northport VA Medical Center, Northport, NY, USA
| |
Collapse
|
60
|
Thrombosis in Philadelphia negative classical myeloproliferative neoplasms: a narrative review on epidemiology, risk assessment, and pathophysiologic mechanisms. J Thromb Thrombolysis 2018; 45:516-528. [DOI: 10.1007/s11239-018-1623-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
61
|
Plessier A, Payancé A, Valla D. Budd-Chiari Syndrome: The Western Perspective. DIAGNOSTIC METHODS FOR CIRRHOSIS AND PORTAL HYPERTENSION 2018:241-255. [DOI: 10.1007/978-3-319-72628-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
62
|
Speirs C, Williams JJL, Riches K, Salt IP, Palmer TM. Linking energy sensing to suppression of JAK-STAT signalling: A potential route for repurposing AMPK activators? Pharmacol Res 2017; 128:88-100. [PMID: 29037480 DOI: 10.1016/j.phrs.2017.10.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/12/2017] [Accepted: 10/12/2017] [Indexed: 02/07/2023]
Abstract
Exaggerated Janus kinase-signal transducer and activator of transcription (JAK-STAT) signalling is key to the pathogenesis of pro-inflammatory disorders, such as rheumatoid arthritis and cardiovascular diseases. Mutational activation of JAKs is also responsible for several haematological malignancies, including myeloproliferative neoplasms and acute lymphoblastic leukaemia. Accumulating evidence links adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK), an energy sensor and regulator of organismal and cellular metabolism, with the suppression of immune and inflammatory processes. Recent studies have shown that activation of AMPK can limit JAK-STAT-dependent signalling pathways via several mechanisms. These novel findings support AMPK activation as a strategy for management of an array of disorders characterised by hyper-activation of the JAK-STAT pathway. This review discusses the pivotal role of JAK-STAT signalling in a range of disorders and how both established clinically used and novel AMPK activators might be used to treat these conditions.
Collapse
Affiliation(s)
- Claire Speirs
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Jamie J L Williams
- School of Pharmacy and Medical Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - Kirsten Riches
- School of Chemistry and Biosciences, University of Bradford, Bradford BD7 1DP, UK
| | - Ian P Salt
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Timothy M Palmer
- School of Pharmacy and Medical Sciences, University of Bradford, Bradford BD7 1DP, UK.
| |
Collapse
|
63
|
Reilly CR, Babushok DV, Martin K, Spivak JL, Streiff M, Bahirwani R, Mondschein J, Stein B, Moliterno A, Hexner EO. Multicenter analysis of the use of transjugular intrahepatic portosystemic shunt for management of MPN-associated portal hypertension. Am J Hematol 2017; 92:909-914. [PMID: 28543980 DOI: 10.1002/ajh.24798] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 05/18/2017] [Indexed: 12/21/2022]
Abstract
BCR-ABL1-negative myeloproliferative neoplasms (MPNs) are clonal stem cell disorders defined by proliferation of one or more myeloid lineages, and carry an increased risk of vascular events and progression to myelofibrosis and leukemia. Portal hypertension (pHTN) occurs in 7-18% of MPN patients via both thrombotic and nonthrombotic mechanisms and portends a poor prognosis. Transjugular intrahepatic portosystemic shunt (TIPS) has been used in the management of MPN-associated pHTN; however, data on long-term outcomes of TIPS in this setting is limited and the optimal management of medically refractory MPN-associated pHTN is not known. In order to assess the efficacy and long-term outcomes of TIPS in MPN-associated pHTN, we performed a retrospective analysis of 29 MPN patients who underwent TIPS at three academic medical centers between 1997 and 2016. The majority of patients experienced complete clinical resolution of pHTN and its clinical sequelae following TIPS. One, two, three, and four-year overall survival post-TIPS was 96.4%, 92.3%, 84.6%, and 71.4%, respectively. However, despite therapeutic anticoagulation, in-stent thrombosis occurred in 31.0% of patients after TIPS, necessitating additional interventions. In conclusion, TIPS can be an effective intervention for MPN-associated pHTN regardless of etiology. However, TIPS thrombosis is a frequent complication in the MPN population and indefinite anticoagulation post-TIPS should be considered.
Collapse
Affiliation(s)
- Christopher R. Reilly
- Department of Medicine; Hospital of the University of Pennsylvania; Philadelphia Pennsylvania
| | - Daria V. Babushok
- Department of Medicine; Hospital of the University of Pennsylvania; Philadelphia Pennsylvania
- Abramson Cancer Center and the Division of Hematology & Oncology; Philadelphia Pennsylvania
| | - Karlyn Martin
- Division of Hematology and Oncology; Northwestern University; Chicago Illinois
| | - Jerry L. Spivak
- Department of Medicine; Johns Hopkins Hospital; Baltimore Maryland
| | - Michael Streiff
- Department of Medicine; Johns Hopkins Hospital; Baltimore Maryland
| | - Ranjeeta Bahirwani
- Liver Consultants of Texas, Baylor University Medical Center; Dallas Texas
| | - Jeffrey Mondschein
- Department of Interventional Radiology; Hospital of the University of Pennsylvania; Philadelphia Pennsylvania
| | - Brady Stein
- Division of Hematology and Oncology; Northwestern University; Chicago Illinois
| | - Alison Moliterno
- Department of Medicine; Johns Hopkins Hospital; Baltimore Maryland
| | - Elizabeth O. Hexner
- Department of Medicine; Hospital of the University of Pennsylvania; Philadelphia Pennsylvania
- Abramson Cancer Center and the Division of Hematology & Oncology; Philadelphia Pennsylvania
| |
Collapse
|
64
|
Zhan H, Lin CHS, Segal Y, Kaushansky K. The JAK2V617F-bearing vascular niche promotes clonal expansion in myeloproliferative neoplasms. Leukemia 2017; 32:462-469. [PMID: 28744010 PMCID: PMC5783797 DOI: 10.1038/leu.2017.233] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 06/15/2017] [Accepted: 07/10/2017] [Indexed: 12/17/2022]
Abstract
The acquired kinase mutation JAK2V617F plays a central role in myeloproliferative neoplasms (MPNs). However, the mechanisms responsible for the malignant hematopoietic stem/progenitor cell (HSPC) expansion seen in patients with MPNs are not fully understood, limiting the effectiveness of current treatment. Endothelial cells (ECs) are an essential component of the hematopoietic niche, and they have been shown to express the JAK2V617F mutation in patients with MPNs. We show that the JAK2V617F-bearing vascular niche promotes the expansion of the JAK2V617F HSPCs in preference to JAK2WT HSPCs, potentially contributing to poor donor cell engraftment and disease relapse following stem cell transplantation. The expression of Chemokine (C-X-C motif) ligand 12 (CXCL12) and stem cell factor (SCF) were upregulated in JAK2V617F-bearing ECs compared to wild-type ECs, potentially accounting for this observation. We further identify that the thrombopoietin (TPO)/MPL signaling pathway is critical for the altered vascular niche function. A better understanding of how the vascular niche contributes to HSPC expansion and MPN development is essential for the design of more effective therapeutic strategies for patients with MPNs.
Collapse
Affiliation(s)
- H Zhan
- Northport VA Medical Center, Northport, NY, USA.,Department of Medicine, Stony Brook Medicine, Stony Brook, NY, USA
| | - C H S Lin
- Department of Medicine, Stony Brook Medicine, Stony Brook, NY, USA
| | - Y Segal
- Northport VA Medical Center, Northport, NY, USA
| | - K Kaushansky
- Department of Medicine, Stony Brook Medicine, Stony Brook, NY, USA.,Office of the Sr. Vice President, Health Sciences, Stony Brook Medicine, Stony Brook, NY, USA
| |
Collapse
|
65
|
How J, Zhou A, Oh ST. Splanchnic vein thrombosis in myeloproliferative neoplasms: pathophysiology and molecular mechanisms of disease. Ther Adv Hematol 2017; 8:107-118. [PMID: 28246554 PMCID: PMC5305004 DOI: 10.1177/2040620716680333] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Myeloproliferative neoplasms (MPNs) are the most common underlying prothrombotic disorder found in patients with splanchnic vein thrombosis (SVT). Clinical risk factors for MPN-associated SVTs include younger age, female sex, concomitant hypercoagulable disorders, and the JAK2 V617F mutation. These risk factors are distinct from those associated with arterial or deep venous thrombosis (DVT) in MPN patients, suggesting disparate disease mechanisms. The pathophysiology of SVT is thought to derive from local interactions between activated blood cells and the unique splanchnic endothelial environment. Other mutations commonly found in MPNs, including CALR and MPL, are rare in MPN-associated SVT. The purpose of this article is to review the clinical and molecular risk factors for MPN-associated SVT, with particular focus on the possible mechanisms of SVT formation in MPN patients.
Collapse
Affiliation(s)
- Joan How
- Division of Hematology, Washington University School of Medicine, St Louis, MO, USA
| | - Amy Zhou
- Division of Hematology, Washington University School of Medicine, St Louis, MO, USA
| | - Stephen T. Oh
- Division of Hematology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8125, St Louis, MO 63110, USA
| |
Collapse
|
66
|
The microenvironment in human myeloid malignancies: emerging concepts and therapeutic implications. Blood 2017; 129:1617-1626. [PMID: 28159735 DOI: 10.1182/blood-2016-11-696070] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/23/2017] [Indexed: 12/13/2022] Open
Abstract
Similar to their healthy counterpart, malignant hematopoietic stem cells in myeloid malignancies, such as myeloproliferative neoplasms, myelodysplastic syndromes, and acute myeloid leukemia, reside in a highly complex and dynamic cellular microenvironment in the bone marrow. This environment provides key regulatory signals for and tightly controls cardinal features of hematopoietic stem cells (HSCs), including self-renewal, quiescence, differentiation, and migration. These features are essential to maintaining cellular homeostasis and blood regeneration throughout life. A large number of studies have extensively addressed the composition of the bone marrow niche in mouse models, as well as the cellular and molecular communication modalities at play under both normal and pathogenic situations. Although instrumental to interrogating the complex composition of the HSC niche and dissecting the niche remodeling processes that appear to actively contribute to leukemogenesis, these models may not fully recapitulate the human system due to immunophenotypic, architectural, and functional inter-species variability. This review summarizes several aspects related to the human hematopoietic niche: (1) its anatomical structure, composition, and function in normal hematopoiesis; (2) its alteration and functional relevance in the context of chronic and acute myeloid malignancies; (3) age-related niche changes and their suspected impact on hematopoiesis; (4) ongoing efforts to develop new models to study niche-leukemic cell interaction in human myeloid malignancies; and finally, (5) how the knowledge gained into leukemic stem cell (LSC) niche dependencies might be exploited to devise novel therapeutic strategies that aim at disrupting essential niche-LSC interactions or improve the regenerative ability of the disease-associated hematopoietic niche.
Collapse
|
67
|
Lin CHS, Kaushansky K, Zhan H. JAK2 V617F-mutant vascular niche contributes to JAK2 V617F clonal expansion in myeloproliferative neoplasms. Blood Cells Mol Dis 2016; 62:42-48. [PMID: 27865175 DOI: 10.1016/j.bcmd.2016.09.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/19/2016] [Accepted: 09/24/2016] [Indexed: 12/13/2022]
Abstract
The myeloproliferative neoplasms (MPNs) are characterized by hematopoietic stem/progenitor cell (HSPC) expansion and overproduction of blood cells. The acquired mutation JAK2V617F plays a central role in these disorders. Mechanisms responsible for MPN HSPC expansion is not fully understood, limiting the effectiveness of current treatments. Endothelial cells (ECs) carrying the JAK2V617F mutation can be detected in patients with MPNs, suggesting that ECs are involved in the pathogenesis of MPNs. Here we report that JAK2V617F-bearing primary murine ECs have increased cell proliferation and angiogenesis in vitro compared to JAK2WT ECs. While there was no difference between JAK2V617F and JAK2WT HSPC proliferation when co-cultured with JAK2WT EC, the JAK2V617F HSPC displayed a relative growth advantage over the JAK2WT HSPC when co-cultured on JAK2V617F EC. In addition, the thrombopoietin (TPO) receptor MPL is up regulated in JAK2V617F ECs and contributes to the maintenance/expansion of the JAK2V617F clone over JAK2WT clone in vitro. Considering that ECs are an essential component of the hematopoietic niche and most HSPCs reside in the perivascular niche, our studies suggest that the JAK2V617F-bearing ECs form an important component of the MPN vascular niche and contribute to mutant stem/progenitor cell expansion, likely through a critical role of the TPO/MPL signaling axis.
Collapse
Affiliation(s)
- Chi Hua Sarah Lin
- Department of Medicine, Division of Hematology-Oncology, Stony Brook University, Stony Brook, NY, USA
| | - Kenneth Kaushansky
- Office of the Sr. Vice President, Health Sciences, Stony Brook Medicine, NY, USA
| | - Huichun Zhan
- Department of Medicine, Division of Hematology-Oncology, Stony Brook University, Stony Brook, NY, USA; Northport VA Medical Center, Northport, NY, USA.
| |
Collapse
|
68
|
Helman R, Pereira WDO, Marti LC, Campregher PV, Puga RD, Hamerschlak N, Chiattone CS, Santos FPDS. Granulocyte whole exome sequencing and endothelial JAK2V617F in patients with JAK2V617F positive Budd-Chiari Syndrome without myeloproliferative neoplasm. Br J Haematol 2016; 180:443-445. [DOI: 10.1111/bjh.14327] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Ricardo Helman
- Haematology Oncology; Hospital Israelita Albert Einstein; Sao Paulo Brazil
| | | | | | | | - Renato Davi Puga
- Mestrado em Ciências Biológicas (Genética) pela Universidade de São Paulo; Sao Paulo Brazil
| | | | - Carlos S. Chiattone
- Haemaotology Oncology; Faculdade de Ciências Médicas da Santa Casa de São Paulo; Sao Paulo Brazil
| | - Fabio Pires de S. Santos
- Haematology and Bone Marrow Transplantation unit; Hospital Israelita Albert Einstein; Sao Paulo Brazil
| |
Collapse
|
69
|
Pati HP, Sharma P. Myeloproliferative Neoplasms, an Acquired Thrombophilic State: JAK2 and Beyond. Indian J Hematol Blood Transfus 2016; 32:245-7. [PMID: 27429514 DOI: 10.1007/s12288-016-0700-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
70
|
Testa U, Saulle E, Castelli G, Pelosi E. Endothelial progenitor cells in hematologic malignancies. Stem Cell Investig 2016; 3:26. [PMID: 27583252 DOI: 10.21037/sci.2016.06.07] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 05/23/2016] [Indexed: 01/09/2023]
Abstract
Studies carried out in the last years have improved the understanding of the cellular and molecular mechanisms controlling angiogenesis during adult life in normal and pathological conditions. Some of these studies have led to the identification of some progenitor cells that sustain angiogenesis through indirect, paracrine mechanisms (hematopoietic angiogenic cells) and through direct mechanisms, i.e., through their capacity to generate a progeny of phenotypically and functionally competent endothelial cells [endothelial colony forming cells (ECFCs)]. The contribution of these progenitors to angiogenetic processes under physiological and pathological conditions is intensively investigated. Angiogenetic mechanisms are stimulated in various hematological malignancies, including chronic myeloid leukemia (CML), acute myeloid leukemia (AML), myelodysplastic syndromes and multiple myeloma, resulting in an increased angiogenesis that contributes to disease progression. In some of these conditions there is preliminary evidence that some endothelial cells could derive from the malignant clone, thus leading to the speculation that the leukemic cell derives from the malignant transformation of a hemangioblastic progenitor, i.e., of a cell capable of differentiation to the hematopoietic and to the endothelial cell lineages. Our understanding of the mechanisms underlying increased angiogenesis in these malignancies not only contributed to a better knowledge of the mechanisms responsible for tumor progression, but also offered the way for the discovery of new therapeutic targets.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Ernestina Saulle
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Germana Castelli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Elvira Pelosi
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
71
|
Agarwal A, Morrone K, Bartenstein M, Zhao ZJ, Verma A, Goel S. Bone marrow fibrosis in primary myelofibrosis: pathogenic mechanisms and the role of TGF-β. Stem Cell Investig 2016; 3:5. [PMID: 27358897 DOI: 10.3978/j.issn.2306-9759.2016.02.03] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 02/15/2016] [Indexed: 12/21/2022]
Abstract
Primary myelofibrosis (PMF) is a Philadelphia chromosome negative myeloproliferative neoplasm (MPN) with adverse prognosis and is associated with bone marrow fibrosis and extramedullary hematopoiesis. Even though the discovery of the Janus kinase 2 (JAK2), thrombopoietin receptor (MPL) and calreticulin (CALR) mutations have brought new insights into the complex pathogenesis of MPNs, the etiology of fibrosis is not well understood. Furthermore, since JAK2 inhibitors do not lead to reversal of fibrosis further understanding of the biology of fibrotic process is needed for future therapeutic discovery. Transforming growth factor beta (TGF-β) is implicated as an important cytokine in pathogenesis of bone marrow fibrosis. Various mouse models have been developed and have established the role of TGF-β in the pathogenesis of fibrosis. Understanding the molecular alterations that lead to TGF-β mediated effects on bone marrow microenvironment can uncover newer therapeutic targets against myelofibrosis. Inhibition of the TGF-β pathway in conjunction with other therapies might prove useful in the reversal of bone marrow fibrosis in PMF.
Collapse
Affiliation(s)
- Archana Agarwal
- 1 Steward Carney Hospital, 2100 Dorchester Avenue, Dorchester, MA, USA ; 2 Albert Einstein College of Medicine, Bronx, NY, USA ; 3 University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kerry Morrone
- 1 Steward Carney Hospital, 2100 Dorchester Avenue, Dorchester, MA, USA ; 2 Albert Einstein College of Medicine, Bronx, NY, USA ; 3 University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Matthias Bartenstein
- 1 Steward Carney Hospital, 2100 Dorchester Avenue, Dorchester, MA, USA ; 2 Albert Einstein College of Medicine, Bronx, NY, USA ; 3 University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zhizhuang Joe Zhao
- 1 Steward Carney Hospital, 2100 Dorchester Avenue, Dorchester, MA, USA ; 2 Albert Einstein College of Medicine, Bronx, NY, USA ; 3 University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Amit Verma
- 1 Steward Carney Hospital, 2100 Dorchester Avenue, Dorchester, MA, USA ; 2 Albert Einstein College of Medicine, Bronx, NY, USA ; 3 University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Swati Goel
- 1 Steward Carney Hospital, 2100 Dorchester Avenue, Dorchester, MA, USA ; 2 Albert Einstein College of Medicine, Bronx, NY, USA ; 3 University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
72
|
Endothelial progenitor cell dysfunction in myelodysplastic syndromes: possible contribution of a defective vascular niche to myelodysplasia. Neoplasia 2016; 17:401-9. [PMID: 26025663 PMCID: PMC4468365 DOI: 10.1016/j.neo.2015.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/03/2015] [Accepted: 04/09/2015] [Indexed: 12/20/2022] Open
Abstract
We set a model to replicate the vascular bone marrow niche by using endothelial colony forming cells (ECFCs), and we used it to explore the vascular niche function in patients with low-risk myelodysplastic syndromes (MDS). Overall, we investigated 56 patients and we observed higher levels of ECFCs in MDS than in healthy controls; moreover, MDS ECFCs were found variably hypermethylated for p15INK4b DAPK1, CDH1, or SOCS1. MDS ECFCs exhibited a marked adhesive capacity to normal mononuclear cells. When normal CD34 + cells were co-cultured with MDS ECFCs, they generated significant lower amounts of CD11b + and CD41 + cells than in co-culture with normal ECFCs. At gene expression profile, several genes involved in cell adhesion were upregulated in MDS ECFCs, while several members of the Wingless and int (Wnt) pathways were underexpressed. Furthermore, at miRNA expression profile, MDS ECFCs hypo-expressed various miRNAs involved in Wnt pathway regulation. The addition of Wnt3A reduced the expression of intercellular cell adhesion molecule-1 on MDS ECFCs and restored the defective expression of markers of differentiation. Overall, our data demonstrate that in low-risk MDS, ECFCs exhibit various primary abnormalities, including putative MDS signatures, and suggest the possible contribution of the vascular niche dysfunction to myelodysplasia.
Collapse
|
73
|
Martini M, Capodimonti S, Iachininoto MG, Cocomazzi A, Nuzzolo ER, Voso MT, Teofili L, Larocca LM. An abnormal secretion of soluble mediators contributes to the hematopoietic-niche dysfunction in low-risk myelodysplastic syndrome. Blood Cancer J 2015; 5:e370. [PMID: 26617063 PMCID: PMC4670949 DOI: 10.1038/bcj.2015.97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- M Martini
- Istituto di Anatomia Patologica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - S Capodimonti
- Istituto di Ematologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - M G Iachininoto
- Istituto di Ematologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - A Cocomazzi
- Istituto di Anatomia Patologica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - E R Nuzzolo
- Istituto di Ematologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - M T Voso
- Department of Biomedicine and Prevention, Università di Roma Tor Vergata, Roma, Italy
| | - L Teofili
- Istituto di Ematologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - L M Larocca
- Istituto di Anatomia Patologica, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
74
|
Inflammation as a Keystone of Bone Marrow Stroma Alterations in Primary Myelofibrosis. Mediators Inflamm 2015; 2015:415024. [PMID: 26640324 PMCID: PMC4660030 DOI: 10.1155/2015/415024] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/08/2015] [Accepted: 10/15/2015] [Indexed: 01/11/2023] Open
Abstract
Primary myelofibrosis (PMF) is a clonal myeloproliferative neoplasm where severity as well as treatment complexity is mainly attributed to a long lasting disease and presence of bone marrow stroma alterations as evidenced by myelofibrosis, neoangiogenesis, and osteosclerosis. While recent understanding of mutations role in hematopoietic cells provides an explanation for pathological myeloproliferation, functional involvement of stromal cells in the disease pathogenesis remains poorly understood. The current dogma is that stromal changes are secondary to the cytokine “storm” produced by the hematopoietic clone cells. However, despite therapies targeting the myeloproliferation-sustaining clones, PMF is still regarded as an incurable disease except for patients, who are successful recipients of allogeneic stem cell transplantation. Although the clinical benefits of these inhibitors have been correlated with a marked reduction in serum proinflammatory cytokines produced by the hematopoietic clones, further demonstrating the importance of inflammation in the pathological process, these treatments do not address the role of the altered bone marrow stroma in the pathological process. In this review, we propose hypotheses suggesting that the stroma is inflammatory-imprinted by clonal hematopoietic cells up to a point where it becomes “independent” of hematopoietic cell stimulation, resulting in an inflammatory vicious circle requiring combined stroma targeted therapies.
Collapse
|
75
|
In vitro cardiomyocyte differentiation of umbilical cord blood cells: crucial role for c-kit+ cells. Cytotherapy 2015; 17:1627-37. [DOI: 10.1016/j.jcyt.2015.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 07/16/2015] [Accepted: 07/20/2015] [Indexed: 11/22/2022]
|
76
|
Triviai I, Stübig T, Niebuhr B, Hussein K, Tsiftsoglou A, Fehse B, Stocking C, Kröger N. CD133 marks a stem cell population that drives human primary myelofibrosis. Haematologica 2015; 100:768-79. [PMID: 25724578 DOI: 10.3324/haematol.2014.118463] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 02/26/2015] [Indexed: 01/01/2023] Open
Abstract
Primary myelofibrosis is a myeloproliferative neoplasm characterized by bone marrow fibrosis, megakaryocyte atypia, extramedullary hematopoiesis, and transformation to acute myeloid leukemia. To date the stem cell that undergoes the spatial and temporal chain of events during the development of this disease has not been identified. Here we describe a CD133(+) stem cell population that drives the pathogenesis of primary myelofibrosis. Patient-derived circulating CD133(+) but not CD34(+)CD133(-) cells, with a variable burden for JAK2 (V617F) mutation, had multipotent cloning capacity in vitro. CD133(+) cells engrafted for up to 10 months in immunocompromised mice and differentiated into JAK2-V617F(+) myeloid but not lymphoid progenitors. We observed the persistence of human, atypical JAK2-V617F(+) megakaryocytes, the initiation of a prefibrotic state, bone marrow/splenic fibrosis and transition to acute myeloid leukemia. Leukemic cells arose from a subset of CD133(+) cells harboring EZH2 (D265H) but lacking a secondary JAK2 (V617F) mutation, consistent with the hypothesis that deregulation of EZH2 activity drives clonal growth and increases the risk of acute myeloid leukemia. This is the first characterization of a patient-derived stem cell population that drives disease resembling both chronic and acute phases of primary myelofibrosis in mice. These results reveal the importance of the CD133 antigen in deciphering the neoplastic clone in primary myelofibrosis and indicate a new therapeutic target for myeloproliferative neoplasms.
Collapse
Affiliation(s)
- Ioanna Triviai
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Germany Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Greece
| | - Thomas Stübig
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Germany
| | - Birte Niebuhr
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Kais Hussein
- Institute of Pathology, Hannover Medical School, Germany
| | - Asterios Tsiftsoglou
- Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Greece
| | - Boris Fehse
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Germany
| | - Carol Stocking
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Nicolaus Kröger
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Germany
| |
Collapse
|
77
|
Pelosi E, Castelli G, Testa U. Endothelial progenitors. Blood Cells Mol Dis 2014; 52:186-94. [DOI: 10.1016/j.bcmd.2013.11.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 11/13/2013] [Accepted: 11/13/2013] [Indexed: 12/31/2022]
|
78
|
Enhanced expression of Stim, Orai, and TRPC transcripts and proteins in endothelial progenitor cells isolated from patients with primary myelofibrosis. PLoS One 2014; 9:e91099. [PMID: 24603752 PMCID: PMC3946386 DOI: 10.1371/journal.pone.0091099] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 02/10/2014] [Indexed: 11/22/2022] Open
Abstract
Background An increase in the frequency of circulating endothelial colony forming cells (ECFCs), the only subset of endothelial progenitor cells (EPCs) truly belonging to the endothelial phenotype, occurs in patients affected by primary myelofibrosis (PMF). Herein, they might contribute to the enhanced neovascularisation of fibrotic bone marrow and spleen. Store-operated Ca2+ entry (SOCE) activated by the depletion of the inositol-1,4,5-trisphosphate (InsP3)-sensitive Ca2+ store drives proliferation in ECFCs isolated from both healthy donors (N-ECFCs) and subjects suffering from renal cellular carcinoma (RCC-ECFCs). SOCE is up-regulated in RCC-ECFCs due to the over-expression of its underlying molecular components, namely Stim1, Orai1, and TRPC1. Methodology/Principal Findings We utilized Ca2+ imaging, real-time polymerase chain reaction, western blot analysis and functional assays to evaluate molecular structure and the functional role of SOCE in ECFCs derived from PMF patients (PMF-ECFCs). SOCE, induced by either pharmacological (i.e. cyclopiazonic acid or CPA) or physiological (i.e. ATP) stimulation, was significantly higher in PMF-ECFCs. ATP-induced SOCE was inhibited upon blockade of the phospholipase C/InsP3 signalling pathway with U73111 and 2-APB. The higher amplitude of SOCE was associated to the over-expression of the transcripts encoding for Stim2, Orai2–3, and TRPC1. Conversely, immunoblotting revealed that Stim2 levels remained constant as compared to N-ECFCs, while Stim1, Orai1, Orai3, TRPC1 and TRPC4 proteins were over-expressed in PMF-ECFCs. ATP-induced SOCE was inhibited by BTP-2 and low micromolar La3+ and Gd3+, while CPA-elicited SOCE was insensitive to Gd3+. Finally, BTP-2 and La3+ weakly blocked PMF-ECFC proliferation, while Gd3+ was ineffective. Conclusions Two distinct signalling pathways mediate SOCE in PMF-ECFCs; one is activated by passive store depletion and is Gd3+-resistant, while the other one is regulated by the InsP3-sensitive Ca2+ pool and is inhibited by Gd3+. Unlike N- and RCC-ECFCs, the InsP3-dependent SOCE does not drive PMF-ECFC proliferation.
Collapse
|
79
|
JAK2V617F-positive endothelial cells contribute to clotting abnormalities in myeloproliferative neoplasms. Proc Natl Acad Sci U S A 2014; 111:2295-300. [PMID: 24469804 DOI: 10.1073/pnas.1312148111] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Janus kinase 2 (JAK2) V617F mutation is the primary pathogenic mutation in patients with Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs). Although thrombohemorrhagic incidents are the most common causes of morbidity and mortality in patients with MPNs, the events causing these clotting abnormalities remain unclear. To identify the cells responsible for the dysfunctional hemostasis, we used transgenic mice expressing JAK2V617F in specific lineages involved in thrombosis and hemostasis. When JAK2V617F was expressed in both hematopoietic and endothelial cells (ECs), the mice developed a significant MPN, characterized by thrombocytosis, neutrophilia, and splenomegaly. However, despite having significantly higher platelet counts than controls, these mice showed severely attenuated thrombosis following injury. Interestingly, platelet activation and aggregation in response to agonists was unaltered by JAK2V617F expression. Subsequent bone marrow transplants revealed the contribution of both endothelial and hematopoietic compartments to the attenuated thrombosis. Furthermore, we identified a potential mechanism for this phenotype through JAK2V617F-regulated inhibition of von Willebrand factor (VWF) function and/or secretion. JAK2V617F(+) mice display a condition similar to acquired von Willebrand syndrome, exhibiting significantly less high molecular weight VWF and reduced agglutination to ristocetin. These findings greatly advance our understanding of thrombohemorrhagic events in MPNs and highlight the critical role of ECs in the pathology of hematopoietic malignancies.
Collapse
|
80
|
Colaizzo D, Amitrano L, Guardascione MA, Tiscia GL, D'Andrea G, Longo VAC, Grandone E, Margaglione M. Outcome of patients with splanchnic venous thrombosis presenting without overt MPN: a role for the JAK2 V617F mutation re-evaluation. Thromb Res 2013; 132:e99-e104. [PMID: 23916380 DOI: 10.1016/j.thromres.2013.07.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/11/2013] [Accepted: 07/12/2013] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Although investigation for JAK2 V617F mutation is recommended in patients presenting with splanchnic venous thrombosis (SVT), no specific clinical advice is given to SVT patients presenting without myeloproliferative neoplasms (MPN) and JAK2 V617F mutation. In MPN-free SVT patients, to investigate the clinical outcome, the clinical impact of re-evaluation for the JAK2 V617F mutation, and relationships with the occurrence and time to diagnosis of MPN. MATERIALS AND METHODS A cohort of non-cirrhotic SVT patients, enrolled at a single centre and prospectively analyzed. RESULTS In 121 SVT patients prospectively followed from 1994 to 2012, a MPN was present in 28 (23.1%). Additional 13 patients (10.7%) showed only the JAK2 V617F mutation. During the follow-up, the JAK2 V617F mutation and/or MPN were identified in 8 patients (median time of development: 21 months, range 6-120), whereas 72 remained (MPN and JAK2 V617F)-free until the end of the observation. The mortality rate was higher among patients presenting with MPN and/or the JAK2 V617F mutation than in patients who developed later or remained disease-free (p=0.032). The thrombosis-free survival was lower in patients with (p=0.04) or developing later MPN and the JAK2 V617F mutation (p=0.005) than in patients (MPN and JAK2 V617F)-free. The incidence of bleeding was similar among groups. CONCLUSIONS MPN with or without circulating positive clones for JAK2 V617F mutation can occur long after a SVT, identifying at risk patients for new thrombotic events. If confirmed in other studies, re-evaluation for JAK2 V617F mutation may be of help in early MPN detection and clinical management of SVT patients.
Collapse
Affiliation(s)
- Donatella Colaizzo
- Unita' di Aterosclerosi e Trombosi, I.R.C.C.S. "Casa Sollievo della Sofferenza", S. Giovanni Rotondo, Italy
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Sekhar M, McVinnie K, Burroughs AK. Splanchnic vein thrombosis in myeloproliferative neoplasms. Br J Haematol 2013; 162:730-47. [PMID: 23855810 DOI: 10.1111/bjh.12461] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Splanchnic vein thrombosis (SVT) is one of the most important complications of myeloproliferative neoplasms (MPN). Although MPN are common causes of SVT, the pathophysiological mechanisms underlying this predisposition, their epidemiology and natural history are not fully understood. Studies have concentrated on the generalized prothrombotic environment generated by MPN and their relationship with abnormal blood counts, thereby furthering our knowledge of arterial and venous thrombosis in this population. In contrast, there are few studies that have specifically addressed SVT in the context of MPN. Recent research has demonstrated in patients with MPN the existence of factors increasing the risk of SVT such as the presence of the JAK2 V617F mutation and its 46/1 haplotype. Features unique to the circulating blood cells, splanchnic vasculature and surrounding micro-environment in patients with MPN have been described. There are also abnormalities in local haemodynamics, haemostatic molecules, the spleen, and splanchnic endothelial and endothelial progenitor cells. This review considers these important advances and discusses the contribution of individual anomalies that lead to the development of SVT in both the pre-neoplastic and overt stage of MPN. Clinical issues relating to epidemiology, recurrence and survival in these patients have also been reviewed and their results discussed.
Collapse
Affiliation(s)
- Mallika Sekhar
- Department of Haematology, Royal Free Hospital, London, UK
| | | | | |
Collapse
|
82
|
Adult and cord blood endothelial progenitor cells have different gene expression profiles and immunogenic potential. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2013; 12 Suppl 1:s367-74. [PMID: 23867184 DOI: 10.2450/2013.0042-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 03/26/2013] [Indexed: 12/18/2022]
Abstract
BACKGROUND Endothelial colony-forming cells (ECFC) are endowed with vascular regenerative ability in vivo and in vitro. In this study we compared the genotypic profile and the immunogenic potential of adult and cord blood ECFC, in order to explore the feasibility of using them as a cell therapy product. MATERIALS AND METHODS ECFC were obtained from cord blood samples not suitable for haematopoietic stem cell transplantation and from adult healthy blood donors after informed consent. Genotypes were analysed by commercially available microarray assays and results were confirmed by real-time polymerase chain reaction analysis. HLA antigen expression was evaluated by flow-cytometry. Immunogenic capacity was investigated by evaluating the activation of allogeneic lymphocytes and monocytes in co-cultures with ECFC. RESULTS Microarray assays revealed that the genetic profile of cord blood and adult ECFC differed in about 20% of examined genes. We found that cord blood ECFC were characterised by lower pro-inflammatory and pro-thrombotic gene expression as compared to adult ECFC. Furthermore, whereas cord blood and adult ECFCs expressed similar amount of HLA molecules both at baseline and after incubation with γ-interferon, cord blood ECFC elicited a weaker expression of pro-inflammatory cytokine genes. Finally, we observed no differences in the amount of HLA antigens expressed among cord blood ECFC, adult ECFC and mesenchymal cells. CONCLUSIONS Our observations suggest that cord blood ECFC have a lower pro-inflammatory and pro-thrombotic profile than adult ECFC. These preliminary data offer level-headed evidence to use cord blood ECFC as a cell therapy product in vascular diseases.
Collapse
|
83
|
Lung Clear "Sugar" Cell Tumor and JAK V617F Positive Essential Thrombocythemia: a Simple Coincidence? Mediterr J Hematol Infect Dis 2013; 5:e2013021. [PMID: 23667719 PMCID: PMC3647711 DOI: 10.4084/mjhid.2013.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Accepted: 03/13/2013] [Indexed: 11/08/2022] Open
Abstract
The primary clear cell tumor of the lung is an extremely rare benign tumor. This tumor is called "sugar tumor" since clear cell tumor of the lung contains abundant glycogen. We here present a case of lung clear cell tumor of the lung associated to essential thrombocythemia. To the best of our knowledge, there is no report about this association. A 44-Year-Old Woman admitted to our clinic with a 2-month history of fatigue. On physical examination, the spleen was 3 cm palpable below the left costal margin on the mid axillary line. The laboratory tests revealed an elevated platelet counts (1,014,000/mm(3)). A pulmonary nodule (3,5 cm) was detected in the upper right lobe on the chest X-ray. Then, thoracic computed tomography (CT) was planned. The nodule looked like benign pattern on CT scan and total excision was performed for curative and diagnostic treatment. Microscopically, the tumor was composed of nests of rounded or oval cells with distinct cell borders, optically clear cytoplasm and small nucleus. By immunohistochemistry, tumor cells were positive for HMB-45, NSE and focal S100 antigen. And, it was diagnosed as clear "sugar" cell tumor. After tumor excision the lasting thrombocytosis induced us to perform bone marrow biopsy and JAK2 mutation research. Diagnosis of Essential Thrombocythemia was made. In conclusion, it is important to make an evaluation for myeloproliferative diseases in clear "sugar" cell tumor in adults if thrombocytosis was lasting after treatment.
Collapse
|
84
|
Abstract
In this issue of Blood, Rosti and colleagues report that in JAK2V617F positive patients with myelofibrosis (MF), a proportion of endothelial cells (ECs) from spleen tissues and splenic vein harbored this mutation.
Collapse
|
85
|
Vecchiet J, Iachininoto MG, Capodimonti S, Nuzzolo ER, Falasca K, Martini M, Mancino P, Bianchi M, Leone AM, Ucciferri C, Larocca LM, Teofili L. Effect of antiviral therapy on pro-angiogenic hematopoietic and endothelial progenitor cells in HIV-infected people. Thromb Res 2013; 131:238-43. [DOI: 10.1016/j.thromres.2012.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 11/29/2012] [Accepted: 12/10/2012] [Indexed: 12/21/2022]
|
86
|
Abstract
Abstract
Increased microvessel density contributes to abnormal BM and spleen microenvironment in myelofibrosis (MF). Taking advantage of the JAK2V617F mutation as a marker of malignancy, in the present study, we investigated whether splenic endothelial cells (ECs) obtained from capillaries by laser microdissection or from fresh spleen tissue by cell culture or cell sorting harbored such mutation in patients bearing the mutation in their granulocytes and undergoing splenectomy for therapeutical reasons. To extend the analysis to the ECs of large vessels, endothelial tissue from the splenic vein was also studied. We found JAK2V617F+ ECs in 12 of 18 patients also bearing the mutation in their granulocytes. In 3 patients, the mutation was found in at least 2 different EC samples obtained by laser microdissection, cell culture, or cell sorting. The mutation was detected in the splenic vein ECs of 1 of 6 patients investigated. In conclusion, we provide evidence that some ECs from the spleen and splenic veins of patients with MF bear the JAK2V617F mutation. We suggest that splenic ECs are involved in the process of malignant transformation in MF.
Collapse
|
87
|
Gandrille S, Peffault de Latour R, Levionnois E, Rodriguez-Otero P, Galy-Fauroux I, Zemori L, Abbes S, Petropoulou AD, Socié G, Fischer AM, Helley D. Endothelial colony-forming cells from patients with paroxysmal nocturnal haemoglobinuria are not PIGA mutated. Br J Haematol 2013; 161:144-7. [PMID: 23294396 DOI: 10.1111/bjh.12193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 10/22/2012] [Indexed: 11/28/2022]
|
88
|
Sun T, Zhang L. Thrombosis in myeloproliferative neoplasms with JAK2V617F mutation. Clin Appl Thromb Hemost 2012; 19:374-81. [PMID: 22826442 DOI: 10.1177/1076029612453761] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Myeloproliferative neoplasms (MPNs) are clonal hematopoietic stem cell disorders and are characterized by advanced proliferation and survival advantage. These abnormalities are considered to derive from the point mutation in exon 14 of the Janus kinase 2 genes (JAK2 V617F). The thrombosis rate and the high prevalence of JAK2V617F in patients with MPN suggest that there is an association between the 2 in MPN. Apart from the mutation, other variables are documented to cause endothelial dysfunction and involve in thrombotic tendency. Endothelial progenitor cells differentiated from hematopoietic stem cell in patients with JAK2V617F MPN play an indispensable role in initiating and modulating neoangiogenesis. Although a risk-oriented therapeutic approach has been applied to MPN treatments, the further study on pathogenesis of MPN may provide more novel preventions and therapies for MPN.
Collapse
Affiliation(s)
- Tiantian Sun
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | | |
Collapse
|
89
|
Le Bousse-Kerdilès MC. Primary myelofibrosis and the "bad seeds in bad soil" concept. FIBROGENESIS & TISSUE REPAIR 2012; 5:S20. [PMID: 23259918 PMCID: PMC3368798 DOI: 10.1186/1755-1536-5-s1-s20] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Primary Myelofibrosis (PMF) is a chronic myeloproliferative neoplasm characterized by a clonal myeloproliferation and a myelofibrosis. The concomitant presence of neoangiogenesis and osteosclerosis suggests a deregulation of medullar stem cell niches in which hematopoietic stem cells are engaged in a constant crosstalk with their stromal environment. Despite the recently discovered mutations including the JAK2Val617F mutation, the primitive molecular event responsible for the clonal hematopoietic proliferation is still unknown. We propose that the "specificity" of the pathological process that caracterizes PMF results from alterations in the cross talk between hematopoietic and stromal cells. These alterations contribute in creating a abnormal microenvironment that participates in the maintenance of the neoplasic clone leading to a misbalance disfavouring normal hematopoiesis; in return or simultaneously, stromal cells constituting the niches are modulated by hematopoietic cells resulting in stroma dysfunctions. Therefore, PMF is a remarkable "model" in which deregulation of the stem cell niche is of utmost importance for the disease development. A better understanding of the crosstalk between stem cells and their niches should imply new therapeutic strategies targeting not only intrinsic defects in stem cells but also regulatory niche-derived signals and, consequently, hematopoietic cell proliferation.
Collapse
Affiliation(s)
- Marie-Caroline Le Bousse-Kerdilès
- The French INSERM and the European EUMNET networks on Myelofibrosis, The French Intergroup of Myeloproliferative disorders (FIM), INSERM U972, Paris XI University, Laboratory of Hematology, Paul Brousse Hospital, 14, av. Paul-Vaillant Couturier ; 948007, Villejuif Cedex, France
| |
Collapse
|
90
|
Endothelial progenitor cells and thrombosis. Thromb Res 2012; 129:309-13. [DOI: 10.1016/j.thromres.2011.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 12/04/2011] [Accepted: 12/05/2011] [Indexed: 11/24/2022]
|
91
|
Schwarz TM, Leicht SF, Radic T, Rodriguez-Arabaolaza I, Hermann PC, Berger F, Saif J, Böcker W, Ellwart JW, Aicher A, Heeschen C. Vascular incorporation of endothelial colony-forming cells is essential for functional recovery of murine ischemic tissue following cell therapy. Arterioscler Thromb Vasc Biol 2011; 32:e13-21. [PMID: 22199368 DOI: 10.1161/atvbaha.111.239822] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Cord blood-derived human endothelial colony-forming cells (ECFCs) bear a high proliferative capacity and potently enhance tissue neovascularization in vivo. Here, we investigated whether the leading mechanism for the functional improvement relates to their physical vascular incorporation or perivascular paracrine effects and whether the effects can be further enhanced by dual-cell-based therapy, including mesenchymal stem cells (MSCs). METHODS AND RESULTS ECFCs or MSCs were lentivirally transduced with thymidine kinase suicide gene driven by the endothelial-specific vascular endothelial growth factor 2 (kinase insert domain receptor) promoter and evaluated in a hindlimb ischemia model. ECFCs and MSCs enhanced neovascularization after ischemic events to a similar extent. Dual therapy using ECFCs and MSCs further enhanced neovascularization. Mechanistically, 3 weeks after induction of ischemia followed by cell therapy, ganciclovir-mediated elimination of kinase insert domain receptor(+) cells completely reversed the therapeutic effect of ECFCs but not that of MSCs. Histological analysis revealed that ganciclovir effectively eliminated ECFCs incorporated into the vasculature. CONCLUSIONS Endothelial-specific suicide gene technology demonstrates distinct mechanisms for ECFCs and MSCs, with complete abolishment of ECFC-mediated effects, whereas MSC-mediated effects remained unaffected. These data strengthen the notion that a dual-cell-based therapy represents a promising approach for vascular regeneration of ischemic tissue.
Collapse
Affiliation(s)
- Theresa M Schwarz
- Stem Cell & Cancer Group, Centro Nacional de Investigaciones Oncológicas, c/ Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|