51
|
Padeira GL, Araújo C, Cordeiro AI, Freixo J, Martins CG, Neves JF. Case Report: Primary Immunodeficiencies, Massive EBV+ T-Cell Lympoproliferation Leading to the Diagnosis of ICF2 Syndrome. Front Immunol 2021; 12:654167. [PMID: 33995370 PMCID: PMC8113761 DOI: 10.3389/fimmu.2021.654167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/08/2021] [Indexed: 12/04/2022] Open
Abstract
In immunocompromised patients, EBV may elicit B-cell transformation and proliferation. A 5-year-old microcephalic boy was admitted with fever and non-malignant polymorphic T-cell lymphoproliferative disease associated with EBV. A presumptive diagnosis of primary immunodeficiency with inability to control EBV was made and next-generation sequencing led to the identification of a novel ZBTB24 mutation (ICF2-syndrome). This case shows that susceptibility to EBV seems to be particular of ICF-2 as it has not been described in the other types of ICF. It is mandatory to raise the hypothesis of an underlying PID in case of severe EBV infection.
Collapse
Affiliation(s)
- Gonçalo Luzes Padeira
- Hospital de Dona Estefânia, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
| | - Catarina Araújo
- Departamento de Anatomia Patológica, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
| | - Ana Isabel Cordeiro
- Hospital de Dona Estefânia, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
| | - João Freixo
- Centro de Genética Preditiva e Preventiva, Instituto de Biologia Molecular e Celular, Instituto de Investigação e Inovação em Saúde, Porto, Portugal
| | - Catarina Gregório Martins
- CEDOC, Chronic Diseases Research Center, NOVA Medical School, Lisbon, Portugal.,Comprehensive Health Research Centre (CHRC), NOVA Medical School, Nova University of Lisbon, Lisbon, Portugal
| | - João Farela Neves
- Hospital de Dona Estefânia, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal.,CEDOC, Chronic Diseases Research Center, NOVA Medical School, Lisbon, Portugal.,Comprehensive Health Research Centre (CHRC), NOVA Medical School, Nova University of Lisbon, Lisbon, Portugal
| |
Collapse
|
52
|
CD27 is required for protective lytic EBV antigen-specific CD8+ T-cell expansion. Blood 2021; 137:3225-3236. [PMID: 33827115 DOI: 10.1182/blood.2020009482] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
Primary immunodeficiencies in the costimulatory molecule CD27 and its ligand, CD70, predispose for pathologies of uncontrolled Epstein-Barr virus (EBV) infection in nearly all affected patients. We demonstrate that both depletion of CD27+ cells and antibody blocking of CD27 interaction with CD70 cause uncontrolled EBV infection in mice with reconstituted human immune system components. While overall CD8+ T-cell expansion and composition are unaltered after antibody blocking of CD27, only some EBV-specific CD8+ T-cell responses, exemplified by early lytic EBV antigen BMLF1-specific CD8+ T cells, are inhibited in their proliferation and killing of EBV-transformed B cells. This suggests that CD27 is not required for all CD8+ T-cell expansions and cytotoxicity but is required for a subset of CD8+ T-cell responses that protect us from EBV pathology.
Collapse
|
53
|
Münz C. The Role of Lytic Infection for Lymphomagenesis of Human γ-Herpesviruses. Front Cell Infect Microbiol 2021; 11:605258. [PMID: 33842383 PMCID: PMC8034291 DOI: 10.3389/fcimb.2021.605258] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/09/2021] [Indexed: 01/02/2023] Open
Abstract
Epstein Barr virus (EBV) and Kaposi sarcoma associated herpesvirus (KSHV) are two oncogenic human γ-herpesviruses that are each associated with 1-2% of human tumors. They encode bona fide oncogenes that they express during latent infection to amplify their host cells and themselves within these. In contrast, lytic virus particle producing infection has been considered to destroy host cells and might be even induced to therapeutically eliminate EBV and KSHV associated tumors. However, it has become apparent in recent years that early lytic replication supports tumorigenesis by these two human oncogenic viruses. This review will discuss the evidence for this paradigm change and how lytic gene products might condition the microenvironment to facilitate EBV and KSHV associated tumorigenesis.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
54
|
Schuhmachers P, Münz C. Modification of EBV Associated Lymphomagenesis and Its Immune Control by Co-Infections and Genetics in Humanized Mice. Front Immunol 2021; 12:640918. [PMID: 33833760 PMCID: PMC8021763 DOI: 10.3389/fimmu.2021.640918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/08/2021] [Indexed: 12/14/2022] Open
Abstract
Epstein Barr virus (EBV) is one of the most successful pathogens in humans with more than 95% of the human adult population persistently infected. EBV infects only humans and threatens these with its potent growth transforming ability that readily allows for immortalization of human B cells in culture. Accordingly, it is also found in around 1-2% of human tumors, primarily lymphomas and epithelial cell carcinomas. Fortunately, however, our immune system has learned to control this most transforming human tumor virus in most EBV carriers, and it requires modification of EBV associated lymphomagenesis and its immune control by either co-infections, such as malaria, Kaposi sarcoma associated herpesvirus (KSHV) and human immunodeficiency virus (HIV), or genetic predispositions for EBV positive tumors to emerge. Some of these can be modelled in humanized mice that, therefore, provide a valuable platform to test curative immunotherapies and prophylactic vaccines against these EBV associated pathologies.
Collapse
Affiliation(s)
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
55
|
Rispoli F, Valencic E, Girardelli M, Pin A, Tesser A, Piscianz E, Boz V, Faletra F, Severini GM, Taddio A, Tommasini A. Immunity and Genetics at the Revolving Doors of Diagnostics in Primary Immunodeficiencies. Diagnostics (Basel) 2021; 11:532. [PMID: 33809703 PMCID: PMC8002250 DOI: 10.3390/diagnostics11030532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 12/14/2022] Open
Abstract
Primary immunodeficiencies (PIDs) are a large and growing group of disorders commonly associated with recurrent infections. However, nowadays, we know that PIDs often carry with them consequences related to organ or hematologic autoimmunity, autoinflammation, and lymphoproliferation in addition to simple susceptibility to pathogens. Alongside this conceptual development, there has been technical advancement, given by the new but already established diagnostic possibilities offered by new genetic testing (e.g., next-generation sequencing). Nevertheless, there is also the need to understand the large number of gene variants detected with these powerful methods. That means advancing beyond genetic results and resorting to the clinical phenotype and to immunological or alternative molecular tests that allow us to prove the causative role of a genetic variant of uncertain significance and/or better define the underlying pathophysiological mechanism. Furthermore, because of the rapid availability of results, laboratory immunoassays are still critical to diagnosing many PIDs, even in screening settings. Fundamental is the integration between different specialties and the development of multidisciplinary and flexible diagnostic workflows. This paper aims to tell these evolving aspects of immunodeficiencies, which are summarized in five key messages, through introducing and exemplifying five clinical cases, focusing on diseases that could benefit targeted therapy.
Collapse
Affiliation(s)
- Francesco Rispoli
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (F.R.); (V.B.); (A.T.); (A.T.)
| | - Erica Valencic
- Department of Pediatrics, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (M.G.); (A.P.); (A.T.); (E.P.); (G.M.S.)
| | - Martina Girardelli
- Department of Pediatrics, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (M.G.); (A.P.); (A.T.); (E.P.); (G.M.S.)
| | - Alessia Pin
- Department of Pediatrics, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (M.G.); (A.P.); (A.T.); (E.P.); (G.M.S.)
| | - Alessandra Tesser
- Department of Pediatrics, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (M.G.); (A.P.); (A.T.); (E.P.); (G.M.S.)
| | - Elisa Piscianz
- Department of Pediatrics, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (M.G.); (A.P.); (A.T.); (E.P.); (G.M.S.)
| | - Valentina Boz
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (F.R.); (V.B.); (A.T.); (A.T.)
| | - Flavio Faletra
- Department of Diagnostics, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy;
| | - Giovanni Maria Severini
- Department of Pediatrics, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (M.G.); (A.P.); (A.T.); (E.P.); (G.M.S.)
| | - Andrea Taddio
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (F.R.); (V.B.); (A.T.); (A.T.)
- Department of Pediatrics, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (M.G.); (A.P.); (A.T.); (E.P.); (G.M.S.)
| | - Alberto Tommasini
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (F.R.); (V.B.); (A.T.); (A.T.)
- Department of Pediatrics, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (M.G.); (A.P.); (A.T.); (E.P.); (G.M.S.)
| |
Collapse
|
56
|
Casanova JL, Abel L. Lethal Infectious Diseases as Inborn Errors of Immunity: Toward a Synthesis of the Germ and Genetic Theories. ANNUAL REVIEW OF PATHOLOGY 2021; 16:23-50. [PMID: 32289233 PMCID: PMC7923385 DOI: 10.1146/annurev-pathol-031920-101429] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It was first demonstrated in the late nineteenth century that human deaths from fever were typically due to infections. As the germ theory gained ground, it replaced the old, unproven theory that deaths from fever reflected a weak personal or even familial constitution. A new enigma emerged at the turn of the twentieth century, when it became apparent that only a small proportion of infected individuals die from primary infections with almost any given microbe. Classical genetics studies gradually revealed that severe infectious diseases could be driven by human genetic predisposition. This idea gained ground with the support of molecular genetics, in three successive, overlapping steps. First, many rare inborn errors of immunity were shown, from 1985 onward, to underlie multiple, recurrent infections with Mendelian inheritance. Second, a handful of rare and familial infections, also segregating as Mendelian traits but striking humans resistant to other infections, were deciphered molecularly beginning in 1996. Third, from 2007 onward, a growing number of rare or common sporadicinfections were shown to result from monogenic, but not Mendelian, inborn errors. A synthesis of the hitherto mutually exclusive germ and genetic theories is now in view.
Collapse
Affiliation(s)
- Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA;
- Howard Hughes Medical Institute, New York, NY 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Paris University, Imagine Institute, 75015 Paris, France
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, 75015 Paris, France
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA;
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Paris University, Imagine Institute, 75015 Paris, France
| |
Collapse
|
57
|
Expanding the Nude SCID/CID Phenotype Associated with FOXN1 Homozygous, Compound Heterozygous, or Heterozygous Mutations. J Clin Immunol 2021; 41:756-768. [PMID: 33464451 PMCID: PMC8068652 DOI: 10.1007/s10875-021-00967-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 01/06/2021] [Indexed: 12/11/2022]
Abstract
Human nude SCID is a rare autosomal recessive inborn error of immunity (IEI) characterized by congenital athymia, alopecia, and nail dystrophy. Few cases have been reported to date. However, the recent introduction of newborn screening for IEIs and high-throughput sequencing has led to the identification of novel and atypical cases. Moreover, immunological alterations have been recently described in patients carrying heterozygous mutations. The aim of this paper is to describe the extended phenotype associated with FOXN1 homozygous, compound heterozygous, or heterozygous mutations. We collected clinical and laboratory information of a cohort of 11 homozygous, 2 compound heterozygous, and 5 heterozygous patients with recurrent severe infections. All, except one heterozygous patient, had signs of CID or SCID. Nail dystrophy and alopecia, that represent the hallmarks of the syndrome, were not always present, while almost 50% of the patients developed Omenn syndrome. One patient with hypomorphic compound heterozygous mutations had a late-onset atypical phenotype. A SCID-like phenotype was observed in 4 heterozygous patients coming from the same family. A spectrum of clinical manifestations may be associated with different mutations. The severity of the clinical phenotype likely depends on the amount of residual activity of the gene product, as previously observed for other SCID-related genes. The severity of the manifestations in this heterozygous family may suggest a mechanism of negative dominance of the specific mutation or the presence of additional mutations in noncoding regions.
Collapse
|
58
|
Rivalta B, Amodio D, Milito C, Chiriaco M, Di Cesare S, Giancotta C, Conti F, Santilli V, Pacillo L, Cifaldi C, Desimio MG, Doria M, Quinti I, De Vito R, Di Matteo G, Finocchi A, Palma P, Trizzino A, Tommasini A, Cancrini C. Case Report: EBV Chronic Infection and Lymphoproliferation in Four APDS Patients: The Challenge of Proper Characterization, Therapy, and Follow-Up. Front Pediatr 2021; 9:703853. [PMID: 34540765 PMCID: PMC8448282 DOI: 10.3389/fped.2021.703853] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/03/2021] [Indexed: 11/13/2022] Open
Abstract
Activated PI3K-kinase Delta Syndrome (APDS) is an autosomal-dominant primary immunodeficiency (PID) caused by the constitutive activation of the PI3Kδ kinase. The consequent hyperactivation of the PI3K-Akt-mTOR pathway leads to an impaired T- and B-cells differentiation and function, causing progressive lymphopenia, hypogammaglobulinemia and hyper IgM. Patients with APDS show recurrent sinopulmonary and chronic herpes virus infections, immune dysregulation manifestations, including cytopenia, arthritis, inflammatory enteropathy, and a predisposition to persistent non-neoplastic splenomegaly/lymphoproliferation and lymphoma. The recurrence of the lymphoproliferative disorder and the difficulties in the proper definition of malignancy on histological examination represents the main challenge in the clinical management of APDS patients, since a prompt and correct diagnosis is needed to avoid major complications. Targeted therapies with PI3Kδ-Akt-mTOR pathway pharmacologic inhibitors (i.e., Rapamycin, Theophylline, PI3K inhibitors) represent a good therapeutic strategy. They can also be used as bridge therapies when HSCT is required in order to control refractory symptoms. Indeed, treated patients showed a good tolerance, improved immunologic phenotype and reduced incidence/severity of immune dysregulation manifestations. Here, we describe our experience in the management of four patients, one male affected with APDS1 (P1) and the other three, a male and two females, with APDS2 (P2, P3, P4) presenting with chronic EBV replication, recurrent episodes of immune dysregulation manifestations and lymphomas. These cases highlighted the importance of a tailored and close follow-up, including serial endoscopic and lymph nodes biopsies control to detect a prompt and correct diagnosis and offer the best therapeutic strategy.
Collapse
Affiliation(s)
- Beatrice Rivalta
- Research Unit of Primary Immunodeficiencies, Immune and Infectious Diseases Division, Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Donato Amodio
- Research Unit of Clinical Immunology and Vaccinology, Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Cinzia Milito
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Maria Chiriaco
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Silvia Di Cesare
- Research Unit of Primary Immunodeficiencies, Immune and Infectious Diseases Division, Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Carmela Giancotta
- Research Unit of Clinical Immunology and Vaccinology, Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesca Conti
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, Bologna, Italy
| | - Veronica Santilli
- Research Unit of Clinical Immunology and Vaccinology, Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Lucia Pacillo
- Research Unit of Primary Immunodeficiencies, Immune and Infectious Diseases Division, Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Cristina Cifaldi
- Research Unit of Primary Immunodeficiencies, Immune and Infectious Diseases Division, Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maria Giovanna Desimio
- Research Unit of Primary Immunodeficiencies, Immune and Infectious Diseases Division, Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Margherita Doria
- Research Unit of Primary Immunodeficiencies, Immune and Infectious Diseases Division, Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Isabella Quinti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Rita De Vito
- Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, Rome, Italy
| | - Gigliola Di Matteo
- Research Unit of Primary Immunodeficiencies, Immune and Infectious Diseases Division, Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Andrea Finocchi
- Research Unit of Primary Immunodeficiencies, Immune and Infectious Diseases Division, Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Paolo Palma
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy.,Research Unit of Clinical Immunology and Vaccinology, Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Antonino Trizzino
- Department of Pediatric Hematology and Oncology, ARNAS Civico Di Cristina and Benfratelli Hospital, Palermo, Italy
| | - Alberto Tommasini
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy.,Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Caterina Cancrini
- Research Unit of Primary Immunodeficiencies, Immune and Infectious Diseases Division, Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
59
|
Ghosh S, Köstel Bal S, Edwards ESJ, Pillay B, Jiménez Heredia R, Erol Cipe F, Rao G, Salzer E, Zoghi S, Abolhassani H, Momen T, Gostick E, Price DA, Zhang Y, Oler AJ, Gonzaga-Jauregui C, Erman B, Metin A, Ilhan I, Haskologlu S, Islamoglu C, Baskin K, Ceylaner S, Yilmaz E, Unal E, Karakukcu M, Berghuis D, Cole T, Gupta AK, Hauck F, Kogler H, Hoepelman AIM, Baris S, Karakoc-Aydiner E, Ozen A, Kager L, Holzinger D, Paulussen M, Krüger R, Meisel R, Oommen PT, Morris E, Neven B, Worth A, van Montfrans J, Fraaij PLA, Choo S, Dogu F, Davies EG, Burns S, Dückers G, Becker RP, von Bernuth H, Latour S, Faraci M, Gattorno M, Su HC, Pan-Hammarström Q, Hammarström L, Lenardo MJ, Ma CS, Niehues T, Aghamohammadi A, Rezaei N, Ikinciogullari A, Tangye SG, Lankester AC, Boztug K. Extended clinical and immunological phenotype and transplant outcome in CD27 and CD70 deficiency. Blood 2020; 136:2638-2655. [PMID: 32603431 PMCID: PMC7735164 DOI: 10.1182/blood.2020006738] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/10/2020] [Indexed: 12/31/2022] Open
Abstract
Biallelic mutations in the genes encoding CD27 or its ligand CD70 underlie inborn errors of immunity (IEIs) characterized predominantly by Epstein-Barr virus (EBV)-associated immune dysregulation, such as chronic viremia, severe infectious mononucleosis, hemophagocytic lymphohistiocytosis (HLH), lymphoproliferation, and malignancy. A comprehensive understanding of the natural history, immune characteristics, and transplant outcomes has remained elusive. Here, in a multi-institutional global collaboration, we collected the clinical information of 49 patients from 29 families (CD27, n = 33; CD70, n = 16), including 24 previously unreported individuals and identified a total of 16 distinct mutations in CD27, and 8 in CD70, respectively. The majority of patients (90%) were EBV+ at diagnosis, but only ∼30% presented with infectious mononucleosis. Lymphoproliferation and lymphoma were the main clinical manifestations (70% and 43%, respectively), and 9 of the CD27-deficient patients developed HLH. Twenty-one patients (43%) developed autoinflammatory features including uveitis, arthritis, and periodic fever. Detailed immunological characterization revealed aberrant generation of memory B and T cells, including a paucity of EBV-specific T cells, and impaired effector function of CD8+ T cells, thereby providing mechanistic insight into cellular defects underpinning the clinical features of disrupted CD27/CD70 signaling. Nineteen patients underwent allogeneic hematopoietic stem cell transplantation (HSCT) prior to adulthood predominantly because of lymphoma, with 95% survival without disease recurrence. Our data highlight the marked predisposition to lymphoma of both CD27- and CD70-deficient patients. The excellent outcome after HSCT supports the timely implementation of this treatment modality particularly in patients presenting with malignant transformation to lymphoma.
Collapse
Affiliation(s)
- Sujal Ghosh
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sevgi Köstel Bal
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Emily S J Edwards
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St. Vincent's Clinical School, UNSW Sydney, Randwick, NSW, Australia
| | - Bethany Pillay
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St. Vincent's Clinical School, UNSW Sydney, Randwick, NSW, Australia
| | - Raúl Jiménez Heredia
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Funda Erol Cipe
- Department of Pediatric Allergy and Immunology, Istinye University, Istanbul, Turkey
| | - Geetha Rao
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Elisabeth Salzer
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- St. Anna Children's Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Samaneh Zoghi
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Tooba Momen
- Department of Allergy and Clinical Immunology, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Emma Gostick
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - David A Price
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Vaccine Research Center
| | - Yu Zhang
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research
- Clinical Genomics Program, and
| | - Andrew J Oler
- Clinical Genomics Program, and
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD
| | | | - Baran Erman
- Institute of Child Health, Hacettepe University, Ankara, Turkey
- Can Sucak Research Laboratory for Translational Immunology, Center for Genomics and Rare Diseases, Hacettepe University, Ankara, Turkey
| | - Ayse Metin
- Division of Pediatric Allergy and Immunology, University of Health Sciences/Ankara City Hospital/Children's Hospital, Ankara, Turkey
| | - Inci Ilhan
- Division of Pediatric Oncology, University of Health Sciences/Ankara City Hospital/Children's Hospital, Ankara, Turkey
| | - Sule Haskologlu
- Department of Pediatric Allergy and Immunology, School of Medicine, Ankara University, Ankara, Turkey
| | - Candan Islamoglu
- Department of Pediatric Allergy and Immunology, School of Medicine, Ankara University, Ankara, Turkey
| | - Kubra Baskin
- Department of Pediatric Allergy and Immunology, School of Medicine, Ankara University, Ankara, Turkey
| | - Serdar Ceylaner
- Intergen Genetic Diagnosis and Research Center, Ankara, Turkey
| | - Ebru Yilmaz
- Department of Pediatrics, Division of Pediatric Hematology & Oncology & Molecular Biology and Genetic Department, Erciyes University, Kayseri, Turkey
- Gevher Nesibe Genom and Stem Cell Institution, GENKOK Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
| | - Ekrem Unal
- Department of Pediatrics, Division of Pediatric Hematology & Oncology & Molecular Biology and Genetic Department, Erciyes University, Kayseri, Turkey
- Gevher Nesibe Genom and Stem Cell Institution, GENKOK Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
| | - Musa Karakukcu
- Department of Pediatrics, Division of Pediatric Hematology & Oncology & Molecular Biology and Genetic Department, Erciyes University, Kayseri, Turkey
- Gevher Nesibe Genom and Stem Cell Institution, GENKOK Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
| | - Dagmar Berghuis
- Willem-Alexander Children's Hospital, Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Theresa Cole
- Department of Allergy and Immunology, The Royal Children's Hospital, Melbourne, VIC, Australia
| | - Aditya K Gupta
- Division of Pediatric Oncology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Fabian Hauck
- Dr von Hauner Children's Hospital, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Hubert Kogler
- St. Anna Children's Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Andy I M Hoepelman
- Department of Internal Medicine and Infectious Diseases, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Safa Baris
- Division of Allergy and Immunology, Marmara University, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
| | - Elif Karakoc-Aydiner
- Division of Allergy and Immunology, Marmara University, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
| | - Ahmet Ozen
- Division of Allergy and Immunology, Marmara University, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
| | - Leo Kager
- St. Anna Children's Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Dirk Holzinger
- Department of Pediatric Hematology-Oncology, University of Duisburg-Essen, Essen, Germany
| | - Michael Paulussen
- Vestische Kinder-und Jugendklinik, Witten/Herdecke University, Datteln, Germany
| | - Renate Krüger
- Department of Pediatric Pulmonology, Immunology, and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Roland Meisel
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-University, Düsseldorf, Germany
| | - Prasad T Oommen
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-University, Düsseldorf, Germany
| | - Emma Morris
- Institute of Immunity & Transplantation, University College London, Royal Free Hospital, London, United Kingdom
| | - Benedicte Neven
- Unité d'Immuno-Hematologie et Rhumatologie, Département de Pédiatrie Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
- INSERM U1163, Imagine Institute, Université de Paris, Paris, France
| | - Austen Worth
- UCL Great Ormond Street Institute of Child Health, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Joris van Montfrans
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, UMC Utrecht, Utrecht, The Netherlands
| | - Pieter L A Fraaij
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
- Department of Pediatrics, Subdivision Infectious Diseases and Immunology, Erasmus MC-Sophia, Rotterdam, The Netherlands
| | - Sharon Choo
- Department of Allergy and Immunology, The Royal Children's Hospital, Melbourne, VIC, Australia
| | - Figen Dogu
- Department of Pediatric Allergy and Immunology, School of Medicine, Ankara University, Ankara, Turkey
| | - E Graham Davies
- UCL Great Ormond Street Institute of Child Health, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Siobhan Burns
- Institute of Immunity & Transplantation, University College London, Royal Free Hospital, London, United Kingdom
- Department of Immunology, Royal Free London National Health Service (NHS) Foundation Trust, London, United Kingdom
| | - Gregor Dückers
- Department of Pediatrics, Helios Children's Hospital, Krefeld, Germany
| | - Ruy Perez Becker
- Department of Pediatrics, Helios Children's Hospital, Krefeld, Germany
| | - Horst von Bernuth
- Department of Pediatric Pulmonology, Immunology, and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Immunology, Labor Berlin GmbH, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Berlin, Germany
| | - Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM U1163, Imagine Institute, Université de Paris, Paris, France
| | - Maura Faraci
- Hematopoietic Stem Cell Transplantation Unit and Istituto di Ricovero e Cura Pediatrico a Carattere Scientifico (IRCSS) Istituto Giannina Gaslini Research Institute Genova, Italy
| | - Marco Gattorno
- Center for Autoinflammatory Diseases and Immunodeficiency, Istituto di Ricovero e Cura Pediatrico a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Helen C Su
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research
- Clinical Genomics Program, and
| | - Qiang Pan-Hammarström
- Department of Biosciences and Nutrition (NEO), Karolinska Institutet, Karolinska, Sweden
| | - Lennart Hammarström
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden
- Beijing Genomics Institute (BGI) Shenzhen, Shenzhen, China
| | - Michael J Lenardo
- Clinical Genomics Program, and
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, NIAID, National Institutes of Health, Bethesda, MD
| | - Cindy S Ma
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St. Vincent's Clinical School, UNSW Sydney, Randwick, NSW, Australia
| | - Tim Niehues
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran; and
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran; and
| | - Aydan Ikinciogullari
- Department of Pediatric Allergy and Immunology, School of Medicine, Ankara University, Ankara, Turkey
| | - Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St. Vincent's Clinical School, UNSW Sydney, Randwick, NSW, Australia
| | - Arjan C Lankester
- Willem-Alexander Children's Hospital, Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- St. Anna Children's Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
60
|
Wildermann C, Alosaimi M, Liebenehm S, Jacobsen EM, Barth TFE, Möller P, Debatin KM, Schulz A, Sirin M, Abosoudah IF, Alkuraya FS, Geha RS, Hönig M. Successful hematopoietic stem cell transplantation in a 4-1BB deficient patient with EBV-induced lymphoproliferation. Clin Immunol 2020; 222:108639. [PMID: 33259966 DOI: 10.1016/j.clim.2020.108639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/03/2020] [Accepted: 11/24/2020] [Indexed: 11/29/2022]
Abstract
Complete remission from recurrent EBV-positive lymphoma is not mandatory before HSCT to achieve long-term cure in a patient suffering from a recently described immunodeficiency affecting the T-cell coactivation molecule 4-1BB.
Collapse
Affiliation(s)
- Christine Wildermann
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Germany.
| | - Mohammed Alosaimi
- Department of Pediatrics, King Saudi University, Riyadh, Saudi Arabia; Division of Immunology, Boston Children's Hospital and Department of Pediatrics Harvard Medical School, Boston, MA, USA
| | - Sophie Liebenehm
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Germany
| | - Eva-Maria Jacobsen
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Germany
| | | | - Peter Möller
- Department of Pathology, University Medical Center Ulm, Germany
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Germany
| | - Ansgar Schulz
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Germany
| | - Mehtap Sirin
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Germany
| | - Ibraheem F Abosoudah
- Department of Oncology, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Raif S Geha
- Division of Immunology, Boston Children's Hospital and Department of Pediatrics Harvard Medical School, Boston, MA, USA
| | - Manfred Hönig
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Germany
| |
Collapse
|
61
|
Fujiwara S, Nakamura H. Chronic Active Epstein-Barr Virus Infection: Is It Immunodeficiency, Malignancy, or Both? Cancers (Basel) 2020; 12:cancers12113202. [PMID: 33143184 PMCID: PMC7692233 DOI: 10.3390/cancers12113202] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/17/2020] [Accepted: 10/27/2020] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Chronic active Epstein–Barr virus (EBV) infection (CAEBV) is a rare syndrome of unknown etiology characterized by prolonged infectious mononucleosis-like symptoms and proliferation of EBV-infected T and/or natural killer cells. CAEBV has been primarily reported in East Asia and Latin America, suggesting a genetic predisposition in its pathogenesis. The clinical course of CAEBV is heterogeneous ranging from an indolent and occasionally self-limiting disease to an aggressive and fatal condition, but its prognosis is generally poor. This heterogeneous clinical picture does not suggest a simple etiology for the syndrome. Clinicopathological investigations of CAEBV suggest that it has aspects of both malignant neoplasm and immunodeficiency. This article summarizes the latest findings on CAEBV and discusses critical unsolved questions regarding its pathogenesis and disease concept. Abstract Chronic active Epstein–Barr virus (EBV) infection (CAEBV) is a rare syndrome characterized by prolonged infectious mononucleosis-like symptoms and elevated peripheral blood EBV DNA load in apparently immunocompetent persons. CAEBV has been primarily reported in East Asia and Latin America, suggesting a genetic predisposition in its pathogenesis. In most cases of CAEBV, EBV induces proliferation of its unusual host cells, T or natural killer (NK) cells. The clinical course of CAEBV is heterogeneous; some patients show an indolent course, remaining in a stable condition for years, whereas others show an aggressive course with a fatal outcome due to hemophagocytic lymphohistiocytosis, multiple organ failure, or progression to leukemia/lymphoma. The pathogenesis of CAEBV is unclear and clinicopathological investigations suggest that it has aspects of both malignant neoplasm and immunodeficiency. Recent genetic analyses of both viral and host genomes in CAEBV patients have led to discoveries that are improving our understanding of the nature of this syndrome. This article summarizes the latest findings on CAEBV and discusses critical unsolved questions regarding its pathogenesis and disease concept.
Collapse
Affiliation(s)
- Shigeyoshi Fujiwara
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan;
- Correspondence:
| | - Hiroyuki Nakamura
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan;
| |
Collapse
|
62
|
Münz C. Probing Reconstituted Human Immune Systems in Mice With Oncogenic γ-Herpesvirus Infections. Front Immunol 2020; 11:581419. [PMID: 33013936 PMCID: PMC7509489 DOI: 10.3389/fimmu.2020.581419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/17/2020] [Indexed: 12/22/2022] Open
Abstract
Mice with reconstituted human immune systems can mount cell-mediated immune responses against the human tumor viruses Epstein Barr virus (EBV) and Kaposi sarcoma associated herpesvirus (KSHV). Primarily cytotoxic lymphocytes protect the vast majority of persistently infected carriers of these tumor viruses from the respective malignancies for life. Thus, EBV and KSHV infection can teach us how this potent immune control is induced, what phenotype and functions characterize the protective lymphocyte compartments and if similar immune responses could be induced by vaccination. This review will summarize similarities and differences between EBV and KSHV associated pathologies and their immune control in patients and mice with reconstituted human immune systems. Furthermore, it will high-light which aspects of the near perfect immune control can be modeled in the latter preclinical animal models and discuss their relevance for cancer immunology in general.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, Zurich, Switzerland
| |
Collapse
|
63
|
Cytotoxicity in Epstein Barr virus specific immune control. Curr Opin Virol 2020; 46:1-8. [PMID: 32771660 DOI: 10.1016/j.coviro.2020.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/09/2020] [Accepted: 07/14/2020] [Indexed: 02/08/2023]
Abstract
Epstein Barr virus (EBV) is the most common human tumor virus, persistently infecting more than 95% of the human adult population and readily transforming human B cell in culture. Fortunately, only a small minority of EBV carriers develops virus associated malignancies. The majority controls persistent EBV infection with cytotoxic lymphocytes, mainly NK, γδ and CD8+ T cells and the characteristics of the required immune responses get more and more defined by primary immunodeficiencies that affect molecules of these cytotoxic lymphocytes and their investigation in mice with reconstituted human immune system components (humanized mice) that are susceptible to EBV infection and associated lymphomagenesis. The gained information should be able to guide us to develop immunotherapies against EBV and tumors in general.
Collapse
|
64
|
Khodzhaev K, Bay SB, Kebudi R, Altindirek D, Kaya A, Erbilgin Y, Ng OH, Kiykim A, Erol FC, Zengin FS, Firtina S, Ng YY, Aksoy BA, Sayitoglu M. Lymphoma Predisposing Gene in an Extended Family: CD70 Signaling Defect. J Clin Immunol 2020; 40:883-892. [PMID: 32620996 DOI: 10.1007/s10875-020-00816-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/26/2020] [Indexed: 12/31/2022]
Abstract
Genome-wide sequencing studies in pediatric cancer cohorts indicate that about 10% of patients have germline mutations within cancer predisposition genes. Within this group, primary immune deficiencies take the priority regarding the vulnerability of the patients to infectious agents and the difficulties of cancer management. On the other hand, early recognition of these diseases may offer specific targeted therapies and hematopoietic stem cell transplantation as an option. Besides therapeutic benefits, early diagnosis will provide genetic counseling for the family members. Within this context, an extended family with multiple consanguineous marriages and affected individuals, who presented with combined immune deficiency (CID) and/or Hodgkin lymphoma phenotype, were examined by exome sequencing. A pathogenic homozygous missense CD70 variation was detected (NM_001252.5:c332C>T) in concordance with CD70 phenotype and familial segregation was confirmed. CD70 variations in patients with CID and malignancy have very rarely been reported. This paper reports extended family with multiple affected members with CID and malignancy carrying a missense CD70 variation, and reviews the rare cases reported in the literature. Primary immune deficiencies appear to be a potential cause for pediatric cancers. Better focusing on these inborn disorders to prevent or make an early diagnosis of malignant transformation and reduce mortalities is important.
Collapse
Affiliation(s)
- Khusan Khodzhaev
- Aziz Sancar Institute of Experimental Medicine, Genetics Department, Istanbul University, Istanbul, Turkey
- Institute of Health Sciences, Istanbul University, Istanbul, Turkey
| | - Sema Buyukkapu Bay
- Oncology Institute, Division of Pediatric Hematology-Oncology, Istanbul University, Istanbul, Turkey
| | - Rejin Kebudi
- Oncology Institute, Division of Pediatric Hematology-Oncology, Istanbul University, Istanbul, Turkey.
| | - Didem Altindirek
- Aziz Sancar Institute of Experimental Medicine, Genetics Department, Istanbul University, Istanbul, Turkey
- Institute of Health Sciences, Istanbul University, Istanbul, Turkey
| | - Aysenur Kaya
- Faculty of Medicine, Department of Pediatric Allergy Immunology, Istinye University, Istanbul, Turkey
| | - Yucel Erbilgin
- Aziz Sancar Institute of Experimental Medicine, Genetics Department, Istanbul University, Istanbul, Turkey
| | - Ozden Hatirnaz Ng
- Department of Medical Biology, Acıbadem Mehmet Ali Aydınlar University School of Medicine, Istanbul, Turkey
| | - Ayca Kiykim
- Faculty of Medicine, Division of Pediatric Allergy Immunology, Istanbul University Cerrahpasa, Istanbul, Turkey
| | - Funda Cipe Erol
- Faculty of Medicine, Department of Pediatric Allergy Immunology, Istinye University, Istanbul, Turkey
| | - Feride Sen Zengin
- Intensive Care Unit, Erzurum Education and Research Hospital, Erzurum, Turkey
| | - Sinem Firtina
- Faculty of Art and Science, Department of Molecular Biology and Genetics, Istinye University, Istanbul, Turkey
| | - Yuk Yin Ng
- Genetics and Bioengineering Department, Istanbul Bilgi University, Istanbul, Turkey
| | - Basak Adakli Aksoy
- Department of Pediatric Hematology Oncology, Altınbaş University, Istanbul, Turkey
| | - Muge Sayitoglu
- Aziz Sancar Institute of Experimental Medicine, Genetics Department, Istanbul University, Istanbul, Turkey
| |
Collapse
|
65
|
Notarangelo LD, Bacchetta R, Casanova JL, Su HC. Human inborn errors of immunity: An expanding universe. Sci Immunol 2020; 5:5/49/eabb1662. [PMID: 32651211 DOI: 10.1126/sciimmunol.abb1662] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022]
Abstract
Molecular, cellular, and clinical studies of human inborn errors of immunity have revolutionized our understanding of their pathogenesis, considerably broadened their spectrum of immunological and clinical phenotypes, and enabled successful targeted therapeutic interventions. These studies have also been of great scientific merit, challenging a number of immunological notions initially established in inbred mice while revealing previously unrecognized mechanisms of host defense by leukocytes and other cells and of both innate and adaptive tolerance to self.
Collapse
Affiliation(s)
- Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Rosa Bacchetta
- Division of Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France.,Paris University, Imagine Institute, Paris, France.,Pediatrics Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris, France.,Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Helen C Su
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
66
|
Yonkof JR, Gupta A, Rueda CM, Mangray S, Prince BT, Rangarajan HG, Alshahrani M, Varga E, Cripe TP, Abraham RS. A Novel Pathogenic Variant in CARMIL2 ( RLTPR) Causing CARMIL2 Deficiency and EBV-Associated Smooth Muscle Tumors. Front Immunol 2020; 11:884. [PMID: 32625199 PMCID: PMC7314954 DOI: 10.3389/fimmu.2020.00884] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/16/2020] [Indexed: 12/16/2022] Open
Abstract
CARMIL2 deficiency is a rare combined immunodeficiency (CID) characterized by defective CD28-mediated T cell co-stimulation, altered cytoskeletal dynamics, and susceptibility to Epstein Barr Virus smooth muscle tumors (EBV-SMTs). Case reports associated with EBV-SMTs are limited. We describe herein a novel homozygous CARMIL2 variant (c.1364_1393del) in two Saudi Arabian male siblings born to consanguineous parents who developed EBV-SMTs. CARMIL2 protein expression was significantly reduced in CD4+ T cells and CD8+ T cells. T cell proliferation on stimulation with soluble (s) anti-CD3 or (s) anti-CD3 plus anti-CD28 antibodies was close to absent in the proband, confirming altered CD28-mediated co-signaling. CD28 expression was substantially reduced in the proband's T cells, and was diminished to a lesser degree in the T cells of the younger sibling, who has a milder clinical phenotype. Defects in both T and B cell compartments were observed, including absent central memory CD8+ T cells, and decreased frequencies of total and class-switched memory B cells. FOXP3+ regulatory T cells (Treg) were also quantitatively decreased, and furthermore CD25 expression within the Treg subset was substantially reduced. These data confirm the pathogenicity of this novel loss-of-function (LOF) variant in CARMIL2 and expand the genotypic and phenotypic spectrum of CIDs associated with EBV-SMTs.
Collapse
Affiliation(s)
- Jennifer R Yonkof
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, United States
| | - Ajay Gupta
- Division of Hematology, Oncology and Blood and Marrow Transplant, Nationwide Children's Hospital, Columbus, OH, United States
| | - Cesar M Rueda
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, United States
| | - Shamlal Mangray
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, United States
| | - Benjamin T Prince
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, United States
| | - Hemalatha G Rangarajan
- Division of Hematology and Oncology, Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, United States
| | - Mohammad Alshahrani
- Department of Pediatric Hematology-Oncology, Riyadh Military Hospital, Riyadh, Saudi Arabia
| | - Elizabeth Varga
- Division of Hematology, Oncology and Blood and Marrow Transplant, Nationwide Children's Hospital, Columbus, OH, United States
| | - Timothy P Cripe
- Division of Hematology, Oncology and Blood and Marrow Transplant, Nationwide Children's Hospital, Columbus, OH, United States
| | - Roshini S Abraham
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, United States
| |
Collapse
|
67
|
Fournier B, Tusseau M, Villard M, Malcus C, Chopin E, Martin E, Jorge Cordeiro D, Fabien N, Fusaro M, Gauthier A, Garnier N, Goncalves D, Lounis S, Lenoir C, Mathieu AL, Moreews M, Perret M, Picard C, Picard C, Poitevin F, Viel S, Bertrand Y, Walzer T, Belot A, Latour S. DEF6 deficiency, a mendelian susceptibility to EBV infection, lymphoma, and autoimmunity. J Allergy Clin Immunol 2020; 147:740-743.e9. [PMID: 32562707 DOI: 10.1016/j.jaci.2020.05.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Benjamin Fournier
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Institut National de la Santé et de la Recherche Médicale (Inserm) UMR 1163, F-75015, Paris, France; Université de Paris, Imagine Institute, F-75015, Paris, France
| | - Maud Tusseau
- International Center for Infectiology Research, Inserm U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, Lyon, France
| | - Marine Villard
- Immunology Department, Centre Hospitalier Lyon Sud, Pierre-Bénite, Lyon 1 University, France
| | - Christophe Malcus
- Immunology Laboratory, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Emilie Chopin
- Centre de Biotechnologie Cellulaire, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Bron, France
| | - Emmanuel Martin
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Institut National de la Santé et de la Recherche Médicale (Inserm) UMR 1163, F-75015, Paris, France; Université de Paris, Imagine Institute, F-75015, Paris, France
| | - Debora Jorge Cordeiro
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Institut National de la Santé et de la Recherche Médicale (Inserm) UMR 1163, F-75015, Paris, France; Université de Paris, Imagine Institute, F-75015, Paris, France
| | - Nicole Fabien
- Immunology Department, Centre Hospitalier Lyon Sud, Pierre-Bénite, Lyon 1 University, France
| | - Mathieu Fusaro
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Institut National de la Santé et de la Recherche Médicale (Inserm) UMR 1163, F-75015, Paris, France; Study Center for Primary Immunodeficiencies, Assistance Publique Hôpitaux de Paris, Necker-Enfants Malades Hospital, F-75015, Paris, France
| | - Alexandra Gauthier
- Institut d'Hématologie et d'Oncologie Pédiatrique, Hospices Civils de Lyon, Lyon, France
| | - Nathalie Garnier
- Institut d'Hématologie et d'Oncologie Pédiatrique, Hospices Civils de Lyon, Lyon, France
| | - David Goncalves
- Immunology Department, Centre Hospitalier Lyon Sud, Pierre-Bénite, Lyon 1 University, France
| | - Sonia Lounis
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Institut National de la Santé et de la Recherche Médicale (Inserm) UMR 1163, F-75015, Paris, France; Université de Paris, Imagine Institute, F-75015, Paris, France
| | - Christelle Lenoir
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Institut National de la Santé et de la Recherche Médicale (Inserm) UMR 1163, F-75015, Paris, France; Université de Paris, Imagine Institute, F-75015, Paris, France
| | - Anne-Laure Mathieu
- International Center for Infectiology Research, Inserm U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, Lyon, France
| | - Marion Moreews
- International Center for Infectiology Research, Inserm U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, Lyon, France
| | - Magali Perret
- Immunology Department, Centre Hospitalier Lyon Sud, Pierre-Bénite, Lyon 1 University, France
| | - Capucine Picard
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Institut National de la Santé et de la Recherche Médicale (Inserm) UMR 1163, F-75015, Paris, France; Université de Paris, Imagine Institute, F-75015, Paris, France; Study Center for Primary Immunodeficiencies, Assistance Publique Hôpitaux de Paris, Necker-Enfants Malades Hospital, F-75015, Paris, France
| | - Cécile Picard
- Institut de Pathologie Multisite, Groupement Hospitalier Est, Hospices Civils de Lyon, UCBL Lyon 1 University, Lyon, France
| | - Françoise Poitevin
- Immunology Laboratory, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Sébastien Viel
- International Center for Infectiology Research, Inserm U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, Lyon, France; Immunology Department, Centre Hospitalier Lyon Sud, Pierre-Bénite, Lyon 1 University, France
| | - Yves Bertrand
- International Center for Infectiology Research, Inserm U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, Lyon, France; Institut d'Hématologie et d'Oncologie Pédiatrique, Hospices Civils de Lyon, Lyon, France
| | - Thierry Walzer
- International Center for Infectiology Research, Inserm U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, Lyon, France
| | - Alexandre Belot
- International Center for Infectiology Research, Inserm U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, Lyon, France; National Referee Centre for Rheumatic and AutoImmune and Systemic diseases in childrEn (RAISE), France; Pediatric Nephrology, Rheumatology, Dermatology Unit, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, University Lyon I, Lyon, France.
| | - Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Institut National de la Santé et de la Recherche Médicale (Inserm) UMR 1163, F-75015, Paris, France; Université de Paris, Imagine Institute, F-75015, Paris, France.
| |
Collapse
|
68
|
Münz C. Redirecting T Cells against Epstein-Barr Virus Infection and Associated Oncogenesis. Cells 2020; 9:cells9061400. [PMID: 32512847 PMCID: PMC7349826 DOI: 10.3390/cells9061400] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 12/20/2022] Open
Abstract
The Epstein-Barr virus (EBV) is associated with lymphomas and carcinomas. For some of these, the adoptive transfer of EBV specific T cells has been therapeutically explored, with clinical success. In order to avoid naturally occurring EBV specific autologous T cell selection from every patient, the transgenic expression of latent and early lytic viral antigen specific T cell receptors (TCRs) to redirect T cells, to target the respective tumors, is being developed. Recent evidence suggests that not only TCRs against transforming latent EBV antigens, but also against early lytic viral gene products, might be protective for the control of EBV infection and associated oncogenesis. At the same time, these approaches might be more selective and cause less collateral damage than targeting general B cell markers with chimeric antigen receptors (CARs). Thus, EBV specific TCR transgenic T cells constitute a promising therapeutic strategy against EBV associated malignancies.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
69
|
Jouanguy E. Human genetic basis of fulminant viral hepatitis. Hum Genet 2020; 139:877-884. [PMID: 32285199 PMCID: PMC7153696 DOI: 10.1007/s00439-020-02166-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/04/2020] [Indexed: 12/27/2022]
Abstract
In rare cases, hepatitis A virus (HAV) and hepatitis B virus (HBV) can cause fulminant viral hepatitis (FVH), characterized by massive hepatocyte necrosis and an inflammatory infiltrate. Other viral etiologies of FVH are rarer. FVH is life-threatening, but the patients are typically otherwise healthy, and normally resistant to other microbes. Only a small minority of infected individuals develop FVH, and this is the key issue to be addressed for this disease. In mice, mouse hepatitis virus 3 (MHV3) infection is the main model for dissecting FVH pathogenesis. Susceptibility to MHV3 differs between genetic backgrounds, with high and low mortality in C57BL6 and A/J mice, respectively. FVH pathogenesis in mice is related to uncontrolled inflammation and fibrinogen deposition. In humans, FVH is typically sporadic, but rare familial forms also exist, suggesting that there may be causal monogenic inborn errors. A recent study reported a single-gene inborn error of human immunity underlying FVH. A patient with autosomal recessive complete IL-18BP deficiency was shown to have FVH following HAV infection. The mechanism probably involves enhanced IL-18- and IFN-γ-dependent killing of hepatocytes by NK and CD8 T cytotoxic cells. Proof-of-principle that FVH can be genetic is important clinically, for the affected patients and their families, and immunologically, for the study of immunity to viruses in the liver. Moreover, the FVH-causing IL18BP genotype suggests that excessive IL-18 immunity may be a general mechanism underlying FVH, perhaps through the enhancement of IFN-γ immunity.
Collapse
Affiliation(s)
- Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-1163, Necker Hospital for Sick Children, Paris, France. .,Imagine Institute, Paris University, Paris, France. .,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA.
| |
Collapse
|
70
|
Tangye SG. Genetic susceptibility to EBV infection: insights from inborn errors of immunity. Hum Genet 2020; 139:885-901. [PMID: 32152698 DOI: 10.1007/s00439-020-02145-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/27/2020] [Indexed: 02/07/2023]
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human pathogen, infecting > 90% of the adult population. In the vast majority of healthy individuals, infection with EBV runs a relatively benign course. However, EBV is by no means a benign pathogen. Indeed, apart from being associated with at least seven different types of malignancies, EBV infection can cause severe and often fatal diseases-hemophagocytic lymphohistiocytosis, lymphoproliferative disease, B-cell lymphoma-in rare individuals with specific monogenic inborn errors of immunity. The discovery and detailed investigation of inborn errors of immunity characterized by heightened susceptibility to, or increased frequency of, EBV-induced disease have elegantly revealed cell types and signaling pathways that play critical and non-redundant roles in host-defense against EBV. These analyses have revealed not only mechanisms underlying EBV-induced disease in rare genetic conditions, but also identified molecules and pathways that could be targeted to treat severe EBV infection and pathological consequences in immunodeficient hosts, or even potentially enhance the efficacy of an EBV-specific vaccine.
Collapse
Affiliation(s)
- Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia. .,St. Vincent's Clinical School, University of NSW Sydney, Darlinghurst, NSW, 2010, Australia. .,Clincial Immunogenomics Research Consortium Australasia (CIRCA), Darlinghurst, NSW, Australia.
| |
Collapse
|
71
|
Human inborn errors of immunity to herpes viruses. Curr Opin Immunol 2020; 62:106-122. [PMID: 32014647 DOI: 10.1016/j.coi.2020.01.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/16/2019] [Accepted: 01/07/2020] [Indexed: 12/16/2022]
Abstract
Infections with any of the nine human herpes viruses (HHV) can be asymptomatic or life-threatening. The study of patients with severe diseases caused by HHVs, in the absence of overt acquired immunodeficiency, has led to the discovery or diagnosis of various inborn errors of immunity. The related inborn errors of adaptive immunity disrupt α/β T-cell rather than B-cell immunity. Affected patients typically develop HHV infections in the context of other infectious diseases. However, this is not always the case, as illustrated by inborn errors of SAP-dependent T-cell immunity to EBV-infected B cells. The related inborn errors of innate immunity disrupt leukocytes other than T and B cells, non-hematopoietic cells, or both. Patients typically develop only a single type of infection due to HHV, although, again, this is not always the case, as illustrated by inborn errors of TLR3 immunity resulting in HSV1 encephalitis in some patients and influenza pneumonitis in others. Most severe HHV infections in otherwise healthy patients remains unexplained. The forward human genetic dissection of isolated and syndromic HHV-driven illnesses will establish the molecular and cellular basis of protective immunity to HHVs, paving the way for novel diagnosis and management strategies.
Collapse
|