51
|
Wienand K, Chapuy B. Molecular classification of aggressive lymphomas-past, present, future. Hematol Oncol 2021; 39 Suppl 1:24-30. [PMID: 34105819 DOI: 10.1002/hon.2847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Indexed: 12/12/2022]
Abstract
Aggressive large B-cell lymphomas (LBCLs) represent a frequent but clinically and molecularly heterogeneous group of tumors. Technological advances over the last decades prompted the development of different classification schemas to either sharpen diagnoses, dissect molecular heterogeneity, predict outcome, or identify rational treatment targets. Despite increased diagnostic precision and a noticeably improved molecular understanding of these lymphomas, clinical perspectives of patients largely remain unchanged. Recently, finished comprehensive genomic studies discovered genetically defined LBCL subtypes that predict outcome, provide insight into lymphomagenesis, and suggest rational therapies with the hope of generating patient-tailored treatments with increased perspective for patients in greatest need. Current and future efforts integrate multiomics studies and/or leverage single-cell technologies and will provide us with an even more fine-grained picture of LBCL biology. Here, we highlight examples of how high-throughput technologies aided in a better molecular understanding of LBCLs and provide examples of how to select rationally designed targeted treatment approaches that might personalize LBCL treatment and eventually improve patients' perspective in the near future.
Collapse
Affiliation(s)
- Kirsty Wienand
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Björn Chapuy
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
52
|
Fangazio M, Ladewig E, Gomez K, Garcia-Ibanez L, Kumar R, Teruya-Feldstein J, Rossi D, Filip I, Pan-Hammarström Q, Inghirami G, Boldorini R, Ott G, Staiger AM, Chapuy B, Gaidano G, Bhagat G, Basso K, Rabadan R, Pasqualucci L, Dalla-Favera R. Genetic mechanisms of HLA-I loss and immune escape in diffuse large B cell lymphoma. Proc Natl Acad Sci U S A 2021; 118:e2104504118. [PMID: 34050029 PMCID: PMC8179151 DOI: 10.1073/pnas.2104504118] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fifty percent of diffuse large B cell lymphoma (DLBCL) cases lack cell-surface expression of the class I major histocompatibility complex (MHC-I), thus escaping recognition by cytotoxic T cells. Here we show that, across B cell lymphomas, loss of MHC-I, but not MHC-II, is preferentially restricted to DLBCL. To identify the involved mechanisms, we performed whole exome and targeted HLA deep-sequencing in 74 DLBCL samples, and found somatic inactivation of B2M and the HLA-I loci in 80% (34 of 42) of MHC-INEG tumors. Furthermore, 70% (22 of 32) of MHC-IPOS DLBCLs harbored monoallelic HLA-I genetic alterations (MHC-IPOS/mono), indicating allele-specific inactivation. MHC-INEG and MHC-IPOS/mono cases harbored significantly higher mutational burden and inferred neoantigen load, suggesting potential coselection of HLA-I loss and sustained neoantigen production. Notably, the analysis of >500,000 individuals across different cancer types revealed common germline HLA-I homozygosity, preferentially in DLBCL. In mice, germinal-center B cells lacking HLA-I expression did not progress to lymphoma and were counterselected in the context of oncogene-driven lymphomagenesis, suggesting that additional events are needed to license immune evasion. These results suggest a multistep process of HLA-I loss in DLBCL development including both germline and somatic events, and have direct implications for the pathogenesis and immunotherapeutic targeting of this disease.
Collapse
Affiliation(s)
- Marco Fangazio
- Institute for Cancer Genetics, Columbia University, New York, NY 10032
| | - Erik Ladewig
- Department of Systems Biology, Columbia University, New York, NY 10032
- Department of Biomedical Informatics, Columbia University, New York, NY 10032
| | - Karen Gomez
- Department of Systems Biology, Columbia University, New York, NY 10032
- Department of Biomedical Informatics, Columbia University, New York, NY 10032
| | | | - Rahul Kumar
- Institute for Cancer Genetics, Columbia University, New York, NY 10032
| | | | - Davide Rossi
- Laboratory of Experimental Hematology, Institute of Oncology Research, 6500 Bellinzona, Switzerland
- Clinic of Hematology, Oncology Institute of Southern Switzerland, 6500 Bellinzona, Switzerland
- Faculty of Biomedical Science, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Ioan Filip
- Department of Systems Biology, Columbia University, New York, NY 10032
- Department of Biomedical Informatics, Columbia University, New York, NY 10032
| | - Qiang Pan-Hammarström
- Department of Biosciences and Nutrition, Karolinska Institutet, SE14183 Huddinge, Sweden
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065
| | - Renzo Boldorini
- Department of Health Sciences, Division of Pathology, Amedeo Avogadro University of Eastern Piedmont, 28100 Novara, Italy
| | - German Ott
- Department of Clinical Pathology, Robert Bosch Krankenhaus, 70376 Stuttgart, Germany
| | - Annette M Staiger
- Department of Clinical Pathology, Robert Bosch Krankenhaus, 70376 Stuttgart, Germany
- Institute of Clinical Pharmacology, Stuttgart and University of Tuebingen, 72074 Tuebingen, Germany
| | - Björn Chapuy
- Department of Hematology and Oncology, University of Göttingen, 37073 Göttingen, Germany
| | - Gianluca Gaidano
- Department of Translational Medicine, Division of Hematology, Amedeo Avogadro University of Eastern Piedmont, 28100 Novara, Italy
| | - Govind Bhagat
- Department of Pathology & Cell Biology, Columbia University, New York, NY 10032
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032
| | - Katia Basso
- Institute for Cancer Genetics, Columbia University, New York, NY 10032
- Department of Pathology & Cell Biology, Columbia University, New York, NY 10032
| | - Raul Rabadan
- Department of Systems Biology, Columbia University, New York, NY 10032
- Department of Biomedical Informatics, Columbia University, New York, NY 10032
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032
- Program for Mathematical Genomics, Columbia University, New York, NY 10032
| | - Laura Pasqualucci
- Institute for Cancer Genetics, Columbia University, New York, NY 10032;
- Department of Pathology & Cell Biology, Columbia University, New York, NY 10032
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032
| | - Riccardo Dalla-Favera
- Institute for Cancer Genetics, Columbia University, New York, NY 10032;
- Department of Pathology & Cell Biology, Columbia University, New York, NY 10032
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032
- Department of Microbiology and Immunology, Columbia University, New York, NY 10032
- Department of Genetics and Development, Columbia University, New York, NY 10032
| |
Collapse
|
53
|
Molecular Classification and Treatment of Diffuse Large B-Cell Lymphoma and Primary Mediastinal B-Cell Lymphoma. ACTA ACUST UNITED AC 2021; 26:195-205. [PMID: 32496453 DOI: 10.1097/ppo.0000000000000450] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) encompasses a group of aggressive B-cell non-Hodgkin lymphomas with striking genetic heterogeneity and variable clinical presentations. Among these is primary mediastinal B-cell lymphoma (PMBL), which has unique clinical and molecular features resembling Hodgkin lymphoma. Treatment of DLBCL is usually curative, but identifiable subsets at highest risk for treatment failure may benefit from intensified chemotherapy regimens and/or targeted agents added to frontline therapy. Recent comprehensive genomic analyses have identified distinct genetic subtypes of DLBCL with characteristic genetic drivers and signaling pathways that are targetable. Immune therapy with chimeric antigen receptor T cells and checkpoint inhibitors has revolutionized the treatment of relapsed or refractory disease, and antibody drug conjugates have weaponized otherwise intolerable cytotoxic agents. Ongoing clinical trials are further refining the specificity of these approaches in different genetic subtypes and moving them from the setting of recurrent disease to frontline treatment in high-risk patient populations.
Collapse
|
54
|
Sarkozy C, Hung SS, Chavez EA, Duns G, Takata K, Chong LC, Aoki T, Jiang A, Miyata-Takata T, Telenius A, Slack GW, Molina TJ, Ben-Neriah S, Farinha P, Dartigues P, Damotte D, Mottok A, Salles GA, Casasnovas RO, Savage KJ, Laurent C, Scott DW, Traverse-Glehen A, Steidl C. Mutational landscape of gray zone lymphoma. Blood 2021; 137:1765-1776. [PMID: 32961552 DOI: 10.1182/blood.2020007507] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
The mutational landscape of gray zone lymphoma (GZL) has not yet been established, and differences from related entities are largely unknown. Here, we studied coding sequence mutations of 50 Epstein-Barr virus (EBV)-negative GZLs and 20 polymorphic EBV+ diffuse large B-cell lymphoma (DLBCL) not otherwise specified (poly-EBV-L) in comparison with classical Hodgkin lymphoma (cHL), primary mediastinal large B-cell lymphoma (PMBCL), and DLBCL. Exomes of 21 GZL and 7 poly-EBV-L cases, along with paired constitutional DNA, were analyzed as a discovery cohort, followed by targeted sequencing of 217 genes in an extension cohort of 29 GZL and 13 poly-EBV-L cases. GZL cases with thymic niche involvement (anterior mediastinal mass) exhibited a mutation profile closely resembling cHL and PMBCL, with SOCS1 (45%), B2M (45%), TNFAIP3 (35%), GNA13 (35%), LRRN3 (32%), and NFKBIA (29%) being the most recurrently mutated genes. In contrast, GZL cases without thymic niche involvement (n = 18) had a significantly distinct pattern that was enriched in mutations related to apoptosis defects (TP53 [39%], BCL2 [28%], BIRC6 [22%]) and depleted in GNA13, XPO1, or NF-κB signaling pathway mutations (TNFAIP3, NFKBIE, IKBKB, NFKBIA). They also exhibited more BCL2/BCL6 rearrangements compared with thymic GZL. Poly-EBV-L cases presented a distinct mutational profile, including STAT3 mutations and a significantly lower coding mutation load in comparison with EBV- GZL. Our study highlights characteristic mutational patterns in GZL associated with presentation in the thymic niche, suggesting a common cell of origin and disease evolution overlapping with related anterior mediastinal lymphomas.
Collapse
Affiliation(s)
- Clémentine Sarkozy
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BC, Canada
- INSERM Unité Mixte de Recherche (UMR) S1052, Centre National de la Recherche UMR 5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Stacy S Hung
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BC, Canada
| | - Elizabeth A Chavez
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BC, Canada
| | - Gerben Duns
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BC, Canada
| | - Katsuyoshi Takata
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BC, Canada
| | - Lauren C Chong
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BC, Canada
| | - Tomohiro Aoki
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BC, Canada
| | - Aixiang Jiang
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BC, Canada
| | | | - Adèle Telenius
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BC, Canada
| | - Graham W Slack
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BC, Canada
| | - Thierry Jo Molina
- Pathology Department, Necker Enfants Malades Hospital, Université Paris Descartes, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Susana Ben-Neriah
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BC, Canada
| | - Pedro Farinha
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BC, Canada
| | - Peggy Dartigues
- Pathology Department, Gustave Roussy, Université Paris-Saclay, INSERM U1170, Villejuif, France
| | - Diane Damotte
- Pathology Department, Groupe Hospitalier Cochin, AP-HP, Paris, France
- INSERM U1138, Paris Descartes University-Sorbonne Paris Cité, Paris, France
| | - Anja Mottok
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Gilles A Salles
- INSERM Unité Mixte de Recherche (UMR) S1052, Centre National de la Recherche UMR 5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Département d'Hématologie, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre Bénite Cedex, France
| | - Rene-Olivier Casasnovas
- Department of Hematology, François Mitterrand University Hospital, INSERM U1231, Dijon, France
| | - Kerry J Savage
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BC, Canada
| | - Camille Laurent
- Institut Universitaire du Cancer-Oncopole de Toulouse, CHU Toulouse, INSERM U1037, Centre de Recherche en Cancerologie de Toulouse-Purpan, Toulouse-Purpan, France; and
| | - David W Scott
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BC, Canada
| | - Alexandra Traverse-Glehen
- INSERM Unité Mixte de Recherche (UMR) S1052, Centre National de la Recherche UMR 5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Département de Pathologie, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre Bénite Cedex, France
| | - Christian Steidl
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BC, Canada
| |
Collapse
|
55
|
Apollonio B, Ioannou N, Papazoglou D, Ramsay AG. Understanding the Immune-Stroma Microenvironment in B Cell Malignancies for Effective Immunotherapy. Front Oncol 2021; 11:626818. [PMID: 33842331 PMCID: PMC8027510 DOI: 10.3389/fonc.2021.626818] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/04/2021] [Indexed: 12/28/2022] Open
Abstract
Cancers, including lymphomas, develop in complex tissue environments where malignant cells actively promote the creation of a pro-tumoral niche that suppresses effective anti-tumor effector T cell responses. Research is revealing that the tumor microenvironment (TME) differs between different types of lymphoma, covering inflamed environments, as exemplified by Hodgkin lymphoma, to non-inflamed TMEs as seen in chronic lymphocytic leukemia (CLL) or diffuse-large B-cell lymphoma (DLBCL). In this review we consider how T cells and interferon-driven inflammatory signaling contribute to the regulation of anti-tumor immune responses, as well as sensitivity to anti-PD-1 immune checkpoint blockade immunotherapy. We discuss tumor intrinsic and extrinsic mechanisms critical to anti-tumor immune responses, as well as sensitivity to immunotherapies, before adding an additional layer of complexity within the TME: the immunoregulatory role of non-hematopoietic stromal cells that co-evolve with tumors. Studying the intricate interactions between the immune-stroma lymphoma TME should help to design next-generation immunotherapies and combination treatment strategies to overcome complex TME-driven immune suppression.
Collapse
Affiliation(s)
- Benedetta Apollonio
- Faculty of Life Sciences & Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Nikolaos Ioannou
- Faculty of Life Sciences & Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Despoina Papazoglou
- Faculty of Life Sciences & Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Alan G Ramsay
- Faculty of Life Sciences & Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| |
Collapse
|
56
|
Csizmar CM, Ansell SM. Engaging the Innate and Adaptive Antitumor Immune Response in Lymphoma. Int J Mol Sci 2021; 22:3302. [PMID: 33804869 PMCID: PMC8038124 DOI: 10.3390/ijms22073302] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/24/2022] Open
Abstract
Immunotherapy has emerged as a powerful therapeutic strategy for many malignancies, including lymphoma. As in solid tumors, early clinical trials have revealed that immunotherapy is not equally efficacious across all lymphoma subtypes. For example, immune checkpoint inhibition has a higher overall response rate and leads to more durable outcomes in Hodgkin lymphomas compared to non-Hodgkin lymphomas. These observations, combined with a growing understanding of tumor biology, have implicated the tumor microenvironment as a major determinant of treatment response and prognosis. Interactions between lymphoma cells and their microenvironment facilitate several mechanisms that impair the antitumor immune response, including loss of major histocompatibility complexes, expression of immunosuppressive ligands, secretion of immunosuppressive cytokines, and the recruitment, expansion, and skewing of suppressive cell populations. Accordingly, treatments to overcome these barriers are being rapidly developed and translated into clinical trials. This review will discuss the mechanisms of immune evasion, current avenues for optimizing the antitumor immune response, clinical successes and failures of lymphoma immunotherapy, and outstanding hurdles that remain to be addressed.
Collapse
Affiliation(s)
| | - Stephen M. Ansell
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Division of Hematology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
57
|
Chen H, Pan T, He Y, Zeng R, Li Y, Yi L, Zang H, Chen S, Duan Q, Xiao L, Zhou H. Primary Mediastinal B-Cell Lymphoma: Novel Precision Therapies and Future Directions. Front Oncol 2021; 11:654854. [PMID: 33869061 PMCID: PMC8044947 DOI: 10.3389/fonc.2021.654854] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/01/2021] [Indexed: 11/13/2022] Open
Abstract
Primary mediastinal large B-cell lymphoma (PMBCL) is a distinct clinicopathologic disease from other types of diffuse large B-cell lymphoma (DLBCL) with unique prognostic features and limited availability of clinical data. The current standard treatment for newly diagnosed PMBCL has long been dependent on a dose-intensive, dose-adjusted multi-agent chemotherapy regimen of rituximab plus etoposide, prednisone, vincristine, cyclophosphamide, and doxorubicin (DA-R-EPOCH). Recent randomized trials have provided evidence that R-CHOP followed by consolidation radiotherapy (RT) is a valuable alternative option to first-line treatment. For recurrent/refractory PMBCL (rrPMBCL), new drugs such as pembrolizumab and CAR-T cell therapy have proven to be effective in a few studies. Positron emission tomography-computed tomography (PET-CT) is the preferred imaging modality of choice for the initial phase of lymphoma treatment and to assess response to treatment. In the future, baseline quantitative PET-CT can be used to predict prognosis in PMBCL. This review focuses on the pathology of PMBCL, underlying molecular basis, treatment options, radiotherapy, targeted therapies, and the potential role of PET-CT to guide treatment choices in this disease.
Collapse
Affiliation(s)
- Huan Chen
- Department of Lymphoma and Hematology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Tao Pan
- Department of Lymphoma and Hematology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yizi He
- Department of Lymphoma and Hematology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Ruolan Zeng
- Department of Lymphoma and Hematology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yajun Li
- Department of Lymphoma and Hematology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Liming Yi
- Department of Human Anatomy, Hunan University of Medicine, Huaihua, China
| | - Hui Zang
- Department of Basic Medicine, Yiyang Medical College, Yiyang, China
| | - Siwei Chen
- Department of Histology and Embryology of School of Basic Medical Science, Central South University, Changsha, China
| | - Qintong Duan
- Department of Histology and Embryology of School of Basic Medical Science, Central South University, Changsha, China
| | - Ling Xiao
- Department of Histology and Embryology of School of Basic Medical Science, Central South University, Changsha, China
| | - Hui Zhou
- Department of Lymphoma and Hematology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
58
|
Spatial signatures identify immune escape via PD-1 as a defining feature of T-cell/histiocyte-rich large B-cell lymphoma. Blood 2021; 137:1353-1364. [PMID: 32871584 PMCID: PMC8555417 DOI: 10.1182/blood.2020006464] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/18/2020] [Indexed: 01/28/2023] Open
Abstract
T-cell/histiocyte-rich large B-cell lymphoma (TCRLBCL) is an aggressive variant of diffuse large B-cell lymphoma (DLBCL) characterized by rare malignant B cells within a robust but ineffective immune cell infiltrate. The mechanistic basis of immune escape in TCRLBCL is poorly defined and not targeted therapeutically. We performed a genetic and quantitative spatial analysis of the PD-1/PD-L1 pathway in a multi-institutional cohort of TCRLBCLs and found that malignant B cells harbored PD-L1/PD-L2 copy gain or amplification in 64% of cases, which was associated with increased PD-L1 expression (P = .0111). By directed and unsupervised spatial analyses of multiparametric cell phenotypic data within the tumor microenvironment, we found that TCRLBCL is characterized by tumor-immune "neighborhoods" in which malignant B cells are surrounded by exceptionally high numbers of PD-L1-expressing TAMs and PD-1+ T cells. Furthermore, unbiased clustering of spatially resolved immune signatures distinguished TCRLBCL from related subtypes of B-cell lymphoma, including classic Hodgkin lymphoma (cHL) and DLBCL-NOS. Finally, we observed clinical responses to PD-1 blockade in 3 of 5 patients with relapsed/refractory TCRLBCL who were enrolled in clinical trials for refractory hematologic malignancies (NCT03316573; NCT01953692), including 2 complete responses and 1 partial response. Taken together, these data implicate PD-1 signaling as an immune escape pathway in TCRLBCL and also support the potential utility of spatially resolved immune signatures to aid the diagnostic classification and immunotherapeutic prioritization of diverse tumor types.
Collapse
|
59
|
Litchfield K, Reading JL, Puttick C, Thakkar K, Abbosh C, Bentham R, Watkins TBK, Rosenthal R, Biswas D, Rowan A, Lim E, Al Bakir M, Turati V, Guerra-Assunção JA, Conde L, Furness AJS, Saini SK, Hadrup SR, Herrero J, Lee SH, Van Loo P, Enver T, Larkin J, Hellmann MD, Turajlic S, Quezada SA, McGranahan N, Swanton C. Meta-analysis of tumor- and T cell-intrinsic mechanisms of sensitization to checkpoint inhibition. Cell 2021; 184:596-614.e14. [PMID: 33508232 PMCID: PMC7933824 DOI: 10.1016/j.cell.2021.01.002] [Citation(s) in RCA: 504] [Impact Index Per Article: 168.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/26/2020] [Accepted: 01/04/2021] [Indexed: 12/22/2022]
Abstract
Checkpoint inhibitors (CPIs) augment adaptive immunity. Systematic pan-tumor analyses may reveal the relative importance of tumor-cell-intrinsic and microenvironmental features underpinning CPI sensitization. Here, we collated whole-exome and transcriptomic data for >1,000 CPI-treated patients across seven tumor types, utilizing standardized bioinformatics workflows and clinical outcome criteria to validate multivariable predictors of CPI sensitization. Clonal tumor mutation burden (TMB) was the strongest predictor of CPI response, followed by total TMB and CXCL9 expression. Subclonal TMB, somatic copy alteration burden, and histocompatibility leukocyte antigen (HLA) evolutionary divergence failed to attain pan-cancer significance. Dinucleotide variants were identified as a source of immunogenic epitopes associated with radical amino acid substitutions and enhanced peptide hydrophobicity/immunogenicity. Copy-number analysis revealed two additional determinants of CPI outcome supported by prior functional evidence: 9q34 (TRAF2) loss associated with response and CCND1 amplification associated with resistance. Finally, single-cell RNA sequencing (RNA-seq) of clonal neoantigen-reactive CD8 tumor-infiltrating lymphocytes (TILs), combined with bulk RNA-seq analysis of CPI-responding tumors, identified CCR5 and CXCL13 as T-cell-intrinsic markers of CPI sensitivity.
Collapse
Affiliation(s)
- Kevin Litchfield
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK
| | - James L Reading
- Cancer Immunology Unit, Research Department of Hematology, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK; Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK
| | - Clare Puttick
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Krupa Thakkar
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK
| | - Chris Abbosh
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK
| | - Robert Bentham
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK
| | - Thomas B K Watkins
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Rachel Rosenthal
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Dhruva Biswas
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Andrew Rowan
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Emilia Lim
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Maise Al Bakir
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Virginia Turati
- Stem Cell Group, Cancer Institute, University College London, London WC1E 6DD, UK
| | - José Afonso Guerra-Assunção
- Bill Lyons Informatics Centre, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK
| | - Lucia Conde
- Bill Lyons Informatics Centre, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK
| | - Andrew J S Furness
- Renal and Skin Units, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Sunil Kumar Saini
- Department of Health Technology, Technical University of Denmark, Copenhagen, Denmark
| | - Sine R Hadrup
- Department of Health Technology, Technical University of Denmark, Copenhagen, Denmark
| | - Javier Herrero
- Bill Lyons Informatics Centre, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK
| | - Se-Hoon Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea; Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Peter Van Loo
- Cancer Genomics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Tariq Enver
- Stem Cell Group, Cancer Institute, University College London, London WC1E 6DD, UK
| | - James Larkin
- Renal and Skin Units, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Matthew D Hellmann
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, and Parker Center for Cancer Immunotherapy, 885 2nd Avenue, New York, NY 10017, USA
| | - Samra Turajlic
- Renal and Skin Units, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK; Cancer Dynamics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Sergio A Quezada
- Cancer Immunology Unit, Research Department of Hematology, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK; Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK.
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK.
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK.
| |
Collapse
|
60
|
Jeong AR, Ball ED, Goodman AM. Predicting Responses to Checkpoint Inhibitors in Lymphoma: Are We Up to the Standards of Solid Tumors? CLINICAL MEDICINE INSIGHTS-ONCOLOGY 2021; 14:1179554920976366. [PMID: 33447123 PMCID: PMC7780174 DOI: 10.1177/1179554920976366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 10/28/2020] [Indexed: 12/25/2022]
Abstract
Treatment of cancer has transformed with the introduction of checkpoint inhibitors. However, the majority of solid tumor patients do not respond to checkpoint blockade. In contrast, the response rate to programmed cell death 1 (PD-1) blockade in relapsed/refractory classical Hodgkin lymphoma (cHL) is 65% to 84% which is the highest among all cancers. Currently, checkpoint inhibitors are only approved for cHL and primary mediastinal B-cell lymphoma as the responses to single-agent checkpoint blockade in other hematologic malignancies is disappointingly low. Various established biomarkers such as programmed cell death 1 ligand 1 (PD-L1) protein surface expression, mismatch repair (MMR) status, and tumor mutational burden (TMB) are routinely used in clinical decision-making in solid tumors. In this review, we will explore these biomarkers in the context of hematologic malignancies. We review characteristic 9p24.1 structural alteration in cHL and primary mediastinal B-cell lymphoma (PMBCL) as a basis for response to PD-1 inhibition, as well as the role of antigen presentation pathways. We also explore the reported frequencies of MMR deficiency in various hematologic malignancies and investigate TMB as a predictive marker.
Collapse
Affiliation(s)
- Ah-Reum Jeong
- Division of Hematology and Oncology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Edward D Ball
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Aaron Michael Goodman
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
61
|
Shi Y, Wu J, Wang Z, Zhang L, Wang Z, Zhang M, Cen H, Peng Z, Li Y, Fan L, Guo Y, Ma L, Cui J, Gao Y, Yang H, Zhang H, Wang L, Zhang W, Zhang H, Xie L, Jiang M, Zhou H, Shuang Y, Su H, Ke X, Jin C, Du X, Du X, Liu L, Xi Y, Ge Z, Feng R, Zhang Y, Zhou S, Xie F, Wang Q. Efficacy and safety of geptanolimab (GB226) for relapsed or refractory peripheral T cell lymphoma: an open-label phase 2 study (Gxplore-002). J Hematol Oncol 2021; 14:12. [PMID: 33436023 PMCID: PMC7802130 DOI: 10.1186/s13045-021-01033-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/01/2021] [Indexed: 02/08/2023] Open
Abstract
Background Peripheral T cell lymphoma (PTCL) is a rare disease and recent approved drugs for relapsed/refractory (r/r) PTCL provided limited clinical benefit. We conducted this study to evaluate the efficacy and safety of geptanolimab (GB226), an anti-PD-1 antibody, in r/r PTCL patients. Methods We did this single-arm, multicenter phase 2 study across 41 sites in China. Eligible patients with r/r PTCL received geptanolimab 3 mg/kg intravenously every 2 weeks until disease progression or intolerable toxicity. All patients who received at least one dose of geptanolimab and histological confirmed PTCL entered full analysis set (FAS). The primary endpoint was objective response rate (ORR) in FAS assessed by the independent radiological review committee (IRRC) per Lugano 2014 criteria. Results Between July 12, 2018, and August 15, 2019, 102 patients were enrolled and received at least one dose of geptanolimab. At the data cutoff date (August 15, 2020), the median follow-up was 4.06 (range 0.30–22.9) months. For 89 patients in FAS, 36 achieved objective response (40.4%, 95% CI 30.2–51.4), of which 13 (14.6%) were complete response and 23 (25.8%) had partial response assessed by IRRC. The median duration of response (DOR) was 11.4 (95% CI 4.8 to not reached) months per IRRC. Patients with PD-L1 expression ≥ 50% derived more benefit from geptanolimab treatment compared to < 50% ones (ORR, 53.3% vs. 25.0%, p = 0.013; median PFS 6.2 vs. 1.5 months, p = 0.002). Grade ≥ 3 treatment-related adverse events occurred in 26 (25.5%) patients, and the most commonly observed were lymphocyte count decreased (n = 4) and platelet count decreased (n = 3). Serious adverse events were observed in 45 (44.1%) patients and 19 (18.6%) were treatment related. Conclusions In this study, geptanolimab showed promising activity and manageable safety profile in patients with r/r PTCL. Anti-PD-1 antibody could be a new treatment approach for this patient population. Trial registration: This clinical trial was registered at the ClinicalTrials.gov (NCT03502629) on April 18, 2018.
Collapse
Affiliation(s)
- Yuankai Shi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China.
| | - Jianqiu Wu
- Department of Oncology, Jiangsu Cancer Hospital, Nanjing, China
| | - Zhen Wang
- Department of Oncology, Linyi Cancer Hospital, Linyi, China
| | - Liling Zhang
- Department of Lymphoma, Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhao Wang
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hong Cen
- Department of Hematology, Lymphoma and Pediatric Oncology, Guangxi Medical University Affiliated Tumor Hospital and Oncology Medical College, Nanning, China
| | - Zhigang Peng
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yufu Li
- Department of Hematology, Henan Cancer Hospital, Zhengzhou, China
| | - Lei Fan
- Department of Hematology, Jiangsu Province Hospital, Nanjing, China
| | - Ye Guo
- Department of Oncology, Shanghai East Hospital, Shanghai, China
| | - Liping Ma
- Department of Hematology, Sun Yat-Sen Memorial Hospital Sun Yat-Sen University, Guangzhou, China
| | - Jie Cui
- Department of Hematology, Gansu Provincial Cancer Hospital, Lanzhou, China
| | - Yuhuan Gao
- Department of Hematology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Haiyan Yang
- Department of Lymphoma, Zhejiang Cancer Hospital, Hangzhou, China
| | - Hongyu Zhang
- Department of Oncology, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, China
| | - Lin Wang
- Department of Oncology, Hainan General Hospital, Haikou, China
| | - Weihua Zhang
- Department of Hematology, The First Affiliated Hospital of Shanxi Medical University, Taiyuan, China
| | - Huilai Zhang
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Liping Xie
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Jiang
- Department of Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Hui Zhou
- Department of Lymphoma and Hematology, Hunan Cancer Hospital, Changsha, China
| | - Yuerong Shuang
- Department of Lymphoma Hematology and Oncology, Jiangxi Cancer Hospital, Nanchang, China
| | - Hang Su
- Department of Lymphoma, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Xiaoyan Ke
- Department of Hematology, Peking University Third Hospital, Beijing, China
| | - Chuan Jin
- Department of Internal Medicine Section 4, Cancer Center of Guangzhou Medical University, Guangzhou, China
| | - Xin Du
- Department of Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xin Du
- Department of Hematology, Shenzhen Second People's Hospital, Shenzhen, China
| | - Li Liu
- Department of Hematology, Tangdu Hospital of the Fourth Military Medical University, Xi'an, China
| | - Yaming Xi
- Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Zheng Ge
- Department of Hematology, Zhongda Hospital Southeast University, Nanjing, China
| | - Ru Feng
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yang Zhang
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Shengyu Zhou
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Fan Xie
- Department of Medical Science, Genor Biopharma Co., Ltd., Shanghai, China
| | - Qian Wang
- Department of Medical Science, Genor Biopharma Co., Ltd., Shanghai, China
| |
Collapse
|
62
|
Genomic analyses of flow-sorted Hodgkin Reed-Sternberg cells reveal complementary mechanisms of immune evasion. Blood Adv 2020; 3:4065-4080. [PMID: 31816062 DOI: 10.1182/bloodadvances.2019001012] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 10/22/2019] [Indexed: 12/14/2022] Open
Abstract
Classical Hodgkin lymphoma (cHL) is composed of rare malignant Hodgkin Reed-Sternberg (HRS) cells within an extensive, but ineffective, inflammatory/immune cell infiltrate. HRS cells exhibit near-universal somatic copy gains of chromosome 9p/9p24.1, which increase expression of the programmed cell death protein 1 (PD-1) ligands. To define genetic mechanisms of response and resistance to PD-1 blockade and identify complementary treatment targets, we performed whole-exome sequencing of flow cytometry-sorted HRS cells from 23 excisional biopsies of newly diagnosed cHLs, including 8 Epstein-Barr virus-positive (EBV+) tumors. We identified significantly mutated cancer candidate genes (CCGs) as well as somatic copy number alterations and structural variations and characterized their contribution to disease-defining immune evasion mechanisms and nuclear factor κB (NF-κB), JAK/STAT, and PI3K signaling pathways. EBV- cHLs had a higher prevalence of genetic alterations in the NF-κB and major histocompatibility complex class I antigen presentation pathways. In this young cHL cohort (median age, 26 years), we identified a predominant mutational signature of spontaneous deamination of cytosine- phosphate-guanines ("Aging"), in addition to apolipoprotein B mRNA editing catalytic polypeptide-like, activation-induced cytidine deaminase, and microsatellite instability (MSI)-associated hypermutation. In particular, the mutational burden in EBV- cHLs was among the highest reported, similar to that of carcinogen-induced tumors. Together, the overall high mutational burden, MSI-associated hypermutation, and newly identified genetic alterations represent additional potential bases for the efficacy of PD-1 blockade in cHL. Of note, recurrent cHL alterations, including B2M, TNFAIP3, STAT6, GNA13, and XPO1 mutations and 2p/2p15, 6p21.32, 6q23.3, and 9p/9p24.1 copy number alterations, were also identified in >20% of primary mediastinal B-cell lymphomas, highlighting shared pathogenetic mechanisms in these diseases.
Collapse
|
63
|
Molecular Classification of Large B-Cell Non-Hodgkin Lymphoma. ACTA ACUST UNITED AC 2020; 26:357-361. [PMID: 32732680 DOI: 10.1097/ppo.0000000000000464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Large B-cell lymphomas (LBCLs) represent a frequent but clinically and morphologically heterogeneous group of tumors. Technological advances over the last 2 decades prompted the development of new classification schemas to sharpen diagnoses, dissect molecular heterogeneity, and identify rational treatment targets. Despite increased molecular understanding of these lymphomas, the clinical perspectives of patients largely remain unchanged. Recently finished comprehensive genomic studies discovered genetically defined LBCL subtypes that predict outcome, provide insight into lymphomagenesis, and suggest rational therapies with the hope of generating patient-tailored treatments with increased perspective for patients in greatest need. Here, we summarize notable examples of how high-throughput technologies aided in better molecular understanding of LBCLs and provided examples of rationally designed targeted treatments.
Collapse
|
64
|
Kang N, Eccleston M, Clermont PL, Latarani M, Male DK, Wang Y, Crea F. EZH2 inhibition: a promising strategy to prevent cancer immune editing. Epigenomics 2020; 12:1457-1476. [PMID: 32938196 PMCID: PMC7607396 DOI: 10.2217/epi-2020-0186] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023] Open
Abstract
Immunotherapies are revolutionizing the clinical management of a wide range of cancers. However, intrinsic or acquired unresponsiveness to immunotherapies does occur due to the dynamic cancer immunoediting which ultimately leads to immune escape. The evolutionarily conserved histone modifier enhancer of zeste 2 (EZH2) is aberrantly overexpressed in a number of human cancers. Accumulating studies indicate that EZH2 is a main driver of cancer cells' immunoediting and mediate immune escape through downregulating immune recognition and activation, upregulating immune checkpoints and creating an immunosuppressive tumor microenvironment. In this review, we overviewed the roles of EZH2 in cancer immunoediting, the preclinical and clinical studies of current pharmacologic EZH2 inhibitors and the prospects for EZH2 inhibitor and immunotherapy combination for cancer treatment.
Collapse
Affiliation(s)
- Ning Kang
- Department of Experimental Therapeutics, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Mark Eccleston
- Belgian Volition SPRL, Parc Scientifique Créalys, Rue Phocas Lejeune 22, BE-5032 Isnes, Belgium
| | - Pier-Luc Clermont
- Faculty of Medicine, Université Laval, 1050, avenue de la Médecine, Québec, QC, G1V 0A6, Canada
| | - Maryam Latarani
- Cancer Research Group, School of Life Health & Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - David Kingsley Male
- Cancer Research Group, School of Life Health & Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Yuzhuo Wang
- Department of Experimental Therapeutics, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
- Department of Urologic Sciences, The Vancouver Prostate Centre, The University of British Columbia, 2660 Oak St, Vancouver, BC, V6H 3Z6, Canada
| | - Francesco Crea
- Cancer Research Group, School of Life Health & Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| |
Collapse
|
65
|
Yan Z, Yao ZH, Yao SN, Xia QX, Wang HY, Chu JF, Song M, Zhao S, Liu YY. Combining PD-1 Inhibitor Nivolumab with Radiotherapy Successfully Treated a Patient with Refractory Primary Mediastinal Large B-Cell Lymphoma: A Case Report and Literature Review. Cancer Manag Res 2020; 12:6311-6316. [PMID: 32801876 PMCID: PMC7394502 DOI: 10.2147/cmar.s254007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 07/08/2020] [Indexed: 12/18/2022] Open
Abstract
Primary mediastinal large B-cell lymphoma (PMBCL) is relatively infrequent and generally has a good prognosis with standard immunochemotherapy. However, treatment options are limited for patients with relapsed/refractory PMBCL who are ineligible for stem cell transplantation. In this report, we treated a refractory PMBCL patient, who did not respond to salvage chemotherapy, with combined nivolumab and radiotherapy. The patient achieved a complete remission with mild adverse reactions and has survived without relapse 2 years after treatment.
Collapse
Affiliation(s)
- Zheng Yan
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Zhi-Hua Yao
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Shu-Na Yao
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Qing-Xin Xia
- Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Hai-Ying Wang
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Jun-Feng Chu
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Ming Song
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Shuang Zhao
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yan-Yan Liu
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| |
Collapse
|
66
|
The immune landscape and response to immune checkpoint blockade therapy in lymphoma. Blood 2020; 135:523-533. [PMID: 31790142 DOI: 10.1182/blood.2019000847] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/22/2019] [Indexed: 12/18/2022] Open
Abstract
The clinical development of effective cancer immunotherapies, along with advances in genomic analysis, has led to the identification of tumor environmental features that predict for sensitivity to immune checkpoint blockade therapy (CBT). Early-phase clinical trial results have demonstrated the remarkable effectiveness of CBT in specific lymphoma subtypes, including classical Hodgkin lymphoma and primary mediastinal B-cell lymphoma. Conversely, CBT has been relatively disappointing in follicular lymphoma and diffuse large B-cell lymphoma. These clinical observations, coupled with important scientific discoveries, have uncovered salient features of the lymphoma microenvironment that correlate with immunotherapy response in patients. For example, classical Hodgkin lymphoma is characterized by an inflammatory environment, genetic alterations that facilitate escape from immune attack, and sensitivity to PD-1 blockade therapy. On the other hand, for lymphomas in which measures of immune surveillance are lacking, including follicular lymphoma and most diffuse large B-cell lymphomas, anti-PD-1 therapy has been less effective. An improved understanding of the immune landscapes of these lymphomas is needed to define subsets that might benefit from CBT. In this article, we describe the immune environments associated with major B-cell lymphomas with an emphasis on the immune escape pathways orchestrated by these diseases. We also discuss how oncogenic alterations in lymphoma cells may affect the cellular composition of the immune environment and ultimately, vulnerability to CBT. Finally, we highlight key areas for future investigation, including the need for the development of biomarkers that predict for sensitivity to CBT in lymphoma patients.
Collapse
|
67
|
Genome instability in multiple myeloma. Leukemia 2020; 34:2887-2897. [PMID: 32651540 DOI: 10.1038/s41375-020-0921-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 12/13/2022]
Abstract
Multiple myeloma (MM) is an incurable plasma cell malignancy characterized by clonal proliferation of plasma cells and a heterogenous genomic landscape. Copy number and structural changes due to chromosomal instability (CIN) are common features of MM. In this review, we describe how primary and secondary genetic events caused by CIN can contribute to increased instability across the genome of malignant plasma cells; with a focus on specific driver genomic events, and how they interfere with cell-cycle checkpoints, to prompt accelerated proliferation. We also provide insight into other forms of CIN, such as chromothripsis and chromoplexy. We evaluate how the tumor microenvironment can contribute to a further increase in chromosomal instability in myeloma cells. Lastly, we highlight the role of certain mutational signatures in leading to high mutation rate and genome instability in certain MM patients. We suggest that assessing CIN in MM and its precursors states may help improve predicting the risk of progression to symptomatic disease and relapse and identifying future therapeutic targets.
Collapse
|
68
|
Zhou H, Xu-Monette ZY, Xiao L, Strati P, Hagemeister FB, He Y, Chen H, Li Y, Manyam GC, Li Y, Montes-Moreno S, Piris MA, Young KH. Prognostic factors, therapeutic approaches, and distinct immunobiologic features in patients with primary mediastinal large B-cell lymphoma on long-term follow-up. Blood Cancer J 2020; 10:49. [PMID: 32366834 PMCID: PMC7198569 DOI: 10.1038/s41408-020-0312-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/04/2020] [Accepted: 03/17/2020] [Indexed: 12/24/2022] Open
Abstract
Primary mediastinal large B-cell lymphoma (PMBCL) is a rare and distinct subtype of diffuse large B-cell lymphoma (DLBCL) without prognostic factors or a single standard of treatment clearly defined. In this study we performed retrospective analysis for clinical outcomes of 166 patients with PMBCL. In overall PMBCL, higher International Prognostic Index, stage, Ki-67 proliferation index, and positron emission tomography (PET) maximum standardized uptake values (SUVmax) at diagnosis were significantly associated with poorer survival, whereas MUM1 expression and higher peripheral blood lymphocyte/monocyte ratios were significantly associated with better survival. Patients who received R-HCVAD or R-EPOCH had better clinical outcome than did those who received the standard treatment R-CHOP. Treatment response and end-of-treatment PET SUVmax had remarkable correlations with survival outcome. In patients with refractory or relapsed PMBCL, stem cell transplant significantly improved overall survival. PMBCL had distinct gene expression signatures compared with overall DLBCL–NOS but not with DLBCL with PD-L1/PD-L2 amplification. PMBCL also showed higher PD-L2 expression in B-cells, lower PD-1 expression in T-cells, and higher CTLA-4 expression in T-cells and distinct miRNA signatures compared with DLBCL-NOS. The prognostic factors, effectiveness of treatment, transcriptional and epigenetic signatures, and immunologic features revealed by this study enrich our understanding of PMBCL biology and support future treatment strategy.
Collapse
Affiliation(s)
- Hui Zhou
- Duke University Medical Center, Division of Hematopathology and Department of Pathology, Durham, NC, USA
| | - Zijun Y Xu-Monette
- Duke University Medical Center, Division of Hematopathology and Department of Pathology, Durham, NC, USA.,Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ling Xiao
- Department of Histology and Embryology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Paolo Strati
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fredrick B Hagemeister
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yizi He
- Department of Lymphoma and Hematology, the Affiliated Tumor Hospital of Xiangya Medical School of Central South University, Changsha, Hunan, China
| | - Huan Chen
- Department of Lymphoma and Hematology, the Affiliated Tumor Hospital of Xiangya Medical School of Central South University, Changsha, Hunan, China
| | - Yajun Li
- Department of Lymphoma and Hematology, the Affiliated Tumor Hospital of Xiangya Medical School of Central South University, Changsha, Hunan, China
| | - Ganiraju C Manyam
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yong Li
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Santiago Montes-Moreno
- Servicio de Anatomía Patológica, Translational Hematopathology Lab, Hospital Universitario Marqués de Valdecilla/IDIVAL, Santander, Spain
| | | | - Ken H Young
- Duke University Medical Center, Division of Hematopathology and Department of Pathology, Durham, NC, USA. .,Duke Cancer Institute, Durham, NC, USA.
| |
Collapse
|