51
|
Desikan SP, Daver N, DiNardo C, Kadia T, Konopleva M, Ravandi F. Resistance to targeted therapies: delving into FLT3 and IDH. Blood Cancer J 2022; 12:91. [PMID: 35680852 PMCID: PMC9184476 DOI: 10.1038/s41408-022-00687-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 12/13/2022] Open
Abstract
Recent advances in FLT3 and IDH targeted inhibition have improved response rates and overall survival in patients with mutations affecting these respective proteins. Despite this success, resistance mechanisms have arisen including mutations that disrupt inhibitor-target interaction, mutations impacting alternate pathways, and changes in the microenvironment. Here we review the role of these proteins in leukemogenesis, their respective inhibitors, mechanisms of resistance, and briefly ongoing studies aimed at overcoming resistance.
Collapse
Affiliation(s)
- Sai Prasad Desikan
- Departments of Leukemia, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Houston, TX, USA
| | - Naval Daver
- Departments of Leukemia, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Houston, TX, USA
| | - Courtney DiNardo
- Departments of Leukemia, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Houston, TX, USA
| | - Tapan Kadia
- Departments of Leukemia, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Houston, TX, USA
| | - Marina Konopleva
- Departments of Leukemia, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Houston, TX, USA
| | - Farhad Ravandi
- Departments of Leukemia, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Houston, TX, USA.
| |
Collapse
|
52
|
Relapsed acute myeloid leukemia in children and adolescents: current treatment options and future strategies. Leukemia 2022; 36:1951-1960. [PMID: 35668109 DOI: 10.1038/s41375-022-01619-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 11/08/2022]
Abstract
Pediatric acute myeloid leukemia (AML) develops from clonal expansion of hematopoietic precursor cells and is characterized by morphologic and cytomolecular heterogeneity. Although the past 40 years have seen significant improvements in overall survival, the prevailing treatment challenges in pediatric AML are the prevention of relapse and the management of relapsed disease. Approximately 25% of children and adolescents with AML suffer disease relapse and face a poor prognosis. Our greater understanding of the genomic, epigenomic, metabolomic, and immunologic pathophysiology of relapsed AML allows for better therapeutic strategies that are being developed for pediatric clinical trials. The development of biologically rational agents is critical as conventional chemotherapeutic salvage regimens are not effective for all patients and pose risk of organ toxicity in heavily pretreated patients. Another major barrier to improvement in outcomes for relapsed pediatric AML is the historic lack of availability and participation in clinical trials. There are ongoing efforts to launch multinational clinical trials of emerging therapies. The purpose of this review is to summarize currently available and newly developed therapies for relapsed pediatric AML.
Collapse
|
53
|
Yang J, Lu F, Ma G, Pang Y, Zhao Y, Sun T, Ma D, Ye J, Ji C. Role of CDH23 as a prognostic biomarker and its relationship with immune infiltration in acute myeloid leukemia. BMC Cancer 2022; 22:568. [PMID: 35597916 PMCID: PMC9123811 DOI: 10.1186/s12885-022-09532-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 04/12/2022] [Indexed: 11/10/2022] Open
Abstract
Background Cadherin-23 (CDH23) plays an important role in intercellular adhesion and is involved in the progression of several types of cancer. However, the biological functions and effect of CDH23 expression on the prognosis of patients with acute myeloid leukemia (AML) are unexplored. Herein, we aim to characterize the role and molecular functions of CDH23 in AML. Methods We downloaded the transcriptomic profiles and clinical data from the Cancer Genome Atlas and Beat AML trial. The expression level of CDH23 was assessed using Gene Expression Profiling Interactive Analysis (GEPIA). Kaplan-Meier survival analysis was used to assess prognostic value of CDH23. Correlation and biological function analyses were performed using LinkedOmics and GeneMANIA. Relationship of CDH23 with immune infiltration level was determined using Tumor Immune Estimation Resource (TIMER). Results We found that the CDH23 expression was aberrantly upregulated in patients with AML and could be used as an independent risk factor of overall survival using Cox multivariate analysis. Notably, we observed a negative correlation between CDH23 expression and immune cell infiltration abundance by calculating the immune and stromal scores. In addition, functional enrichment analysis established that CDH23 plays a crucial role in tumor immunity. Conclusions Our findings indicate that upregulated CDH23 expression corresponds to decreased overall survival of patients with AML. CDH23 may be involved in mediating tumor immune environment, and this highlights the potential of CDH23 as a therapeutic target in AML. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09532-1.
Collapse
Affiliation(s)
- Jiao Yang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Fei Lu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Guangxin Ma
- Hematology and Oncology Unit, Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Yihua Pang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yanan Zhao
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Tao Sun
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Jingjing Ye
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
54
|
A nonstick marrow may help to fry leukemia. Blood 2022; 139:1119-1121. [PMID: 35201330 DOI: 10.1182/blood.2021013965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/27/2021] [Indexed: 11/20/2022] Open
|
55
|
Leotta S, Condorelli A, Sciortino R, Milone GA, Bellofiore C, Garibaldi B, Schininà G, Spadaro A, Cupri A, Milone G. Prevention and Treatment of Acute Myeloid Leukemia Relapse after Hematopoietic Stem Cell Transplantation: The State of the Art and Future Perspectives. J Clin Med 2022; 11:253. [PMID: 35011994 PMCID: PMC8745746 DOI: 10.3390/jcm11010253] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 12/19/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) for high-risk acute myeloid leukemia (AML) represents the only curative option. Progress has been made in the last two decades in the pre-transplant induction therapies, supportive care, selection of donors and conditioning regimens that allowed to extend the HSCT to a larger number of patients, including those aged over 65 years and/or lacking an HLA-identical donor. Furthermore, improvements in the prophylaxis of the graft-versus-host disease and of infection have dramatically reduced transplant-related mortality. The relapse of AML remains the major reason for transplant failure affecting almost 40-50% of the patients. From 10 to 15 years ago to date, treatment options for AML relapsing after HSCT were limited to conventional cytotoxic chemotherapy and donor leukocyte infusions (DLI). Nowadays, novel agents and targeted therapies have enriched the therapeutic landscape. Moreover, very recently, the therapeutic landscape has been enriched by manipulated cellular products (CAR-T, CAR-CIK, CAR-NK). In light of these new perspectives, careful monitoring of minimal-residual disease (MRD) and prompt application of pre-emptive strategies in the post-transplant setting have become imperative. Herein, we review the current state of the art on monitoring, prevention and treatment of relapse of AML after HSCT with particular attention on novel agents and future directions.
Collapse
Affiliation(s)
| | - Annalisa Condorelli
- Division of Hematology, AOU “Policlinico G. Rodolico-San Marco”, Via Santa Sofia 78, 95124 Catania, Italy; (S.L.); (R.S.); (G.A.M.); (C.B.); (B.G.); (G.S.); (A.S.); (A.C.); (G.M.)
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Ruan Y, Chen L, Xie D, Luo T, Xu Y, Ye T, Chen X, Feng X, Wu X. Mechanisms of Cell Adhesion Molecules in Endocrine-Related Cancers: A Concise Outlook. Front Endocrinol (Lausanne) 2022; 13:865436. [PMID: 35464064 PMCID: PMC9021432 DOI: 10.3389/fendo.2022.865436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Chemotherapy is a critical treatment for endocrine-related cancers; however, chemoresistance and disease recurrence remain a challenge. The interplay between cancer cells and the tumor microenvironment via cell adhesion molecules (CAMs) promotes drug resistance, known as cell adhesion-mediated drug resistance (CAM-DR). CAMs are cell surface molecules that facilitate cell-to-cell or cell-to-extracellular matrix binding. CAMs exert an adhesion effect and trigger intracellular signaling that regulates cancer cell stemness maintenance, survival, proliferation, metastasis, epithelial-mesenchymal transition, and drug resistance. To understand these mechanisms, this review focuses on the role of CD44, cadherins, selectins, and integrins in CAM-DR in endocrine-related cancers.
Collapse
Affiliation(s)
- Yongsheng Ruan
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Yongsheng Ruan, ; Xuedong Wu,
| | - Libai Chen
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Danfeng Xie
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tingting Luo
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yiqi Xu
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tao Ye
- Department of Endocrinology, Affiliated Baoan Hospital of Shenzhen, Southern Medical University, Shenzhen, China
| | - Xiaona Chen
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoqin Feng
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuedong Wu
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Yongsheng Ruan, ; Xuedong Wu,
| |
Collapse
|