51
|
Azahri NSM, Kavurma MM. Transcriptional regulation of tumour necrosis factor-related apoptosis-inducing ligand. Cell Mol Life Sci 2013; 70:3617-29. [PMID: 23329170 PMCID: PMC11113472 DOI: 10.1007/s00018-013-1264-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/03/2013] [Accepted: 01/07/2013] [Indexed: 12/13/2022]
Abstract
Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) has dual functions mediating both apoptosis and survival of cells. This review focusses on the current regulatory factors that control TRAIL transcription. Here, we also highlight the role of distinct transcription factors that co-operate and regulate TRAIL in different pathological states. A better understanding of the molecular signalling pathways of TRAIL-induced cell death and survival in disease may lead to more sophisticated technologies for novel therapeutic targets.
Collapse
Affiliation(s)
- Nor Saadah M. Azahri
- Centre for Vascular Research, University of New South Wales, Sydney, NSW 2052 Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052 Australia
- Department of Biomedical Science, Faculty of Allied Health Sciences, International Islamic University, 25200 Kuantan, Pahang Malaysia
| | - Mary M. Kavurma
- Centre for Vascular Research, University of New South Wales, Sydney, NSW 2052 Australia
| |
Collapse
|
52
|
Bates DJP, Lewis LD. Manipulating the apoptotic pathway: potential therapeutics for cancer patients. Br J Clin Pharmacol 2013; 76:381-95. [PMID: 23782006 PMCID: PMC3769666 DOI: 10.1111/bcp.12193] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 05/20/2013] [Indexed: 12/14/2022] Open
Abstract
This review summarizes the current state of scientific understanding of the apoptosis pathway, with a focus on the proteins involved in the pathway, their interactions and functions. This forms the rationale for detailing the preclinical and clinical pharmacology of drugs that modulate the pivotal proteins in this pathway, with emphasis on drugs that are furthest advanced in clinical development as anticancer agents. There is a focus on describing drugs that modulate three of the most promising targets in the apoptosis pathway, namely antibodies that bind and activate the death receptors, small molecules that inhibit the anti-apoptotic Bcl-2 family proteins, and small molecules and antisense oligonucleotides that inactivate the inhibitors of apoptosis, all of which drive the equilibrium of the apoptotic pathway towards apoptosis. These structurally different yet functionally related groups of drugs represent a promising novel approach to anticancer therapeutics whether used as monotherapy or in combination with either classical cytotoxic or other molecularly targeted anticancer agents.
Collapse
Affiliation(s)
- Darcy J P Bates
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, The Norris Cotton Cancer Center, Lebanon, NH, USA
| | | |
Collapse
|
53
|
Li X, Huang T, Jiang G, Gong W, Qian H, Zou C. Proteasome inhibitor MG132 enhances TRAIL-induced apoptosis and inhibits invasion of human osteosarcoma OS732 cells. Biochem Biophys Res Commun 2013; 439:179-86. [DOI: 10.1016/j.bbrc.2013.08.066] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 08/20/2013] [Indexed: 12/15/2022]
|
54
|
Aurora and IKK kinases cooperatively interact to protect multiple myeloma cells from Apo2L/TRAIL. Blood 2013; 122:2641-53. [PMID: 23974204 DOI: 10.1182/blood-2013-02-482356] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Constitutive activation of the canonical and noncanonical nuclear factor-κB (NF-κB) pathways is frequent in multiple myeloma (MM) and can compromise sensitivity to TRAIL. In this study, we demonstrate that Aurora kinases physically and functionally interact with the key regulators of canonical and noncanonical NF-κB pathways IκB kinase β (IKKβ) and IKKα to activate NF-κB in MM, and the pharmacological blockade of Aurora kinase activity induces TRAIL sensitization in MM because it abrogates TRAIL-induced activation of NF-κB. We specifically found that TRAIL induces prosurvival signaling by increasing the phosphorylation state of both Aurora and IKK kinases and their physical interactions, and the blockade of Aurora kinase activity by pan-Aurora kinase inhibitors (pan-AKIs) disrupts TRAIL-induced survival signaling by effectively reducing Aurora-IKK kinase interactions and NF-κB activation. Pan-AKIs consistently blocked TRAIL induction of the antiapoptotic NF-κB target genes A1/Bfl-1 and/or Mcl-1, both important targets for TRAIL sensitization in MM cells. In summary, these results identify a novel interaction between Aurora and IKK kinases and show that these pathways can cooperate to promote TRAIL resistance. Finally, combining pan-AKIs with TRAIL in vivo showed dramatic efficacy in a multidrug-resistant human myeloma xenograft model. These findings suggest that combining Aurora kinase inhibitors with TRAIL may have therapeutic benefit in MM.
Collapse
|
55
|
Jungkunz-Stier I, Zekl M, Stühmer T, Einsele H, Seggewiss-Bernhardt R. Modulation of natural killer cell effector functions through lenalidomide/dasatinib and their combined effects against multiple myeloma cells. Leuk Lymphoma 2013; 55:168-76. [PMID: 23573828 DOI: 10.3109/10428194.2013.794270] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The multikinase inhibitor dasatinib blocks the constitutive activation of oncogenic Src kinases in multiple myeloma (MM) cells and potentially enhances natural killer (NK) cell activity. Therefore, we tested combination effects of dasatinib and lenalidomide regarding MM cell viability and NK cell effector functions. The drug combination mostly had little influence on the viability of MM cell lines, and produced mixed results on primary MM cells. Prolonged lenalidomide treatment enhanced NK cell effector functions, and dasatinib addition at late stages of NK cell expansion increased levels of CD107a/b and interferon-γ (IFNγ), but not of tumor necrosis factor-α (TNFα). Additive effects were observed for the enhancement of cytokine production and degranulation, but only lenalidomide increased NK cell cytotoxicity against MM cells. This effect correlated with increased TNF-related apoptosis-inducing ligand (TRAIL) expression and was attenuated by dasatinib, or suppressors of TRAIL or TNFα. Our data thus indicate a functional role for the TRAIL/TRAIL-R system in lenalidomide-mediated NK-cell activity against MM cells, but also show that dasatinib is unsuitable to support or boost this effect.
Collapse
|
56
|
Ciavarella S, Caselli A, Savonarola A, Tamma AV, Tucci M, Silvestris F. Cytotherapies in multiple myeloma: a complementary approach to current treatments? Expert Opin Biol Ther 2013; 13 Suppl 1:S23-34. [DOI: 10.1517/14712598.2013.796357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
57
|
Zheng T, Fu JJ, Hu L, Qiu F, Hu M, Zhu JJ, Hua ZC, Wang H. Nanoarchitectured Electrochemical Cytosensors for Selective Detection of Leukemia Cells and Quantitative Evaluation of Death Receptor Expression on Cell Surfaces. Anal Chem 2013; 85:5609-16. [DOI: 10.1021/ac400994p] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Tingting Zheng
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
- Department of Chemistry and
Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Jia-Ju Fu
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Lihui Hu
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Fan Qiu
- State Key Laboratory of Pharmaceutical
Biotechnology, Nanjing University, Nanjing,
Jiangsu 210093, China
| | - Minjin Hu
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, Jiangsu 213164, China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Zi-Chun Hua
- State Key Laboratory of Pharmaceutical
Biotechnology, Nanjing University, Nanjing,
Jiangsu 210093, China
| | - Hui Wang
- Department of Chemistry and
Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| |
Collapse
|
58
|
Giacomini A, Righi M, Cleris L, Locatelli SL, Mitola S, Daidone MG, Gianni AM, Carlo-Stella C. Induction of death receptor 5 expression in tumor vasculature by perifosine restores the vascular disruption activity of TRAIL-expressing CD34(+) cells. Angiogenesis 2013; 16:707-22. [PMID: 23605004 DOI: 10.1007/s10456-013-9348-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 04/15/2013] [Indexed: 01/31/2023]
Abstract
The proapoptotic death receptor 5 (DR5) expressed by tumor associated endothelial cells (TECs) mediates vascular disrupting effects of human CD34(+) cells engineered to express membrane-bound tumor necrosis factor-related apoptosis-inducing ligand (CD34-TRAIL (+) cells) in mice. Indeed, lack of DR5 on TECs causes resistance to CD34-TRAIL (+) cells. By xenografting in nonobese diabetic/severe combined immunodeficient mice the TRAIL-resistant lymphoma cell line SU-DHL-4V, which generates tumors lacking endothelial DR5 expression, here we demonstrate for the first time that the Akt inhibitor perifosine induces in vivo DR5 expression on TECs, thereby overcoming tumor resistance to the vascular disruption activity of CD34-TRAIL (+) cells. In fact, CD34-TRAIL (+) cells combined with perifosine, but not CD34-TRAIL (+) cells alone, exerted marked antivascular effects and caused a threefold increase of hemorrhagic necrosis in SU-DHL-4V tumors. Consistent with lack of DR5 expression, CD34-TRAIL (+) cells failed to affect the growth of SU-DHL-4V tumors, but CD34-TRAIL (+) cells plus perifosine reduced tumor volumes by 60 % compared with controls. In view of future clinical studies using membrane-bound TRAIL, our results highlight a strategy to rescue patients with primary or acquired resistance due to the lack of DR5 expression in tumor vasculature.
Collapse
Affiliation(s)
- Arianna Giacomini
- Department of Oncology and Hematology, Humanitas Cancer Center, Humanitas Clinical and Research Center, Via Manzoni, 56, 20089 Rozzano, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Sharma S, de Vries EG, Infante JR, Oldenhuis CN, Gietema JA, Yang L, Bilic S, Parker K, Goldbrunner M, Scott JW, Burris HA. Safety, pharmacokinetics, and pharmacodynamics of the DR5 antibody LBY135 alone and in combination with capecitabine in patients with advanced solid tumors. Invest New Drugs 2013; 32:135-44. [PMID: 23589214 DOI: 10.1007/s10637-013-9952-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 03/15/2013] [Indexed: 12/01/2022]
Abstract
PURPOSE We evaluated the safety, maximum tolerated dose (MTD), pharmacokinetics, pharmacodynamics, biologic activity, and antitumor efficacy of the DR5 antibody, LBY135 ± capecitabine. EXPERIMENTAL DESIGN Escalating LBY135 was administered every 21 days, alone (Arm1) or with capecitabine (Arm2), to patients with advanced solid tumors. RESULTS In Arm1 (n = 40), LBY135 (0.3-40 mg/kg) resulted in no dose-limiting toxicities (DLTs); adverse events (AEs) included fatigue, hypotension, abdominal pain, dyspnea, and nausea. Stable disease (SD) was observed in 21/38 (55.3 %) patients. In Arm2 (n = 33), LBY135 (1-40 mg/kg) plus capecitabine resulted in 3 DLTs (each grade 3): dehydration and mucosal inflammation (1 mg/kg), colitis (20 mg/kg), and diarrhea (40 mg/kg). AEs included fatigue, nausea, dyspnea, and vomiting. Partial response was observed in 2 patients (rectal and breast cancer) and SD in 12/27 (44.4 %) patients. Mean elimination half-life of LBY135 ± capecitabine at saturation of clearance (≥10 mg/kg) ranged between 146 h and 492 h. Immunogenicity was detected in 16/73 (22 %) patients, of which 6 patients experienced reduced LBY135 exposure with repeat dosing. M30/M65 levels were not predictive for LBY135 response. FDG-PET responses were not consistently associated with RECIST responses. CONCLUSIONS LBY135 was well tolerated up to 40 mg/kg, the maximal dose administered; no MTD for LBY135 ± capecitabine was defined. Clearance was saturated at doses ≥10 mg/kg.
Collapse
Affiliation(s)
- Sunil Sharma
- Huntsman Cancer Institute, Division of Medical Oncology, University of Utah, 2000 Circle of Hope Drive, Suite 3380, Salt Lake City, UT, 84112, USA,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Marrero MT, Estévez S, Negrín G, Quintana J, López M, Pérez FJ, Triana J, León F, Estévez F. Ayanin diacetate-induced cell death is amplified by TRAIL in human leukemia cells. Biochem Biophys Res Commun 2012; 428:116-20. [DOI: 10.1016/j.bbrc.2012.10.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 10/03/2012] [Indexed: 10/27/2022]
|
61
|
de Wilt LHAM, Kroon J, Jansen G, de Jong S, Peters GJ, Kruyt FAE. Bortezomib and TRAIL: a perfect match for apoptotic elimination of tumour cells? Crit Rev Oncol Hematol 2012; 85:363-72. [PMID: 22944363 DOI: 10.1016/j.critrevonc.2012.08.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 07/13/2012] [Accepted: 08/06/2012] [Indexed: 01/11/2023] Open
Abstract
Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) is a cytokine that selectively eradicates tumour cells via specific cell surface receptors and is intensively explored for use as a novel anticancer approach. To enhance the efficacy of TRAIL receptor agonists the proteasome inhibitor bortezomib is one of the most potent sensitizers. Here we review the main mechanisms underlying bortezomib-dependent TRAIL sensitization, including stimulation of apoptosis by increasing expression of TRAIL receptors, reduction of cFLIP and enhancement of caspase 8 activation, and modulation of Bcl-2 family proteins and inhibitor of apoptosis proteins (IAPs). Concomitantly, pro-survival signals are suppressed such as elicited by NF-κB and Akt. The different preclinical tumour models explored with this combination, including primary tumour (stem) cells, stroma co-culture and mice models, are discussed, as well as possible hurdles for clinical activity. Collectively, anticipating a solid rationale for bortezomib-TRAIL combination and very promising preclinical results, its clinical activity remains to be demonstrated.
Collapse
Affiliation(s)
- L H A M de Wilt
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
62
|
Modulation of tumor necrosis factor related apoptosis-inducing ligand (TRAIL) receptors in a human osteoclast model in vitro. Apoptosis 2012; 17:121-31. [PMID: 21972115 DOI: 10.1007/s10495-011-0662-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
TRAIL (TNF-related apoptosis-inducing ligand) has been shown to induce apoptosis by binding to TRAIL-R1 and -R2 death receptors, but not to TRAIL-R3 or -R4, its decoy receptors that lack the internal death domain. Osteoclasts (Ocs) are sensitive to TRAIL-induced apoptosis, and modulation of these receptors may change Oc sensitivity to TRAIL. Using human Oc cultures, we first investigated the gene expression profile of these receptors (TNFRSF10 -A, -B, -C, -D encoding TRAIL-Rs 1-4) by real time PCR after adding osteotropic factors during the last week of Oc cultures. We observed a significant decrease in the expression of TNFRSF10-A after the addition of TGFβ, and an increase in that of TNFRSF10-A and -B post-PTH stimulation. Protein expression of TRAIL-R1 and -R3 was upregulated in the presence of MIP-1α, but down-regulated in the presence of TGFβ (R1), TRAIL (R2) or OPG (R3). The percentage of Ocs expressing the TRAIL-R1 and/or -R2 at their surface was increased by MIP-1α and TRAIL, increased (R2) or decreased (R1) by TGFβ, and the percentage expressing TRAIL-R3 was increased by MIP-1α, TRAIL and RANKL. Although significant, the magnitude of all these changes was of about 10-15%. While a direct correlation between these changes and TRAIL-induced Oc apoptosis was less clear, a protective effect was observed in Ocs that had been treated with OPG, and an additive effect in Ocs pre-treated with TRAIL or TGFβ increased TRAIL sensitivity.
Collapse
|
63
|
Vitovski S, Chantry AD, Lawson MA, Croucher PI. Targeting tumour-initiating cells with TRAIL based combination therapy ensures complete and lasting eradication of multiple myeloma tumours in vivo. PLoS One 2012; 7:e35830. [PMID: 22615740 PMCID: PMC3353958 DOI: 10.1371/journal.pone.0035830] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 03/26/2012] [Indexed: 11/22/2022] Open
Abstract
Multiple myeloma (MM) remains an incurable disease despite improvements to available treatments and efforts to identify new drug targets. Consequently new approaches are urgently required. We have investigated the potential of native tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), in combination with doxorubicin, to induce apoptotic cell death in phenotypically distinct populations of myeloma cells in vitro and in vivo. The cytotoxic potential of TRAIL alone, and in combination with DOX, was assessed in vitro in purified CD138(+) and CD138(-) cells from the MM cell lines and samples from patients with MM. Mouse xenografts obtained by implanting CD138(-) MM cells were used to assess the efficacy of TRAIL, alone and in combination with DOX, in vivo. CD138(-) cells were shown to be more resistant to the cytotoxic activity of TRAIL than CD138(+) cells and have reduced expression of TRAIL death receptors. This resistance results in preferential killing of CD 138(+) cells during exposure of MM culture to TRAIL. Furthermore, prolonged exposure results in the appearance of TRAIL-resistant CD138(-) cells. However, when TRAIL is combined with doxorubicin, this results in complete eradication of MM cells in vivo. Most importantly, this treatment successfully eliminates CD138(-) cells implicated in tumour initiation and growth maintenance. These findings may explain the failure of current therapies and offer a promising new approach in the quest to cure MM and disseminated cancers.
Collapse
Affiliation(s)
- Srdjan Vitovski
- The Mellanby Centre for Bone Research, Department of Human Metabolism, University of Sheffield Medical School, Sheffield, United Kingdom
- Department of Infection and Immunity, The Medical School, Sheffield, United Kingdom
| | - Andrew D. Chantry
- The Mellanby Centre for Bone Research, Department of Human Metabolism, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Michelle A. Lawson
- The Mellanby Centre for Bone Research, Department of Human Metabolism, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Peter I. Croucher
- The Mellanby Centre for Bone Research, Department of Human Metabolism, University of Sheffield Medical School, Sheffield, United Kingdom
- Garvan Institute for Medical Research, Sydney, Australia
| |
Collapse
|
64
|
Ciavarella S, Grisendi G, Dominici M, Tucci M, Brunetti O, Dammacco F, Silvestris F. In vitro anti-myeloma activity of TRAIL-expressing adipose-derived mesenchymal stem cells. Br J Haematol 2012; 157:586-98. [DOI: 10.1111/j.1365-2141.2012.09082.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 01/30/2012] [Indexed: 01/14/2023]
Affiliation(s)
- Sabino Ciavarella
- Department of Internal Medicine and Oncology (DIMO); University of Bari ‘A. Moro’; Bari
| | - Giulia Grisendi
- Department of Oncology, Haematology and Respiratory Diseases; University-Hospital of Modena and Reggio Emilia; Modena; Italy
| | - Massimo Dominici
- Department of Oncology, Haematology and Respiratory Diseases; University-Hospital of Modena and Reggio Emilia; Modena; Italy
| | - Marco Tucci
- Department of Internal Medicine and Oncology (DIMO); University of Bari ‘A. Moro’; Bari
| | - Oronzo Brunetti
- Department of Internal Medicine and Oncology (DIMO); University of Bari ‘A. Moro’; Bari
| | - Franco Dammacco
- Department of Internal Medicine and Oncology (DIMO); University of Bari ‘A. Moro’; Bari
| | - Franco Silvestris
- Department of Internal Medicine and Oncology (DIMO); University of Bari ‘A. Moro’; Bari
| |
Collapse
|
65
|
Wu YH, Yang CY, Chien WL, Lin KI, Lai MZ. Removal of syndecan-1 promotes TRAIL-induced apoptosis in myeloma cells. THE JOURNAL OF IMMUNOLOGY 2012; 188:2914-21. [PMID: 22308310 DOI: 10.4049/jimmunol.1102065] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Syndecan is the major transmembrane proteoglycan in cells. Of the four syndecans, syndecan-1 is the dominant form expressed in multiple myeloma and is an indicator of poor prognosis. In the current study, we observed that early TRAIL-induced apoptotic processes were accompanied by cleavage of syndecan-1 intracellular region, and explored the possibility whether removal of syndecan-1 promotes apoptotic processes. We found that syndecan-1 knockdown by specific small interfering RNA in multiple myeloma enhanced TRAIL-induced apoptosis, even though the expression of TRAIL receptors and several apoptosis-associated molecules was unaffected. The enhanced TRAIL-mediated apoptosis in syndecan-1-deficient cells was not due to a decrease in surface heparan sulfate or a reduction in TRAIL receptor endocytosis. The increase in TRAIL-induced cell death was accompanied by an elevated caspase-8 activation and an enhanced formation of death-inducing signaling complexes, which could be attributed to an increased expression of TRAIL receptor O-glycosylation enzyme in syndecan-1-deficient cells. We also found that in H9 lymphoma and Jurkat cells, knockdown of the predominant syndecan member also led to an increase in Fas ligand-induced apoptosis. Our results demonstrate that syndecan plays a negative role in death receptor-mediated cell death, suggesting potential application of syndecan downregulation in the treatment of myeloma in combination with TRAIL.
Collapse
Affiliation(s)
- Yung-Hsuan Wu
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 11221, Taiwan
| | | | | | | | | |
Collapse
|
66
|
Fukuda M, Kusama K, Sakashita H. Molecular insights into the proliferation and progression mechanisms of the oral cancer: Strategies for the effective and personalized therapy. JAPANESE DENTAL SCIENCE REVIEW 2012. [DOI: 10.1016/j.jdsr.2011.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
67
|
McMillin DW, Jacobs HM, Delmore JE, Buon L, Hunter ZR, Monrose V, Yu J, Smith PG, Richardson PG, Anderson KC, Treon SP, Kung AL, Mitsiades CS. Molecular and cellular effects of NEDD8-activating enzyme inhibition in myeloma. Mol Cancer Ther 2012; 11:942-51. [PMID: 22246439 DOI: 10.1158/1535-7163.mct-11-0563] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The NEDD8-activating enzyme is upstream of the 20S proteasome in the ubiquitin/proteasome pathway and catalyzes the first step in the neddylation pathway. NEDD8 modification of cullins is required for ubiquitination of cullin-ring ligases that regulate degradation of a distinct subset of proteins. The more targeted impact of NEDD8-activating enzyme on protein degradation prompted us to study MLN4924, an investigational NEDD8-activating enzyme inhibitor, in preclinical multiple myeloma models. In vitro treatment with MLN4924 led to dose-dependent decrease of viability (EC(50) = 25-150 nmol/L) in a panel of human multiple myeloma cell lines. MLN4924 was similarly active against a bortezomib-resistant ANBL-6 subline and its bortezomib-sensitive parental cells. MLN4924 had submicromolar activity (EC(50) values <500 nmol/L) against primary CD138(+) multiple myeloma patient cells and exhibited at least additive effect when combined with dexamethasone, doxorubicin, and bortezomib against MM.1S cells. The bortezomib-induced compensatory upregulation of transcripts for ubiquitin/proteasome was not observed with MLN4924 treatment, suggesting distinct functional roles of NEDD8-activating enzyme versus 20S proteasome. MLN4924 was well tolerated at doses up to 60 mg/kg 2× daily and significantly reduced tumor burden in both a subcutaneous and an orthotopic mouse model of multiple myeloma. These studies provide the framework for the clinical investigation of MLN4924 in multiple myeloma.
Collapse
Affiliation(s)
- Douglas W McMillin
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Expression of TRAIL, DR4, and DR5 in bladder cancer: correlation with response to adjuvant therapy and implications of prognosis. Urology 2012; 79:968.e7-15. [PMID: 22244504 DOI: 10.1016/j.urology.2011.11.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 10/23/2011] [Accepted: 11/10/2011] [Indexed: 11/24/2022]
Abstract
OBJECTIVES To explore the interrelationship of human tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its death receptors DR4 and DR5 expressions level with patient prognosis and the response to adjuvant therapy in bladder cancer, the synergism function that is between chemotherapy and TRAIL on apoptosis induction in tumor cells. METHODS The expression of TRAIL, DR4, and DR5 was studied using immunohistochemistry of paraffin-embedded tumor specimens from 229 bladder cancer patients who had undergone transurethral resection. RESULTS Cytoplasmic TRAIL, DR4, and DR5 expressions were detected in 35%, 75.1%, and 74.2% of bladder cancer patients, respectively. Patients with bladder cancer with either high DR4 or DR5 expression had a significantly longer postoperative recurrence-free rate than those with low expression of both during the 10-year follow-up. Multivariate analysis revealed that the expression of DR4 (P < .001), DR5 (P < .001) and epirubicin therapy (P = .034) were independent prognostic indicators of bladder cancer. Furthermore, epirubicin therapy significantly improved recurrence-free rate for the patients with DR4-high (P = .006) or DR5-high (P = .042) tumor. CONCLUSIONS The results of the present study have shown for the first time that a combination of DR4 and DR5 expression have significant value in predicting the prognosis of bladder cancer. In addition, patients with high expression of both DR4 and DR5 might benefit from epirubicin therapy.
Collapse
|
69
|
Zheng B, Zhou R, Gong Y, Yang X, Shan Q. Proteasome inhibitor bortezomib overcomes P-gp-mediated multidrug resistance in resistant leukemic cell lines. Int J Lab Hematol 2011; 34:237-47. [PMID: 22145750 DOI: 10.1111/j.1751-553x.2011.01384.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION To study the effect of bortezomib alone or in combination with daunorubicin (DNR) on an mdr1 single-factor drug-resistant leukemia cell line K562/MDR1, a multifactor-resistant cell line K562/A02, a drug-sensitive cell line K562, and primary cells from acute myeloid leukemia patients. METHODS The cell lines were exposed to bortezomib, DNR, and bortezomib plus DNR, and cell proliferation, cell cycle, apoptosis rate, and expression of MDR1/BCL2 were analyzed. RESULTS Bortezomib potently inhibited growth and increased the apoptosis rate in the cell lines. In K562/MDR1 and K562/A02, the calcium channel blocker verapamil reduced the 50% inhibitory concentration and apoptosis rate of DNR, a P-gp protein substrate, but not of bortezomib. Bortezomib plus DNR had synergistic effect on antiproliferation (synergistic ratio > 1). Apoptosis was substantially more increased by the combination of two drugs than by bortezomib alone. Bortezomib arrested the cell cycles of three cell lines at the G2/M stage, decreased BCL2 mRNA expression, but did not affect MDR1 mRNA levels. The antiproliferative role of bortezomib was also confirmed in primary leukemia cells. CONCLUSION Bortezomib is a promising potential therapy for acute leukemia, especially mdr1 drug-resistant leukemia.
Collapse
Affiliation(s)
- B Zheng
- Department of Hematology and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | | | | | | | | |
Collapse
|
70
|
Abstract
The introduction of autologous stem cell transplantation combined with the introduction of immunomodulatory drugs (IMiDs) and proteasome inhibitors has significantly improved survival of multiple myeloma patients. However, ultimately the majority of patients will develop refractory disease, indicating the need for new treatment modalities. In preclinical and clinical studies, promising results have been obtained with several monoclonal antibodies (mAbs) targeting the myeloma tumor cell or the bone marrow microenvironment. The mechanisms underlying the therapeutic efficacy of these mAbs include direct induction of tumor cell apoptosis via inhibition or activation of target molecules, complement-dependent cytotoxicity and antibody-dependent cell-mediated cytotoxicity (ADCC). The capability of IMiDs to enhance ADCC and the modulation of various important signaling cascades in myeloma cells by both bortezomib and IMiDs forms the rationale to combine these novel agents with mAbs as new treatment strategies for myeloma patients. In this review, we will give an overview of various mAbs directly targeting myeloma tumor cells or indirectly via effects on the bone marrow microenvironment. Special focus will be on the combination of these mAbs with IMiDs or bortezomib.
Collapse
|
71
|
McMillin DW, Delmore J, Negri J, Ooi M, Klippel S, Miduturu CV, Gray NS, Richardson PG, Anderson KC, Kung AL, Mitsiades CS. Microenvironmental influence on pre-clinical activity of polo-like kinase inhibition in multiple myeloma: implications for clinical translation. PLoS One 2011; 6:e20226. [PMID: 21750699 PMCID: PMC3131271 DOI: 10.1371/journal.pone.0020226] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 04/16/2011] [Indexed: 12/22/2022] Open
Abstract
Polo-like kinases (PLKs) play an important role in cell cycle progression, checkpoint control and mitosis. The high mitotic index and chromosomal instability of advanced cancers suggest that PLK inhibitors may be an attractive therapeutic option for presently incurable advanced neoplasias with systemic involvement, such as multiple myeloma (MM). We studied the PLK 1, 2, 3 inhibitor BI 2536 and observed potent (IC50<40 nM) and rapid (commitment to cell death <24 hrs) in vitro activity against MM cells in isolation, as well as in vivo activity against a traditional subcutaneous xenograft mouse model. Tumor cells in MM patients, however, don't exist in isolation, but reside in and interact with the bone microenvironment. Therefore conventional in vitro and in vivo preclinical assays don't take into account how interactions between MM cells and the bone microenvironment can potentially confer drug resistance. To probe this question, we performed tumor cell compartment-specific bioluminescence imaging assays to compare the preclinical anti-MM activity of BI 2536 in vitro in the presence vs. absence of stromal cells or osteoclasts. We observed that the presence of these bone marrow non-malignant cells led to decreased anti-MM activity of BI 2536. We further validated these results in an orthotopic in vivo mouse model of diffuse MM bone lesions where tumor cells interact with non-malignant cells of the bone microenvironment. We again observed that BI 2536 had decreased activity in this in vivo model of tumor-bone microenvironment interactions highlighting that, despite BI 2536's promising activity in conventional assays, its lack of activity in microenvironmental models raises concerns for its clinical development for MM. More broadly, preclinical drug testing in the absence of relevant tumor microenvironment interactions may overestimate potential clinical activity, thus explaining at least in part the gap between preclinical vs. clinical efficacy in MM and other cancers.
Collapse
Affiliation(s)
- Douglas W. McMillin
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jake Delmore
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Joseph Negri
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Melissa Ooi
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Steffen Klippel
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Chandrasekhar V. Miduturu
- Department of Biological Chemistry and Molecular Pharmacology, Dana-Farber Cancer Institute, Department of Cancer Biology and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Nathanael S. Gray
- Department of Biological Chemistry and Molecular Pharmacology, Dana-Farber Cancer Institute, Department of Cancer Biology and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Paul G. Richardson
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kenneth C. Anderson
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Andrew L. Kung
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Children's Hospital Boston, Boston, Massachusetts, United States of America
| | - Constantine S. Mitsiades
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
72
|
Kedinger V, Muller S, Gronemeyer H. Targeted expression of tumor necrosis factor-related apoptosis-inducing ligand TRAIL in skin protects mice against chemical carcinogenesis. Mol Cancer 2011; 10:34. [PMID: 21463519 PMCID: PMC3078898 DOI: 10.1186/1476-4598-10-34] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 04/04/2011] [Indexed: 01/01/2023] Open
Abstract
Background Gene ablation studies have revealed that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL, Apo2L, TNFSF10) plays a crucial role in tumor surveillance, as TRAIL-deficient mice exhibit an increased sensitivity to different types of tumorigenesis. In contrast, possible tumor-protective effect of increased levels of endogenous TRAIL expression in vivo has not been assessed yet. Such models will provide important information about the efficacy of TRAIL-based therapies and potential toxicity in specific tissues. Methods To this aim, we engineered transgenic mice selectively expressing TRAIL in the skin and subjected these mice to a two-step chemical carcinogenesis protocol that generated benign and preneoplastic lesions. We were therefore able to study the effect of increased TRAIL expression at the early steps of skin tumorigenesis. Results Our results showed a delay of tumor appearance in TRAIL expressing mice compared to their wild-type littermates. More importantly, the number of tumors observed in transgenic animals was significantly lower than in the control animals, and the lesions observed were mostly benign. Interestingly, Wnt/β-catenin signaling differed between tumors of wild-type and TRAIL transgenics. Conclusion Altogether, these data reveal that, at least in this model, TRAIL is able on its own to act on pre-transformed cells, and reduce their tumorigenic potential.
Collapse
Affiliation(s)
- Valerie Kedinger
- Department of Cancer Biology, Institut Génétique de Biologie Moléculaire et Cellulaire (IGBMC), France
| | | | | |
Collapse
|
73
|
van Dijk M, Murphy E, Morrell R, Knapper S, O'Dwyer M, Samali A, Szegezdi E. The Proteasome Inhibitor Bortezomib Sensitizes AML with Myelomonocytic Differentiation to TRAIL Mediated Apoptosis. Cancers (Basel) 2011; 3:1329-50. [PMID: 24212664 PMCID: PMC3756416 DOI: 10.3390/cancers3011329] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Revised: 02/15/2011] [Accepted: 03/10/2011] [Indexed: 11/16/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive stem cell malignancy that is difficult to treat. There are limitations to the current treatment regimes especially after disease relapse, and therefore new therapeutic agents are urgently required which can overcome drug resistance whilst avoiding unnecessary toxicity. Among newer targeted agents, both tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and proteasome inhibitors show particular promise. In this report we show that a combination of the proteasome inhibitor bortezomib and TRAIL is effective against AML cell lines, in particular, AML cell lines displaying myelomonocytic/monocytic phenotype (M4/M5 AML based on FAB classification), which account for 20-30% of AML cases. We show that the underlying mechanism of sensitization is at least in part due to bortezomib mediated downregulation of c-FLIP and XIAP, which is likely to be regulated by NF-κB. Blockage of NF-κB activation with BMS-345541 equally sensitized myelomonocytic AML cell lines and primary AML blasts to TRAIL.
Collapse
Affiliation(s)
- Marianne van Dijk
- Apoptosis Research Center, National University of Ireland, University Road, Galway, Ireland; E-Mails: (M.V.D); (E.M); (R.M); (A.S); (M.O.)
- School of Natural Sciences, National University of Ireland, University Road, Galway, Ireland
| | - Eoin Murphy
- Apoptosis Research Center, National University of Ireland, University Road, Galway, Ireland; E-Mails: (M.V.D); (E.M); (R.M); (A.S); (M.O.)
- School of Natural Sciences, National University of Ireland, University Road, Galway, Ireland
| | - Ruth Morrell
- Apoptosis Research Center, National University of Ireland, University Road, Galway, Ireland; E-Mails: (M.V.D); (E.M); (R.M); (A.S); (M.O.)
- School of Natural Sciences, National University of Ireland, University Road, Galway, Ireland
- School of Medicine, National University of Ireland, University Road, Galway, Ireland
| | - Steven Knapper
- Department of Haematology, School of Medicine, Cardiff University, Heath Park, CF14 4XN Cardiff, UK; E-Mail:
| | - Michael O'Dwyer
- Apoptosis Research Center, National University of Ireland, University Road, Galway, Ireland; E-Mails: (M.V.D); (E.M); (R.M); (A.S); (M.O.)
- School of Medicine, National University of Ireland, University Road, Galway, Ireland
| | - Afshin Samali
- Apoptosis Research Center, National University of Ireland, University Road, Galway, Ireland; E-Mails: (M.V.D); (E.M); (R.M); (A.S); (M.O.)
- School of Natural Sciences, National University of Ireland, University Road, Galway, Ireland
| | - Eva Szegezdi
- Apoptosis Research Center, National University of Ireland, University Road, Galway, Ireland; E-Mails: (M.V.D); (E.M); (R.M); (A.S); (M.O.)
- School of Natural Sciences, National University of Ireland, University Road, Galway, Ireland
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +353-91-495037; Fax: +353-91-494-596
| |
Collapse
|
74
|
Zinonos I, Labrinidis A, Lee M, Liapis V, Hay S, Ponomarev V, Diamond P, Findlay DM, Zannettino ACW, Evdokiou A. Anticancer efficacy of Apo2L/TRAIL is retained in the presence of high and biologically active concentrations of osteoprotegerin in vivo. J Bone Miner Res 2011; 26:630-43. [PMID: 20818644 PMCID: PMC5568243 DOI: 10.1002/jbmr.244] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Osteoprotegerin (OPG) is a secreted member of the tumor necrosis factor (TNF) receptor superfamily that binds to the ligand for receptor activator of nuclear factor κB (RANKL) and inhibits bone resorption. OPG can also bind and inhibit the activity of the TNF-related apoptosis-inducing ligand (Apo2L/TRAIL), raising the possibility that the anticancer efficacy of soluble Apo2L/TRAIL may be abrogated in the bone microenvironment where OPG expression is high. In this study we used a murine model of breast cancer growth in bone to evaluate the efficacy of recombinant soluble Apo2L/TRAIL against intratibial tumors that were engineered to overexpress native full-length human OPG. In vitro, OPG-overexpressing breast cancer cells were protected from Apo2L/TRAIL-induced apoptosis, an effect that was reversed with the addition of soluble RANKL or neutralizing antibodies to OPG. In vivo, mice injected intratibially with cells containing the empty vector developed large osteolytic lesions. In contrast, OPG overexpression preserved the integrity of bone and prevented breast cancer-induced bone destruction. This effect was due primarily to the complete absence of osteoclasts in the tibias of mice inoculated with OPG-transfected cells, confirming the biologic activity of the transfected OPG in vivo. Despite the secretion of supraphysiologic levels of OPG, treatment with Apo2L/TRAIL resulted in strong growth inhibition of both empty vector and OPG-overexpressing intratibial tumors. While Apo2L/TRAIL-induced apoptosis may be abrogated in vitro by OPG overexpression, the in vivo anticancer efficacy of recombinant soluble Apo2L/TRAIL is retained in the bone microenvironment even in the presence of biologically active OPG at supraphysiologic concentrations.
Collapse
Affiliation(s)
- Irene Zinonos
- Discipline of Orthopaedics and Trauma, Adelaide Cancer Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Amm HM, Oliver PG, Lee CH, Li Y, Buchsbaum DJ. Combined modality therapy with TRAIL or agonistic death receptor antibodies. Cancer Biol Ther 2011; 11:431-49. [PMID: 21263219 PMCID: PMC3087899 DOI: 10.4161/cbt.11.5.14671] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 12/21/2010] [Accepted: 12/29/2010] [Indexed: 12/20/2022] Open
Abstract
Molecularly targeted therapies, such as antibodies and small molecule inhibitors have emerged as an important breakthrough in the treatment of many human cancers. One targeted therapy under development is tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) due to its ability to induce apoptosis in a variety of human cancer cell lines and xenografts, while lacking toxicity in most normal cells. TRAIL and apoptosis-inducing agonistic antibodies to the TRAIL death receptors have been the subject of many preclinical and clinical studies in the past decade. However, the sensitivity of individual cancer cell lines of a particular tumor type to these agents varies from highly sensitive to resistant. Various chemotherapy agents have been shown to enhance the apoptosis-inducing capacity of TRAIL receptor-targeted therapies and induce sensitization of TRAIL-resistant cells. This review provides an overview of the mechanisms associated with chemotherapy enhancement of TRAIL receptor-targeted therapies including modulation of the apoptotic (death receptor expression, FLIP, and Bcl-2 or inhibitors of apoptosis (IAP) families) as well as cell signaling (NFκB, Akt, p53) pathways. These mechanisms will be important in establishing effective combinations to pursue clinically and in determining relevant targets for future cancer therapies.
Collapse
Affiliation(s)
- Hope M Amm
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, USA
| | | | | | | | | |
Collapse
|
76
|
McMillin DW, Delmore J, Negri J, Buon L, Jacobs HM, Laubach J, Jakubikova J, Ooi M, Hayden P, Schlossman R, Munshi NC, Lengauer C, Richardson PG, Anderson KC, Mitsiades CS. Molecular and cellular effects of multi-targeted cyclin-dependent kinase inhibition in myeloma: biological and clinical implications. Br J Haematol 2011; 152:420-32. [PMID: 21223249 DOI: 10.1111/j.1365-2141.2010.08427.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cell cycle regulators, such as cyclin-dependent kinases (CDKs), are appealing targets for multiple myeloma (MM) therapy given the increased proliferative rates of tumour cells in advanced versus early stages of MM. We hypothesized that a multi-targeted CDK inhibitor with a different spectrum of activity compared to existing CDK inhibitors could trigger distinct molecular sequelae with therapeutic implications for MM. We therefore studied the small molecule heterocyclic compound NVP-LCQ195/AT9311 (LCQ195), which inhibits CDK1, CDK2 and CDK5, as well as CDK3 and CDK9. LCQ195 induced cell cycle arrest and eventual apoptotic cell death of MM cells, even at sub-μmol/l concentrations, spared non-malignant cells, and overcame the protection conferred to MM cells by stroma or cytokines of the bone marrow milieu. In MM cells, LCQ195 triggered decreased amplitude of transcriptional signatures associated with oncogenesis, drug resistance and stem cell renewal, including signatures of activation of key transcription factors for MM cells e.g. myc, HIF-1α, IRF4. Bortezomib-treated MM patients whose tumours had high baseline expression of genes suppressed by LCQ195 had significantly shorter progression-free and overall survival than those with low levels of these transcripts in their MM cells. These observations provide insight into the biological relevance of multi-targeted CDK inhibition in MM.
Collapse
Affiliation(s)
- Douglas W McMillin
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute Department of Medicine, Harvard Medical School, Boston Novartis Institutes for BioMedical Research, Cambridge, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Lee ALZ, Dhillon SHK, Wang Y, Pervaiz S, Fan W, Yang YY. Synergistic anti-cancer effects via co-delivery of TNF-related apoptosis-inducing ligand (TRAIL/Apo2L) and doxorubicin using micellar nanoparticles. MOLECULAR BIOSYSTEMS 2011; 7:1512-22. [DOI: 10.1039/c0mb00266f] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
78
|
Sung ES, Kim A, Park JS, Chung J, Kwon MH, Kim YS. Histone deacetylase inhibitors synergistically potentiate death receptor 4-mediated apoptotic cell death of human T-cell acute lymphoblastic leukemia cells. Apoptosis 2010; 15:1256-69. [PMID: 20582477 DOI: 10.1007/s10495-010-0521-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cell-death signaling through the pro-apoptotic tumor necrosis factor-related apoptosis inducing ligand (TRAIL) receptors, death receptor 4 (DR4) and DR5, has shown tumor-selective apoptotic activity. Here, we examine susceptibility of various leukemia cell lines (HL-60, U937, K562, CCRF-CEM, CEM-CM3, and THP-1) to an anti-DR4 agonistic monoclonal antibody (mAb), AY4, in comparison with TRAIL. While most of the leukemia cell lines were intrinsically resistant to AY4 or TRAIL alone, the two T-cell acute lymphoblastic leukemia (T-ALL) lines, CEM-CM3 and CCRF-CEM cells, underwent synergistic caspase-dependent apoptotic cell death by combination of AY4 or TRAIL with a histone deacetylase inhibitor (HDACI), either suberoylanilide hydroxamic acid (SAHA) or valproic acid (VPA). All of the combined treatments synergistically downregulated several anti-apoptotic proteins (c-FLIP, Bcl-2, Bcl-X(L), XIAP, and survivin) without significant changing the expression levels of pro-apoptotic proteins (Bax and Bak) or the receptors (DR4 and DR5). Downregulation of c-FLIP to activate caspase-8 was a critical step for the synergistic apoptosis through both extrinsic and intrinsic apoptotic pathways. Our results demonstrate that the HDACIs have synergistic effects on DR4-specific mAb AY4-mediated cell death in the T-ALL cells with comparable competence to those exerted by TRAIL, providing a new strategy for the targeted treatment of human T-ALL cells.
Collapse
Affiliation(s)
- Eun-Sil Sung
- Department of Molecular Science and Technology, Ajou University, San5, Woncheon-dong, Yeongtong-gu, Suwon, 443-749, Korea
| | | | | | | | | | | |
Collapse
|
79
|
Maginn EN, Browne PV, Hayden P, Vandenberghe E, MacDonagh B, Evans P, Goodyer M, Tewari P, Campiani G, Butini S, Williams DC, Zisterer DM, Lawler MP, McElligott AM. PBOX-15, a novel microtubule targeting agent, induces apoptosis, upregulates death receptors, and potentiates TRAIL-mediated apoptosis in multiple myeloma cells. Br J Cancer 2010; 104:281-9. [PMID: 21179037 PMCID: PMC3031893 DOI: 10.1038/sj.bjc.6606035] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Background: In recent years, much progress has been made in the treatment of multiple myeloma. However, a major limitation of existing chemotherapeutic drugs is the eventual emergence of resistance; hence, the development of novel agents with new mechanisms of action is pertinent. Here, we describe the activity and mechanism of action of pyrrolo-1,5-benzoxazepine-15 (PBOX-15), a novel microtubule-targeting agent, in multiple myeloma cells. Methods: The anti-myeloma activity of PBOX-15 was assessed using NCI-H929, KMS11, RPMI8226, and U266 cell lines, and primary myeloma cells. Cell cycle distribution, apoptosis, cytochrome c release, and mitochondrial inner membrane depolarisation were analysed by flow cytometry; gene expression analysis was carried out using TaqMan Low Density Arrays; and expression of caspase-8 and Bcl-2 family of proteins was assessed by western blot analysis. Results: Pyrrolo-1,5-benzoxazepine-15 induced apoptosis in ex vivo myeloma cells and in myeloma cell lines. Death receptor genes were upregulated in both NCI-H929 and U266 cell lines, which displayed the highest and lowest apoptotic responses, respectively, following treatment with PBOX-15. The largest increase was detected for the death receptor 5 (DR5) gene, and cotreatment of both cell lines with tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), the DR5 ligand, potentiated the apoptotic response. In NCI-H929 cells, PBOX-15-induced apoptosis was shown to be caspase-8 dependent, with independent activation of extrinsic and intrinsic apoptotic pathways. A caspase-8-dependent decrease in expression of BimEL preceded downregulation of other Bcl-2 proteins (Bid, Bcl-2, Mcl-1) in PBOX-15-treated NCI-H929 cells. Conclusion: PBOX-15 induces apoptosis and potentiates TRAIL-induced cell death in multiple myeloma cells. Thus, PBOX-15 represents a promising agent, with a distinct mechanism of action, for the treatment of this malignancy.
Collapse
Affiliation(s)
- E N Maginn
- John Durkan Leukaemia Laboratories, Institute of Molecular Medicine, Trinity College Dublin, St James's Hospital, Dublin 8, Ireland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Herbst RS, Kurzrock R, Hong DS, Valdivieso M, Hsu CP, Goyal L, Juan G, Hwang YC, Wong S, Hill JS, Friberg G, LoRusso PM. A first-in-human study of conatumumab in adult patients with advanced solid tumors. Clin Cancer Res 2010; 16:5883-91. [PMID: 20947515 DOI: 10.1158/1078-0432.ccr-10-0631] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To determine the safety, tolerability, pharmacokinetics, and maximum tolerated dose (MTD) of conatumumab, an investigational, fully human monoclonal agonist antibody against human death receptor 5, in patients with advanced solid tumors. EXPERIMENTAL DESIGN In the dose-escalation phase, patients received escalating intravenous doses of conatumumab (0.3, 1, 3, 10, or 20 mg/kg, 3-9 per cohort) every 2 weeks. In the dose-expansion phase, 10 patients with colorectal cancer (CRC) and 7 with non-small cell lung cancer (NSCLC) received 20 mg/kg of conatumumab every 2 weeks. RESULTS Thirty-seven patients received 1 or more doses of conatumumab. Conatumumab seemed to be well tolerated; there were no dose-limiting toxicities. Of adverse events possibly related to treatment, only 3 patients (8%) had a grade 3 event (fatigue and/or elevated lipase), and no anticonatumumab antibodies were detected. An MTD was not reached. Conatumumab exhibited dose linear kinetics from 3 to 20 mg/kg, with a mean terminal half-life of 13 to 19 days. One patient with NSCLC (0.3 mg/kg) had a confirmed partial response (PR) at week 32 (38% reduction in tumor size), with further reduction (48%) by week 96; this patient remains on conatumumab after 4.2 years with a sustained PR. Fourteen patients had a best response of stable disease, 2 for 32 weeks or more. One patient with CRC (0.3 mg/kg) and stable disease for 24 weeks had a 24% reduction in tumor size by RECIST (Response Evaluation Criteria in Solid Tumors) and a 35% reduction in the sum of standardized uptake values of all lesions measured by [18F]fluorodeoxyglucose positron emission tomographic scan. Changes in tumor levels of activated caspase-3 did not appear to be associated with tumor response. CONCLUSIONS Conatumumab can be administered safely up to the target dose of 20 mg/kg every 2 weeks.
Collapse
Affiliation(s)
- Roy S Herbst
- Head and Neck/Head and Neck Medical Oncology and Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Pavet V, Portal MM, Moulin JC, Herbrecht R, Gronemeyer H. Towards novel paradigms for cancer therapy. Oncogene 2010; 30:1-20. [DOI: 10.1038/onc.2010.460] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
82
|
TRAIL and other TRAIL receptor agonists as novel cancer therapeutics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 647:195-206. [PMID: 19760076 DOI: 10.1007/978-0-387-89520-8_14] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), also known as Apo2L, is a member of the TNF superfamily (TNFSF) of cytokines. TRAIL gained much attention during the past decade due to the demonstration of its therapeutic potential as a tumor-specific apoptosis inducer. TRAIL was identified as a protein with high homology to other members of the TNF cytokine family, especially to the ligand of Fas/Apo-1 (CD95), CD95L (FasL/APO-1L). TRAIL has been shown to induce apoptosis selectively in many tumor cell lines without affecting normal cells and tissues, making TRAIL itself as well as agonists of the two human receptors of TRAIL which can submit an apoptotic signal, TRAIL-R1 (DR4) and TRAIL-R2 (DR5), promising novel biotherapeutics for cancer therapy. An increasing number of publications now shows that TRAIL resistance in primary human tumor cells will have to be overcome and that sensitization to TRAIL-induced apoptosis will be required in many cases. Therefore, it will also be instrumental to develop suitable diagnostic tests to identify patients who will benefit from TRAIL-based novel anticancer therapeutics and those who will not. Interestingly, the first clinical results even in monotherapy with TRAIL as well as various agonistic TRAIL receptor-specific antibodies have shown encouraging results. This chapter provides a compact overview on the biochemistry of the TRAIL/TRAIL-R system, the physiological role of TRAIL and its receptors and the results of clinical trials with TRAIL and various TRAIL-R agonistic antibodies.
Collapse
|
83
|
Feng X, Yan J, Wang Y, Zierath JR, Nordenskjöld M, Henter JI, Fadeel B, Zheng C. The proteasome inhibitor bortezomib disrupts tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) expression and natural killer (NK) cell killing of TRAIL receptor-positive multiple myeloma cells. Mol Immunol 2010; 47:2388-96. [PMID: 20542572 DOI: 10.1016/j.molimm.2010.05.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2010] [Accepted: 05/05/2010] [Indexed: 11/29/2022]
Abstract
Bortezomib, a potent 26S proteasome inhibitor, is approved for the treatment of multiple myeloma (MM) and clinical trials are under way to evaluate its efficacy in other malignant diseases. However, cytotoxic effects of bortezomib on immune-competent cells have also been observed. In this study, we show that bortezomib downregulates cell surface expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) on primary human interleukin (IL)-2-activated natural killer (NK) cells. Pharmacological inhibition of the transcription factor, NF-kappaB also profoundly decreased TRAIL expression, suggesting that NF-kappaB is involved in the regulation of TRAIL expression in activated human NK cells. Furthermore, perforin-independent killing of the human MM cell lines RPMI8226 and U266 by NK cells was markedly suppressed following bortezomib treatment. In addition, blocking cell surface-bound TRAIL with a TRAIL antibody impaired NK cell-mediated lysis of the TRAIL-sensitive MM cell line, RPMI8226. In conclusion, the proteasome is likely to be involved in the regulation of TRAIL expression in primary human IL-2-activated NK cells. Proteasome inhibition by bortezomib disrupts TRAIL expression and TRAIL dependent and/or independent pathway-mediated killing of myeloma cells, suggesting that bortezomib may potentially hamper NK-dependent immunosurveillance against tumors in patients treated with this drug.
Collapse
Affiliation(s)
- Xiaoli Feng
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Abstract
Recent advances in understanding the biologic mechanisms underlying cancer development have driven the design of new therapeutic approaches, termed 'targeted therapies', that selectively interfere with molecules or pathways involved in tumor growth and progression. Inactivation of growth factors and their receptors on tumor cells as well as the inhibition of oncogenic tyrosine kinase pathways and the inhibition of molecules that control specific functions in cancer cells constitute the main rational bases of new cancer treatments tailored for individual patients. Small-molecule inhibitors and monoclonal antibodies are major components of these targeted approaches for a number of human malignancies. As the studies of the bio-molecular features of cancer progress, new exciting strategies have arisen, such as targeting cancer stem cells that drive tumor relapses or the selective induction of apoptosis in malignant cells. This article primarily focuses on the biologic bases of the new cancer drugs and summarizes their mechanisms of action, the clinical evidence of their anti-cancer effectiveness as well as the rationale for their use in clinical practice.
Collapse
Affiliation(s)
- Sabino Ciavarella
- Department of Internal Medicine and Clinical Oncology, University of Bari, Italy
| | | | | | | |
Collapse
|
85
|
Herbst RS, Eckhardt SG, Kurzrock R, Ebbinghaus S, O'Dwyer PJ, Gordon MS, Novotny W, Goldwasser MA, Tohnya TM, Lum BL, Ashkenazi A, Jubb AM, Mendelson DS. Phase I dose-escalation study of recombinant human Apo2L/TRAIL, a dual proapoptotic receptor agonist, in patients with advanced cancer. J Clin Oncol 2010; 28:2839-46. [PMID: 20458040 DOI: 10.1200/jco.2009.25.1991] [Citation(s) in RCA: 342] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
PURPOSE Apoptosis ligand 2/tumor necrosis factor-related apoptosis-inducing ligand (Apo2L/TRAIL)-a member of the tumor necrosis factor cytokine family-induces apoptosis by activating the extrinsic pathway through the proapoptotic death receptors DR4 and DR5. Recombinant human Apo2L/TRAIL (rhApo2L/TRAIL) has broad potential as a cancer therapy. To the best of our knowledge, this is the first in-human clinical trial to assess the safety, tolerability, pharmacokinetics, and antitumor activity of multiple intravenous doses of rhApo2L/TRAIL in patients with advanced cancer. PATIENTS AND METHODS This phase I, open-label, dose-escalation study treated patients with advanced cancer with rhApo2L/TRAIL doses ranging from 0.5 to 30 mg/kg/d, with parallel dose escalation for patients without liver metastases and with normal liver function (cohort 1) and for patients with liver metastases and normal or mildly abnormal liver function (cohort 2). Doses were given daily for 5 days, with cycles repeating every 3 weeks. Assessments included adverse events (AEs), laboratory tests, pharmacokinetics, and imaging to evaluate antitumor activity. RESULTS Seventy-one patients received a mean of 18.3 doses; seven patients completed all eight treatment cycles. The AE profile of rhApo2L/TRAIL was similar in cohorts 1 and 2. The most common AEs were fatigue (38%), nausea (28%), vomiting (23%), fever (23%), anemia (18%), and constipation (18%). Liver enzyme elevations were concurrent with progressive metastatic liver disease. Two patients with sarcoma (synovial and undifferentiated) experienced serious AEs associated with rapid tumor necrosis. Two patients with chondrosarcoma experienced durable partial responses to rhApo2L/TRAIL. CONCLUSION At the tested schedule and dose range, rhApo2L/TRAIL was safe and well tolerated. Dose escalation achieved peak rhApo2L/TRAIL serum concentrations equivalent to those associated with preclinical antitumor efficacy.
Collapse
Affiliation(s)
- Roy S Herbst
- University of Texas M D Anderson Cancer Center, Thoracic Head and Neck Medicine Clinic, 1515 Holcombe Blvd, Unit 432, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Brooks AD, Jacobsen KM, Li W, Shanker A, Sayers TJ. Bortezomib sensitizes human renal cell carcinomas to TRAIL apoptosis through increased activation of caspase-8 in the death-inducing signaling complex. Mol Cancer Res 2010; 8:729-38. [PMID: 20442297 DOI: 10.1158/1541-7786.mcr-10-0022] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bortezomib (VELCADE) could sensitize certain human renal cell carcinoma (RCC) lines to the apoptotic effects of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Analysis of seven human RCC showed a clear increase in the sensitivity of four of the RCC to TRAIL cytotoxicity following bortezomib (5-20 nmol/L) treatment, whereas the remaining three remained resistant. Tumor cell death following sensitization had all the features of apoptosis. The enhanced antitumor activity of the bortezomib and TRAIL combination was confirmed in long-term (6 days) cancer cell outgrowth assays. The extent of proteasome inhibition by bortezomib in the various RCC was equivalent. Following bortezomib treatment, neither changes in the intracellular protein levels of various Bcl-2 and IAP family members, nor minor changes in expression of TRAIL receptors (DR4, DR5), correlated well with the sensitization or resistance of RCC to TRAIL-mediated apoptosis. However, enhanced procaspase-8 activation following bortezomib pretreatment and subsequent TRAIL exposure was only observed in the sensitized RCC in both cell extracts and death-inducing signaling complex immunoprecipitates. These data suggest that the molecular basis for bortezomib sensitization of RCC to TRAIL primarily involves early amplification of caspase-8 activity. In the absence of this increased caspase-8 activation, other bortezomib-induced changes are not sufficient to sensitize RCC to TRAIL-mediated apoptosis.
Collapse
Affiliation(s)
- Alan D Brooks
- Science Applications International Corporation-Frederick, Inc., MD, USA
| | | | | | | | | |
Collapse
|
87
|
Jani TS, DeVecchio J, Mazumdar T, Agyeman A, Houghton JA. Inhibition of NF-kappaB signaling by quinacrine is cytotoxic to human colon carcinoma cell lines and is synergistic in combination with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or oxaliplatin. J Biol Chem 2010; 285:19162-72. [PMID: 20424169 DOI: 10.1074/jbc.m109.091645] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Colorectal cancer is the third most common malignancy in the United States. Modest advances with therapeutic approaches that include oxaliplatin (L-OHP) have brought the median survival rate to 22 months, with drug resistance remaining a significant barrier. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is undergoing clinical evaluation. Although human colon carcinomas express TRAIL receptors, they can also demonstrate TRAIL resistance. Constitutive NF-kappaB activation has been implicated in resistance to TRAIL and to cytotoxic agents. We have demonstrated constitutive NF-kappaB activation in five of six human colon carcinoma cell lines; this activation is inhibited by quinacrine. Quinacrine induced apoptosis in colon carcinomas and potentiated the cytotoxic activity of TRAIL in RKO and HT29 cells and that of L-OHP in HT29 cells. Similarly, overexpression of IkappaBalpha mutant (IkappaBalphaM) or treatment with the IKK inhibitor, BMS-345541, also sensitized these cells to TRAIL and L-OHP. Importantly, 2 h of quinacrine pretreatment resulted in decreased expression of c-FLIP and Mcl-1, which were determined to be transcriptional targets of NF-kappaB. Extended exposure for 24 h to quinacrine did not further sensitize these cells to TRAIL- or L-OHP-induced cell death; however, exposure caused the down-regulation of additional NF-kappaB-dependent survival factors. Short hairpin RNA-mediated knockdown of c-FLIP or Mcl-1 significantly sensitized these cells to TRAIL and L-OHP. Taken together, data demonstrate that NF-kappaB is constitutively active in colon cancer cell lines and NF-kappaB, and its downstream targets may constitute an important target for the development of therapeutic approaches against this disease.
Collapse
Affiliation(s)
- Tanvi S Jani
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | |
Collapse
|
88
|
Wang S, Ren W, Liu J, Lahat G, Torres K, Lopez G, Lazar AJ, Hayes-Jordan A, Liu K, Bankson J, Hazle JD, Lev D. TRAIL and doxorubicin combination induces proapoptotic and antiangiogenic effects in soft tissue sarcoma in vivo. Clin Cancer Res 2010; 16:2591-604. [PMID: 20406839 DOI: 10.1158/1078-0432.ccr-09-2443] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE Novel therapeutic approaches for complex karyotype soft tissue sarcoma (STS) are crucially needed. Consequently, we assessed the efficacy of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), in combination with chemotherapy, on local and metastatic growth of human STS xenografts in vivo. EXPERIMENTAL DESIGN TRAIL was evaluated alone and combined with low-dose doxorubicin in two human STS severe combined immunodeficient mouse xenograft models using fibrosarcoma (HT1080; wild-type p53) and leiomyosarcoma (SKLMS1; mutated p53), testing for effects on local growth, metastasis, and overall survival. Magnetic resonance imaging was used to evaluate local growth and bioluminescence was used to longitudinally assess lung metastases. Tissues were evaluated through immunohistocemistry and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling staining for treatment effects on tumor cell proliferation, apoptosis, angiogenesis, angiogenic factors, and TRAIL receptor expression. Quantitative real-time polymerase chain reaction (QRTPCR) angiogenesis array was used to assess therapy-induced gene expression changes. RESULTS TRAIL/doxorubicin combination induced marked STS local and metastatic growth inhibition in a p53-independent manner. Significantly increased (P < 0.001) host survival was also demonstrable. Combined therapy induced significant apoptosis, decreased tumor cell proliferation, and increased TRAIL receptor (DR4 and DR5) expression in all treated tumors. Moreover, decreased microvessel density was observed, possibly secondary to increased expression of the antiangiogenic factor CXCL10 and decreased proangiogenic interleukin-8 cytokine in response to TRAIL/doxorubicin combination, as was also observed in vitro. CONCLUSIONS Given the urgent need for better systemic approaches to STS, clinical trials evaluating TRAIL in combination with low-dose chemotherapy are potentially warranted.
Collapse
Affiliation(s)
- Suizhao Wang
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Human CD34+ cells engineered to express membrane-bound tumor necrosis factor–related apoptosis-inducing ligand target both tumor cells and tumor vasculature. Blood 2010; 115:2231-40. [DOI: 10.1182/blood-2009-08-239632] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Abstract
Adenovirus-transduced CD34+ cells expressing membrane-bound tumor necrosis factor–related apoptosis-inducing ligand (CD34-TRAIL+ cells) exert potent antitumor activity. To further investigate the mechanism(s) of action of CD34-TRAIL+ cells, we analyzed their homing properties as well as antitumor and antivascular effects using a subcutaneous myeloma model in immunodeficient mice. After intravenous injection, transduced cells homed in the tumor peaking at 48 hours when 188 plus or minus 25 CD45+ cells per 105 tumor cells were detected. Inhibition experiments showed that tumor homing of CD34-TRAIL+ cells was largely mediated by vascular cell adhesion molecule-1 and stromal cell–derived factor-1. Both CD34-TRAIL+ cells and soluble (s)TRAIL significantly reduced tumor volume by 40% and 29%, respectively. Computer-aided analysis of TdT-mediated dUTP nick end-labeling–stained tumor sections demonstrated significantly greater effectiveness for CD34-TRAIL+ cells in increasing tumor cell apoptosis and necrosis over sTRAIL. Proteome array analysis indicated that CD34-TRAIL+ cells and sTRAIL activate similar apoptotic machinery. In vivo staining of tumor vasculature with sulfosuccinimidyl-6-(biotinamido) hexanoate-biotin revealed that CD34-TRAIL+ cells but not sTRAIL significantly damaged tumor vasculature, as shown by TdT-mediated dUTP nick end-labeling+ endothelial cells, appearance of hemorrhagic areas, and marked reduction of endothelial area. These results demonstrate that tumor homing of CD34-TRAIL+ cells induces early vascular disruption, resulting in hemorrhagic necrosis and tumor destruction.
Collapse
|
90
|
Soria JC, Smit E, Khayat D, Besse B, Yang X, Hsu CP, Reese D, Wiezorek J, Blackhall F. Phase 1b study of dulanermin (recombinant human Apo2L/TRAIL) in combination with paclitaxel, carboplatin, and bevacizumab in patients with advanced non-squamous non-small-cell lung cancer. J Clin Oncol 2010; 28:1527-33. [PMID: 20159815 DOI: 10.1200/jco.2009.25.4847] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE To determine the safety, pharmacokinetics (PK), and maximum-tolerated dose (MTD) up to a prespecified target dose of dulanermin in combination with paclitaxel, carboplatin, and bevacizumab (PCB) in patients with previously untreated, nonsquamous, stage IIIb (with pleural effusion)/IV or recurrent non-small-cell lung cancer (NSCLC). PATIENTS AND METHODS In this phase 1b study, patients (n = 24) received PCB on day 1 of each 21-day cycle then dulanermin at 4 or 8 mg/kg/d for 5 consecutive days or 15 or 20 mg/kg/d for 2 consecutive days per assigned treatment cohort. Incidence of dose-limiting toxicities (DLTs), adverse events, and antidulanermin antibodies were assessed. PK parameters were recorded for each agent. Tumor response was measured by modified Response Evaluation Criteria in Solid Tumors. RESULTS Twenty-four patients received at least one dose of dulanermin plus PCB, six in each treatment cohort. There were no DLTs. An MTD was not reached, and the drug combination was well tolerated. Treatment-emergent adverse events were generally as expected for the PCB regimen. Adverse events attributed to dulanermin were grade 1/2; no significant hepatotoxicity occurred. There was minimal impact of PCB on the PK of dulanermin. There was one confirmed complete response and 13 confirmed partial responses. The overall response rate was 58% (95% CI, 37 to 78). Median progression-free survival was 7.2 months (95% CI, 4.7 to 10.3). CONCLUSION Dulanermin plus PCB was well tolerated with no occurrence of DLTs and demonstrated antitumor activity in this patient population. Dulanermin at 8 mg/kg/d for 5 days and 20 mg/kg/d for 2 days every 3 weeks in combination with PCB is being studied in a phase II trial.
Collapse
Affiliation(s)
- Jean-Charles Soria
- Service des Innovations, Thérapeutiques Précoces, Département de Médecine, Institut Gustave Roussy, Villejuif, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
91
|
The hemopoietic stem cell niche versus the microenvironment of the multiple myeloma-tumor initiating cell. CANCER MICROENVIRONMENT 2010; 3:15-28. [PMID: 21209772 PMCID: PMC2970809 DOI: 10.1007/s12307-009-0034-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2009] [Accepted: 12/29/2009] [Indexed: 12/25/2022]
Abstract
Multiple myeloma cells are reminiscent of hemopoietic stem cells in their strict dependence upon the bone marrow microenvironment. However, from all other points of view, multiple myeloma cells differ markedly from stem cells. The cells possess a mature phenotype and secrete antibodies, and have thus made the whole journey to maturity, while maintaining a tumor phenotype. Not much credence was given to the possibility that the bulk of plasma-like multiple myeloma tumor cells is generated from tumor-initiating cells. Although interleukin-6 is a major contributor to the formation of the tumor’s microenvironment in multiple myeloma, it is not a major factor within hemopoietic stem cell niches. The bone marrow niche for myeloma cells includes the activity of inflammatory cytokines released through osteoclastogenesis. These permit maintenance of myeloma cells within the bone marrow. In contrast, osteoclastogenesis constitutes a signal that drives hemopoietic stem cells away from their bone marrow niches. The properties of the bone marrow microenvironment, which supports myeloma cell maintenance and proliferation, is therefore markedly different from the characteristics of the hemopoietic stem cell niche. Thus, multiple myeloma presents an example of a hemopoietic tumor microenvironment that does not resemble the corresponding stem cell renewal niche.
Collapse
|
92
|
Pavet V, Beyrath J, Pardin C, Morizot A, Lechner MC, Briand JP, Wendland M, Maison W, Fournel S, Micheau O, Guichard G, Gronemeyer H. Multivalent DR5 Peptides Activate the TRAIL Death Pathway and Exert Tumoricidal Activity. Cancer Res 2010; 70:1101-10. [DOI: 10.1158/0008-5472.can-09-2889] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
93
|
Paoluzzi L, O’Connor OA. Targeting Survival Pathways in Lymphoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010. [DOI: 10.1007/978-1-4419-6706-0_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
94
|
|
95
|
Perez LE, Parquet N, Meads M, Anasetti C, Dalton W. Bortezomib restores stroma-mediated APO2L/TRAIL apoptosis resistance in multiple myeloma. Eur J Haematol 2009; 84:212-22. [PMID: 19922463 DOI: 10.1111/j.1600-0609.2009.01381.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Hematopoietic stroma promotes resistance to immune control by APO2L/TRAIL in multiple myeloma (MM) cells in part by increasing synthesis of the anti-apoptotic protein c-FLIP. Here, we tested whether bortezomib can reverse the APO2L/TRAIL environmental mediated-immune resistance (EM-IR). MATERIAL AND METHODS MM cell lines (RPMI 8226 and U266) and CD138+ patient's MM cells were directly adhered to HS5 stroma exposed to HS5 or bone marrow stroma of patients with MM released soluble factors in a transwell system. Cells were treated with either APO2L/TRAIL (10 ng/mL), bortezomib (10 nm) or both. RESULTS Pretreatment with bortezomib effectively overcomes APO2L/TRAIL apoptosis resistance in myeloma cell lines and in CD138+ cells while directly adhered or in transwell assay. Bortezomib was not cytotoxic to HS5 stroma cells and only altered monocyte chemotactic protein-2-3 and IL-10 levels in the stroma-myeloma milieu. Factors released by HS5 stroma increased expression of c-FLIP, induced STAT-3 and ERK phosphorylation and reduced DR4 receptor expression in MM cells. HS5 stroma-released factor(s) induced NF-kappaB activation after 20 h exposure in association with an enhanced c-FLIP transcription. Bortezomib effectively reduced c-FLIP protein expression without affecting other proteins. Bortezomib also increased DR4 and DR5 expression in the presence of stroma. CONCLUSIONS These findings provide the rationale to combine bortezomib and APO2L/TRAIL to disrupt the influence of the stroma microenvironment on MM cells.
Collapse
Affiliation(s)
- Lia E Perez
- Department of Blood and Marrow Transplantation, H. Lee Moffitt Cancer Center, Tampa, FL 33612-9497, USA.
| | | | | | | | | |
Collapse
|
96
|
Berg D, Stühmer T, Siegmund D, Müller N, Giner T, Dittrich-Breiholz O, Kracht M, Bargou R, Wajant H. Oligomerized tumor necrosis factor-related apoptosis inducing ligand strongly induces cell death in myeloma cells, but also activates proinflammatory signaling pathways. FEBS J 2009; 276:6912-27. [PMID: 19895579 DOI: 10.1111/j.1742-4658.2009.07388.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The oligomerization status of soluble tumor necrosis factor-related apoptosis inducing ligand (TRAIL) trimers has an overwhelming impact on cell death induction in a cell-type dependent fashion. Thus, we evaluated the ability of single and oligomerized TRAIL trimers to induce cell death in human myeloma cells. In all myeloma cell lines analyzed, oligomerized TRAIL trimers induced caspase activation and complete cell death, whereas non-oligomerized TRAIL trimers showed no or only a modest effect. Caspase activation induced by oligomerized TRAIL was blocked in all cell lines by the pan-caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluoromethylketone (z-VAD-fmk). Cell death induction was largely blocked in two cell lines by z-VAD-fmk, but was only marginally attenuated in three other cell lines, indicating that TRAIL induces caspase-dependent and caspase-independent cell death in myeloma cells. Preceding cell death, TRAIL activated nuclear factor kappaB, c-Jun N-terminal kinase, p38 and p42/44. Although TRAIL-induced stimulation of c-Jun N-terminal kinase and p38 was caspase-dependent in a cell type-specific fashion, activation of nuclear factor kappaB and p42/44 was caspase-independent in all cases. In accordance with activation of the nuclear factor kappaB pathway, we observed transcriptional up-regulation of several well established nuclear factor kappaB target genes. Furthermore, we found that TRAIL activates proinflammatory pathways in approximately 50% of primary myeloma samples. Taken together, our data suggest (a) that oligomerized TRAIL variants are necessary to ensure maximal cell death induction in myeloma cells and (b) TRAIL should be used in combination with anti-inflammatory drugs for treatment of myeloma to avoid and/or minimize any potential side-effects arising from the proinflammatory properties of the molecule.
Collapse
Affiliation(s)
- Daniela Berg
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Inoue S, Harper N, Walewska R, Dyer MJS, Cohen GM. Enhanced Fas-associated death domain recruitment by histone deacetylase inhibitors is critical for the sensitization of chronic lymphocytic leukemia cells to TRAIL-induced apoptosis. Mol Cancer Ther 2009; 8:3088-97. [PMID: 19887558 DOI: 10.1158/1535-7163.mct-09-0451] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is an incurable disease characterized by failure of mature lymphocytes to undergo apoptosis. CLL cells are inherently resistant to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Pretreatment with histone deacetylase inhibitors (HDACi) sensitizes CLL cells to TRAIL-mediated apoptosis primarily via TRAIL-R1 and offers a novel approach for the therapy of CLL and other malignancies. Depsipeptide (romidepsin), a HDACi, did not enhance TRAIL binding to TRAIL-R1, TRAIL-R1 aggregation, or internalization of TRAIL-R1, but it enhanced Fas-associated death domain protein (FADD) recruitment to TRAIL-R1 in the death-inducing signaling complex. Cotreatment with phorbol 12-myristate 13-acetate (PMA), a protein kinase C (PKC) activator, dramatically inhibited the HDACi-mediated increase in FADD recruitment and sensitization to TRAIL-induced apoptosis and both of these were reversed by PKC inhibitors. Thus, enhanced FADD recruitment is a critical step in HDACi-mediated sensitization of CLL cells to TRAIL-induced apoptosis and this step is differentially affected by HDACi and phorbol 12-myristate 13-acetate. Using biotinylated TRAIL and streptactin-tagged TRAIL, we have identified several novel TRAIL receptor interacting proteins, including PKCbeta, lymphocyte-specific protease-1, Lyn, and Syk. These molecules may play an as yet unappreciated role in TRAIL signaling in CLL cells and inhibition of one or more of these kinases/phosphatases may provide a novel target to overcome TRAIL resistance.
Collapse
Affiliation(s)
- Satoshi Inoue
- MRC Toxicology Unit, University of Leicester, Leicester, UK
| | | | | | | | | |
Collapse
|
98
|
Zinonos I, Labrinidis A, Lee M, Liapis V, Hay S, Ponomarev V, Diamond P, Zannettino ACW, Findlay DM, Evdokiou A. Apomab, a fully human agonistic antibody to DR5, exhibits potent antitumor activity against primary and metastatic breast cancer. Mol Cancer Ther 2009; 8:2969-80. [PMID: 19808976 DOI: 10.1158/1535-7163.mct-09-0745] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Apomab, a fully human agonistic DR5 monoclonal antibody, triggers apoptosis through activation of the extrinsic apoptotic signaling pathway. In this study, we assessed the cytotoxic effect of Apomab in vitro and evaluated its antitumor activity in murine models of breast cancer development and progression. MDA-MB-231-TXSA breast cancer cells were transplanted into the mammary fat pad or directly into the tibial marrow cavity of nude mice. Apomab was administered early, postcancer cell transplantation, or after tumors progressed to an advanced stage. Tumor burden was monitored progressively using bioluminescence imaging, and the development of breast cancer-induced osteolysis was measured using microcomputed tomography. In vitro, Apomab treatment induced apoptosis in a panel of breast cancer cell lines but was without effect on normal human primary osteoblasts, fibroblasts, or mammary epithelial cells. In vivo, Apomab exerted remarkable tumor suppressive activity leading to complete regression of well-advanced mammary tumors. All animals transplanted with breast cancer cells directly into their tibiae developed large osteolytic lesions that eroded the cortical bone. In contrast, treatment with Apomab following an early treatment protocol inhibited both intraosseous and extraosseous tumor growth and prevented breast cancer-induced osteolysis. In the delayed treatment protocol, Apomab treatment resulted in the complete regression of advanced tibial tumors with progressive restoration of both trabecular and cortical bone leading to full resolution of osteolytic lesions. Apomab represents a potent immunotherapeutic agent with strong activity against the development and progression of breast cancer and should be evaluated in patients with primary and metastatic disease.
Collapse
Affiliation(s)
- Irene Zinonos
- Discipline of Orthopaedics and Trauma Level 4, Bice Building, Royal Adelaide Hospital, North Terrace, Adelaide 5000, South Australia, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Abstract
We earlier reported that PU.1 was downregulated in myeloma cell lines and myeloma cells in a subset of myeloma patients, and that conditional PU.1 expression in PU.1-negative myeloma cell lines, U266 and KMS12PE, induced growth arrest and apoptosis. To elucidate the molecular mechanisms of the growth arrest and apoptosis, we performed DNA microarray analyses to compare the difference in gene expression before and after PU.1 induction in U266 cells. Among cell cycle-related genes, cyclin A2, cyclin B1, CDK2 and CDK4 were downregulated and p21 was upregulated, although among apoptosis-related genes, tumor necrosis factor (TNF)-related apoptosis inducing ligand (TRAIL) was found highly upregulated. When TRAIL was knocked down by small interference RNAs, apoptosis of PU-1-expressing cells was inhibited, suggesting that TRAIL has a critical role in PU.1-induced apoptosis in both U266 and KMS12PE myeloma cells. In both U266 and KMS12PE cells expressing PU.1, PU.1 directly bound to a region 30 bp downstream of the transcription start site of the TRAIL gene. Upregulation of PU.1-induced transactivation of the TRAIL promoter in reporter assays, and disruption of the PU.1-binding site in the TRAIL promoter eliminated this transactivation. Therefore, we conclude that PU.1 is capable of inducing apoptosis in certain myeloma cells by direct transactivation of TRAIL.
Collapse
|
100
|
Negri JM, McMillin DW, Delmore J, Mitsiades N, Hayden P, Klippel S, Hideshima T, Chauhan D, Munshi NC, Buser CA, Pollard J, Richardson PG, Anderson KC, Mitsiades CS. In vitro anti-myeloma activity of the Aurora kinase inhibitor VE-465. Br J Haematol 2009; 147:672-6. [PMID: 19751238 DOI: 10.1111/j.1365-2141.2009.07891.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This study characterized the preclinical anti-myeloma activity of VE465, a low molecular weight pan-Aurora kinase inhibitor. After 96-h drug exposure, several multiple myeloma (MM) cell lines were more sensitive to VE465 compared to non-malignant cells. The anti-MM activity of VE465 was maintained in the presence of interleukin-6 and, interestingly, enhanced by co-culture with stromal cells. However, primary MM cells were less responsive than cell lines. Combinations with dexamethasone (Dex), doxorubicin (Doxo) and bortezomib showed no antagonism. Our study highlights the potential role of the tumour microenvironment in modulating the activity of this drug class.
Collapse
Affiliation(s)
- Joseph M Negri
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|