51
|
Dong XJ, Zhang H, Pan RL, Xiang LX, Shao JZ. Identification of cytokines involved in hepatic differentiation of mBM-MSCs under liver-injury conditions. World J Gastroenterol 2010; 16:3267-78. [PMID: 20614482 PMCID: PMC2900718 DOI: 10.3748/wjg.v16.i26.3267] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To identify the key cytokines involved in hepatic differentiation of mouse bone marrow mesenchymal stem cells (mBM-MSCs) under liver-injury conditions.
METHODS: Abdominal injection of CCl4 was adopted to duplicate a mouse acute liver injury model. Global gene expression analysis was performed to evaluate the potential genes involved in hepatic commitment under liver-injury conditions. The cytokines involved in hepatic differentiation of mBM-MSCs was functionally examined by depletion experiment using specific antibodies, followed by rescue experiment and direct inducing assay. The hepatic differentiation was characterized by the expression of hepatic lineage genes and proteins, as well as functional features.
RESULTS: Cytokines potentially participating in hepatic fate commitment under liver-injury conditions were initially measured by microarray. Among the up-regulated genes determined, 18 cytokines known to closely relate to liver growth, repair and development, were selected for further identification. The fibroblast growth factor-4 (FGF-4), hepatocyte growth factor (HGF) and oncostatin M (OSM) were finally found to be involved in hepatic differentiation of mBM-MSCs under liver-injury conditions. Hepatic differentiation could be dramatically decreased after removing FGF-4, HGF and OSM from the liver-injury conditioned medium, and could be rescued by supplementing these cytokines. The FGF-4, HGF and OSM play different roles in the hepatic differentiation of mBM-MSCs, in which FGF-4 and HGF are essential for the initiation of hepatic differentiation, while OSM is critical for the maturation of hepatocytes.
CONCLUSION: FGF-4, HGF and OSM are the key cytokines involved in the liver-injury conditioned medium for the hepatic differentiation of mBM-MSCs.
Collapse
|
52
|
EU research activities in alternative testing strategies: current status and future perspectives. Arch Toxicol 2009; 83:1037-42. [DOI: 10.1007/s00204-009-0484-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
53
|
Suberoylanilide hydroxamic acid promotes cardiomyocyte differentiation of rat mesenchymal stem cells. Exp Cell Res 2009; 315:3044-51. [DOI: 10.1016/j.yexcr.2009.05.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2009] [Revised: 05/04/2009] [Accepted: 05/06/2009] [Indexed: 11/20/2022]
|
54
|
Kazemnejad S. Hepatic tissue engineering using scaffolds: state of the art. Avicenna J Med Biotechnol 2009; 1:135-45. [PMID: 23408654 PMCID: PMC3558138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2009] [Accepted: 10/28/2009] [Indexed: 11/05/2022] Open
Abstract
Severe hepatic failure accounts for many deaths and raises medical costs each year worldwide. Currently, liver transplantation is the most common therapeutic option for patients with end-stage chronic liver disease. Due to decrease in the number of organ donors, many in need of transplantation continue to remain on the waiting list. Hepatic Tissue Engineering is a step toward alleviating the need for organ donors. Regenerative medicine and tissue engineering require two complementary key ingredients as follows: 1) biologically compatible scaffolds that can be readily adopted by the body system without harm, and 2) suitable cells including various stem cells or primary cells that effectively replace the damaged tissues without adverse consequences. Yet many challenges must be overcome such as scaffold choice, cell source and immunological barriers. Today, hepatogenic differentiation of stem cells has created trust and promise for use of these cells in hepatic tissue engineering and liver replacement. However, using suitable scaffolds is an important key to achieving the necessary functions required for hepatic replacement. In recent years, different scaffolds have been used for liver tissue engineering. In this review, we have presented different concepts in using cell /scaffold constructs to guide hepatic tissue engineering.
Collapse
Affiliation(s)
- Somaieh Kazemnejad
- Department of Embryology and Stem Cells, Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
55
|
Histone deacetylase inhibitors valproate and trichostatin A are toxic to neuroblastoma cells and modulate cytochrome P450 1A1, 1B1 and 3A4 expression in these cells. Interdiscip Toxicol 2009; 2:205-10. [PMID: 21217856 PMCID: PMC2984103 DOI: 10.2478/v10102-009-0019-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 08/26/2009] [Accepted: 08/27/2009] [Indexed: 12/22/2022] Open
Abstract
Histone deacetylase inhibitors such as valproic acid (VPA) and trichostatin A (TSA) were shown to exert antitumor activity. Here, the toxicity of both drugs to human neuroblastoma cell lines was investigated using MTT test, and IC50 values for both compounds were determined. Another target of this work was to evaluate the effects of both drugs on expression of cytochrome P450 (CYP) 1A1, 1B1 and 3A4 enzymes, which are known to be expressed in neuroblastoma cells. A malignant subset of neuroblastoma cells, so-called N-type cells (UKF-NB-3 cells) and the more benign S-type neuroblastoma cells (UKF-NB-4 and SK-N-AS cell lines) were studied from both two points of view. VPA and TSA inhibited the growth of neuroblastoma cells in a dose-dependent manner. The IC50 values ranging from 1.0 to 2.8 mM and from 69.8 to 129.4 nM were found for VPA and TSA, respectively. Of the neuroblastoma tested here, the N-type UKF-NB-3 cell line was the most sensitive to both drugs. The different effects of VPA and TSA were found on expression of CYP1A1, 1B1 and 3A4 enzymes in individual neuroblastoma cells tested in the study. Protein expression of all these CYP enzymes in the S-type SK-N-AS cell line was not influenced by either of studied drugs. On the contrary, in another S-type cell line, UKF-NB-4, VPA and TSA induced expression of CYP1A1, depressed levels of CYP1B1 and had no effect on expression levels of CYP3A4 enzyme. In the N-type UKF-NB-3 cell line, the expression of CYP1A1 was strongly induced, while that of CYP1B1 depressed by VPA and TSA. VPA also induced the expression of CYP3A4 in this neuroblastoma cell line.
Collapse
|
56
|
Kuo TK, Ho JH, Lee OK. Mesenchymal Stem Cell Therapy for Nonmusculoskeletal Diseases: Emerging Applications. Cell Transplant 2009; 18:1013-28. [DOI: 10.3727/096368909x471206] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mesenchymal stem cells are stem/progenitor cells originated from the mesoderm and can different into multiple cell types of the musculoskeletal system. The vast differentiation potential and the relative ease for culture expansion have established mesenchymal stem cells as the building blocks in cell therapy and tissue engineering applications for a variety of musculoskeletal diseases, including repair of fractures and bone defects, cartilage regeneration, treatment of osteonecrosis of the femoral head, and correction of genetic diseases such as osteogenesis imperfect. However, research in the past decade has revealed differentiation potentials of mesenchymal stem cells beyond lineages of the mesoderm, suggesting broader applications than originally perceived. In this article, we review the recent developments in mesenchymal stem cell research with respect to their emerging properties and applications in nonmusculoskeletal diseases.
Collapse
Affiliation(s)
- Tom K. Kuo
- Stem Cell Research Center, National Yang-Ming University, Taiwan
| | - Jennifer H. Ho
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taiwan
- Department of Ophthalmology, Taipei Medical University-Wan Fang Hospital, Taiwan
| | - Oscar K. Lee
- Stem Cell Research Center, National Yang-Ming University, Taiwan
- Institute of Clinical Medicine, National Yang-Ming University, Taiwan
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taiwan
| |
Collapse
|
57
|
Snykers S, De Kock J, Rogiers V, Vanhaecke T. In vitro differentiation of embryonic and adult stem cells into hepatocytes: state of the art. Stem Cells 2009; 27:577-605. [PMID: 19056906 PMCID: PMC2729674 DOI: 10.1634/stemcells.2008-0963] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Stem cells are a unique source of self-renewing cells within the human body. Before the end of the last millennium, adult stem cells, in contrast to their embryonic counterparts, were considered to be lineage-restricted cells or incapable of crossing lineage boundaries. However, the unique breakthrough of muscle and liver regeneration by adult bone marrow stem cells at the end of the 1990s ended this long-standing paradigm. Since then, the number of articles reporting the existence of multipotent stem cells in skin, neuronal tissue, adipose tissue, and bone marrow has escalated, giving rise, both in vivo and in vitro, to cell types other than their tissue of origin. The phenomenon of fate reprogrammation and phenotypic diversification remains, though, an enigmatic and rare process. Understanding how to control both proliferation and differentiation of stem cells and their progeny is a challenge in many fields, going from preclinical drug discovery and development to clinical therapy. In this review, we focus on current strategies to differentiate embryonic, mesenchymal(-like), and liver stem/progenitor cells into hepatocytes in vitro. Special attention is paid to intracellular and extracellular signaling, genetic modification, and cell-cell and cell-matrix interactions. In addition, some recommendations are proposed to standardize, optimize, and enrich the in vitro production of hepatocyte-like cells out of stem/progenitor cells.
Collapse
Affiliation(s)
- Sarah Snykers
- Department of Toxicology, Vrije Universiteit Brussel, Belgium.
| | | | | | | |
Collapse
|
58
|
Souza BSDF, Nogueira RC, de Oliveira SA, de Freitas LAR, Lyra LGC, Ribeiro dos Santos R, Lyra AC, Soares MBP. Current status of stem cell therapy for liver diseases. Cell Transplant 2009; 18:1261-79. [PMID: 19660179 DOI: 10.3727/096368909x470522] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Liver failure is one of the main causes of death worldwide and is a growing health problem. Since the discovery of stem cell populations capable of differentiating into specialized cell types, including hepatocytes, the possibility of their utilization in the regeneration of the damaged liver has been a focus of intense investigation. A variety of cell types were tested both in vitro and in vivo, but the definition of a more suitable cell preparation for therapeutic use in each type of liver lesions is yet to be determined. Here we review the protocols described for differentiation of stem cells into hepatocytes, the results of cell therapy in animal models of liver diseases, as well as the available data of the clinical trials in patients with advanced chronic liver disease.
Collapse
|
59
|
Snykers S, Henkens T, De Rop E, Vinken M, Fraczek J, De Kock J, De Prins E, Geerts A, Rogiers V, Vanhaecke T. Role of epigenetics in liver-specific gene transcription, hepatocyte differentiation and stem cell reprogrammation. J Hepatol 2009; 51:187-211. [PMID: 19457566 DOI: 10.1016/j.jhep.2009.03.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Controlling both growth and differentiation of stem cells and their differentiated somatic progeny is a challenge in numerous fields, from preclinical drug development to clinical therapy. Recently, new insights into the underlying molecular mechanisms have unveiled key regulatory roles of epigenetic marks driving cellular pluripotency, differentiation and self-renewal/proliferation. Indeed, the transcription of genes, governing cell-fate decisions during development and maintenance of a cell's differentiated status in adult life, critically depends on the chromatin accessibility of transcription factors to genomic regulatory and coding regions. In this review, we discuss the epigenetic control of (liver-specific) gene-transcription and the intricate interplay between chromatin modulation, including histone (de)acetylation and DNA (de)methylation, and liver-enriched transcription factors. Special attention is paid to their role in directing hepatic differentiation of primary hepatocytes and stem cells in vitro.
Collapse
Affiliation(s)
- Sarah Snykers
- Department of Toxicology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Kazemnejad S, Allameh A, Soleimani M, Gharehbaghian A, Mohammadi Y, Amirizadeh N, Jazayery M. Biochemical and molecular characterization of hepatocyte-like cells derived from human bone marrow mesenchymal stem cells on a novel three-dimensional biocompatible nanofibrous scaffold. J Gastroenterol Hepatol 2009; 24:278-87. [PMID: 18752558 DOI: 10.1111/j.1440-1746.2008.05530.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND There is significant interest in using nanofibers in tissue engineering from stem cells. The transdifferentiation of mesenchymal stem cells into the hepatic lineage in a nanofibrous structure has not been reported. In this study, a three dimensional nanofibrous scaffold is introduced for differentiation of human bone marrow derived mesenchymal stem cells (hBMSCs) into hepatocytes. METHODS A scaffold composed of Poly (epsilon-caprolactone), collagen and polyethersulfone was fabricated by the electrospinning technique. After characterization of isolated hBMSCs, the performance of the cells on the scaffold was evaluated by Scanning Electron Microscopy (SEM) and MTT assay. Cytological, molecular and biochemical markers were measured to confirm differentiation potential of hBMSCs into hepatocytes. RESULTS The isolated cells possessed the basic properties of mesenchymal stem cells (MSCs). Based on scanning electron microscope (SEM) analysis and MTT assay, it was shown that the cells adhere, penetrate and proliferate on the nanofibers. Cultured cells on the nanofibers differentiated into hepatocyte-like cells and expressed hepatocyte specific markers such as albumin, alpha-fetoprotein, cytokeratin-18, cytokeratin-19 and cytochrome P450 3A4 at mRNA levels. Appearance of a considerable number of albumin-positive cells cultivated on the scaffold (47 +/- 4%) as compared to the two-dimensional culture system (28 +/- 6%) indicates the supporting role of the scaffold. The efficiency of the cells to produce albumin, urea, transferrin, serum glutamic pyruvic transaminase and serum oxaloacetate aminotransferase in hepatocytes on the scaffold further attest to the functionality of the cells. CONCLUSION The data presented in this study show that the engineered nanofibrous scaffold is a conductive matrix which supports and enhances MSC development into functional hepatocyte-like cells.
Collapse
Affiliation(s)
- Somaieh Kazemnejad
- Department of Clinical Biochemistry, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | | | | | |
Collapse
|
61
|
Histone modification patterns and epigenetic codes. Biochim Biophys Acta Gen Subj 2009; 1790:863-8. [PMID: 19168116 DOI: 10.1016/j.bbagen.2008.12.006] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 12/22/2008] [Accepted: 12/29/2008] [Indexed: 01/19/2023]
Abstract
The eukaryotic DNA is wrapped around histone octamers, which consist of four different histones, H2A, H2B, H3 and H4. The N-terminal tail of each histone is post-transcriptionally modified. The modification patterns constitute codes that regulate chromatin organisation and DNA utilization processes, including transcription. Recent progress in technology development has made it possible to perform systematic genome-wide studies of histone modifications. This helps immensely in deciphering the histone codes and their biological influence. In this review, we discuss the histone modification patterns found in genome-wide studies in different biological models and how they influence cell differentiation and carcinogenesis.
Collapse
|
62
|
Zheng YB, Gao ZL, Xie C, Zhu HP, Peng L, Chen JH, Chong YT. Characterization and hepatogenic differentiation of mesenchymal stem cells from human amniotic fluid and human bone marrow: a comparative study. Cell Biol Int 2008; 32:1439-48. [PMID: 18782626 DOI: 10.1016/j.cellbi.2008.08.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 05/04/2008] [Accepted: 08/12/2008] [Indexed: 12/31/2022]
Abstract
Since stem cells can differentiate into hepatocyte, stem cell-based therapy becomes a potential alternative treatment for terminal liver diseases. However, an appropriate source of human mesenchymal stem cells (hMSCs) for hepatocytes has not yet been clearly elucidated. The aim of the present study was to investigate the in vitro biological characterization and hepatic differentiation potential of human amniotic fluid-derived mesenchymal stem cells (AF-hMSCs) and human bone marrow-derived mesenchymal stem cells (BM-hMSCs). Our results show that AF-hMSCs possess higher proliferation and self-renewal capacity than BM-hMSCs. Cytogenetic studies indicate that AF-hMSCs are as genetically stabile as BM-hMSCs. Following incubation with specific hepatogenic agents, AF-hMSCs showed a higher hepatic differentiation potential than BM-hMSCs. Expression of several liver-specific markers was significantly greater in AF-hMSCs than in BM-hMSCs, as shown by real time RT-PCR and immunofluorescence (IF). In conclusion, AF-hMSCs possess superior potential for hepatic differentiation, making them more suitable for diverse terminal liver diseases.
Collapse
Affiliation(s)
- Yu-Bao Zheng
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong Province, PR China
| | | | | | | | | | | | | |
Collapse
|
63
|
Lysy PA, Campard D, Smets F, Najimi M, Sokal EM. Stem cells for liver tissue repair: Current knowledge and perspectives. World J Gastroenterol 2008; 14:864-75. [PMID: 18240343 PMCID: PMC2687053 DOI: 10.3748/wjg.14.864] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Stem cells from extra- or intrahepatic sources have been recently characterized and their usefulness for the generation of hepatocyte-like lineages has been demonstrated. Therefore, they are being increasingly considered for future applications in liver cell therapy. In that field, liver cell transplantation is currently regarded as a possible alternative to whole organ transplantation, while stem cells possess theoretical advantages on hepatocytes as they display higher in vitro culture performances and could be used in autologous transplant procedures. However, the current research on the hepatic fate of stem cells is still facing difficulties to demonstrate the acquisition of a full mature hepatocyte phenotype, both in vitro and in vivo. Furthermore, the lack of obvious demonstration of in vivo hepatocyte-like cell functionality remains associated to low repopulation rates obtained after current transplantation procedures. The present review focuses on the current knowledge of the stem cell potential for liver therapy. We discuss the characteristics of the principal cell candidates and the methods to demonstrate their hepatic potential in vitro and in vivo. We finally address the question of the future clinical applications of stem cells for liver tissue repair and the technical aspects that remain to be investigated.
Collapse
|
64
|
Abstract
While genetic studies have provided a wealth of information about health and disease, there is a growing awareness that individual characteristics are also determined by factors other than genetic sequences. These "epigenetic" changes broadly encompass the influence of the environment on gene regulation and expression and in a more narrow sense, describe the mechanisms controlling DNA methylation, histone modification and genetic imprinting. In this review, we focus on the epigenetic mechanisms that regulate adult (somatic) stem cell differentiation, beginning with the metabolic pathways and factors regulating chromatin structure and DNA methylation and the molecular biological tools that are currently available to study these processes. The role of these epigenetic mechanisms in manipulating adult stem cells is followed by a discussion of the challenges and opportunities facing this emerging field.
Collapse
Affiliation(s)
- Kenneth J Eilertsen
- Epigenetics and Nuclear Reprogramming Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA.
| | | | | |
Collapse
|