51
|
Tam JKV, Lau KW, Lee LTO, Chu JYS, Ng KM, Fournier A, Vaudry H, Chow BKC. Origin of secretin receptor precedes the advent of tetrapoda: evidence on the separated origins of secretin and orexin. PLoS One 2011; 6:e19384. [PMID: 21559418 PMCID: PMC3084839 DOI: 10.1371/journal.pone.0019384] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 03/28/2011] [Indexed: 11/19/2022] Open
Abstract
At present, secretin and its receptor have only been identified in mammals, and the origin of this ligand-receptor pair in early vertebrates is unclear. In addition, the elusive similarities of secretin and orexin in terms of both structures and functions suggest a common ancestral origin early in the vertebrate lineage. In this article, with the cloning and functional characterization of secretin receptors from lungfish and X. laevis as well as frog (X. laevis and Rana rugulosa) secretins, we provide evidence that the secretin ligand-receptor pair has already diverged and become highly specific by the emergence of tetrapods. The secretin receptor-like sequence cloned from lungfish indicates that the secretin receptor was descended from a VPAC-like receptor prior the advent of sarcopterygians. To clarify the controversial relationship of secretin and orexin, orexin type-2 receptor was cloned from X. laevis. We demonstrated that, in frog, secretin and orexin could activate their mutual receptors, indicating their coordinated complementary role in mediating physiological processes in non-mammalian vertebrates. However, among the peptides in the secretin/glucagon superfamily, secretin was found to be the only peptide that could activate the orexin receptor. We therefore hypothesize that secretin and orexin are of different ancestral origins early in the vertebrate lineage.
Collapse
Affiliation(s)
- Janice K. V. Tam
- School of Biological Sciences, Research Centre of Heart, Brain, Hormone and Healthy Ageing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kwan-Wa Lau
- School of Biological Sciences, Research Centre of Heart, Brain, Hormone and Healthy Ageing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Leo T. O. Lee
- School of Biological Sciences, Research Centre of Heart, Brain, Hormone and Healthy Ageing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Jessica Y. S. Chu
- School of Biological Sciences, Research Centre of Heart, Brain, Hormone and Healthy Ageing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kwong-Man Ng
- Stem Cell & Regenerative Medicine Program, Research Centre of Heart, Brain, Hormone and Healthy Ageing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Alain Fournier
- INRS – Institut Armand-Frappier, Université du Quebec, Laval, Québec, Canada
| | - Hubert Vaudry
- INSERM U982, European Institute for Peptide Research, University of Rouen, Mont-Saint-Aignan, France
| | - Billy K. C. Chow
- School of Biological Sciences, Research Centre of Heart, Brain, Hormone and Healthy Ageing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- * E-mail:
| |
Collapse
|
52
|
Ji XS, Chen SL, Jiang YL, Xu TJ, Yang JF, Tian YS. Growth differences and differential expression analysis of pituitary adenylate cyclase activating polypeptide (PACAP) and growth hormone-releasing hormone (GHRH) between the sexes in half-smooth tongue sole Cynoglossus semilaevis. Gen Comp Endocrinol 2011; 170:99-109. [PMID: 20858497 DOI: 10.1016/j.ygcen.2010.09.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 09/09/2010] [Accepted: 09/14/2010] [Indexed: 11/20/2022]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) and growth hormone-releasing hormone (GHRH) are regulators of growth hormone secretion. In this article, we examined the difference in growth and mRNA expression of PACAP and GHRH between the sexes in half-smooth tongue sole, an important cultured fish species indicating sexually growth dimorphism in China. Firstly, a significant body weight difference between females and males was first observed at 7 months (P<0.05) and at 18 onths the mean body weight of the females (771.0±44.3 g) was as much as 4.9 times higher than that of males (130.6±6.0 g). As a result, half-smooth tongue sole, Cynoglossus semilaevis, is a good model to investigate the effects of growth-related genes expression on sexual growth dimorphism. Secondly, the cDNAs encoding PRP/PACAP and GHRH were isolated. Two differently processed mRNA transcripts of PRP/PACAP (PRP-encoding and PRP splice variant) were found. PACAP and GHRH mRNA was highly abundant in brain and less abundant in other tissues. However, PACAP mRNA was expressed in most brain regions, and was lower in the cerebellum. GHRH mRNA was predominantly expressed in the hypothalamus and weakly expressed in all areas of the brain examined. Ontogenetic expression analysis indicated that PACAP and GHRH mRNA was detected in the early stages of embryogenesis. Finally, differential expression showed that there was no significant difference of the expression level of PACAP or GHRH between the sexes before 8 months of age. However, between 9 and 12 months of age, the GHRH mRNA expression level in males was significantly higher than in females (P<0.05), which might be associated with GH deficiency in males. In contrast, the male PACAP mRNA expression level was not significantly higher than that in females even at 9 and 12 months of age. The present results provide important clues for understanding the sexual growth dimorphism mechanisms in half-smooth tongue sole.
Collapse
Affiliation(s)
- Xiang-Shan Ji
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | | | | | | | | | | |
Collapse
|