51
|
Genetic diversity analysis of the cucurbit powdery mildew fungus Podosphaera xanthii suggests a clonal population structure. Fungal Biol 2015; 119:791-801. [DOI: 10.1016/j.funbio.2015.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 05/07/2015] [Accepted: 05/11/2015] [Indexed: 11/22/2022]
|
52
|
Barba P, Cadle-Davidson L, Galarneau E, Reisch B. Vitis rupestris B38 Confers Isolate-Specific Quantitative Resistance to Penetration by Erysiphe necator. PHYTOPATHOLOGY 2015; 105:1097-103. [PMID: 26039640 DOI: 10.1094/phyto-09-14-0260-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Vitis rupestris B38 is a North American grapevine resistant to the major pathogen of cultivated grapevines, Erysiphe necator. Sources of powdery mildew resistance, like V. rotundifolia, are widely used in grape breeding but are already threatened, even before commercialization, by isolates that can reproduce on Run1 and other rotundifolia-derived breeding lines. Thus, complementary sources of resistance are needed to improve resistance durability. The segregation of foliar powdery mildew severity in an F1 family, derived from a cross of V. rupestris B38×V. vinifera 'Chardonnay', was observed in the field over three growing seasons and in potted vines following single-isolate inoculation. A pattern of continuous variation was observed in every instance. Mechanisms of resistance were analyzed on the resistant and susceptible parent by using microscopy to quantify the ability of the pathogen to penetrate and to form a colony on detached leaves. While 'Chardonnay' was susceptible in all tested conditions, V. rupestris B38 resistance was characterized by a reduction in pathogen penetration, with an effect of leaf position and significant differences among powdery mildew isolates. Segregation of the ability of the pathogen to penetrate and form a colony in F1 individuals showed a pattern of quantitative penetration resistance with no delay or restriction on colony formation once penetration has been achieved. Moreover, V. rupestris B38 showed an enhanced penetration resistance to a powdery mildew isolate with the ability to overcome the Run1 gene, making it an interesting resistance source to prolong the durability of this gene.
Collapse
Affiliation(s)
- Paola Barba
- First author: Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853; second and third authors: U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Grape Genetics Research Unit, Geneva, NY 14456; and fourth author: Horticulture Section, School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456
| | - Lance Cadle-Davidson
- First author: Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853; second and third authors: U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Grape Genetics Research Unit, Geneva, NY 14456; and fourth author: Horticulture Section, School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456
| | - Erin Galarneau
- First author: Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853; second and third authors: U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Grape Genetics Research Unit, Geneva, NY 14456; and fourth author: Horticulture Section, School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456
| | - Bruce Reisch
- First author: Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853; second and third authors: U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Grape Genetics Research Unit, Geneva, NY 14456; and fourth author: Horticulture Section, School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456
| |
Collapse
|
53
|
Turan C, Nanni IM, Brunelli A, Collina M. New rapid DNA extraction method with Chelex from Venturia inaequalis spores. J Microbiol Methods 2015; 115:139-43. [DOI: 10.1016/j.mimet.2015.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/10/2015] [Accepted: 06/11/2015] [Indexed: 11/25/2022]
|
54
|
Feechan A, Kocsis M, Riaz S, Zhang W, Gadoury DM, Walker MA, Dry IB, Reisch B, Cadle-Davidson L. Strategies for RUN1 Deployment Using RUN2 and REN2 to Manage Grapevine Powdery Mildew Informed by Studies of Race Specificity. PHYTOPATHOLOGY 2015; 105:1104-13. [PMID: 26039639 DOI: 10.1094/phyto-09-14-0244-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The Toll/interleukin-1 receptor nucleotide-binding site leucine-rich repeat gene, "resistance to Uncinula necator 1" (RUN1), from Vitis rotundifolia was recently identified and confirmed to confer resistance to the grapevine powdery mildew fungus Erysiphe necator (syn. U. necator) in transgenic V. vinifera cultivars. However, sporulating powdery mildew colonies and cleistothecia of the heterothallic pathogen have been found on introgression lines containing the RUN1 locus growing in New York (NY). Two E. necator isolates collected from RUN1 vines were designated NY1-131 and NY1-137 and were used in this study to inform a strategy for durable RUN1 deployment. In order to achieve this, fitness parameters of NY1-131 and NY1-137 were quantified relative to powdery mildew isolates collected from V. rotundifolia and V. vinifera on vines containing alleles of the powdery mildew resistance genes RUN1, RUN2, or REN2. The results clearly demonstrate the race specificity of RUN1, RUN2, and REN2 resistance alleles, all of which exhibit programmed cell death (PCD)-mediated resistance. The NY1 isolates investigated were found to have an intermediate virulence on RUN1 vines, although this may be allele specific, while the Musc4 isolate collected from V. rotundifolia was virulent on all RUN1 vines. Another powdery mildew resistance locus, RUN2, was previously mapped in different V. rotundifolia genotypes, and two alleles (RUN2.1 and RUN2.2) were identified. The RUN2.1 allele was found to provide PCD-mediated resistance to both an NY1 isolate and Musc4. Importantly, REN2 vines were resistant to the NY1 isolates and RUN1REN2 vines combining both genes displayed additional resistance. Based on these results, RUN1-mediated resistance in grapevine may be enhanced by pyramiding with RUN2.1 or REN2; however, naturally occurring isolates in North America display some virulence on vines with these resistance genes. The characterization of additional resistance sources is needed to identify resistance gene combinations that will further enhance durability. For the resistance gene combinations currently available, we recommend using complementary management strategies, including fungicide application, to reduce populations of virulent isolates.
Collapse
Affiliation(s)
- Angela Feechan
- First and seventh authors: CSIRO Agriculture Flagship, Urrbrae, South Australia 5064, Australia; second author: Department of Plant Biology, University of Pécs, Pécs 7624, Hungary; third and sixth authors: Department of Viticulture and Enology, University of California, Davis 95616; fourth author: Institute of Plant and Environment Protection, Beijing Academy of Agriculture & Forestry Sciences, Beijing 100097; fifth author: Plant Pathology and Plant-Microbe Biology Section, Cornell University, New York State Agricultural Experiment Station, Geneva 14456; eighth author: Horticulture Section, Cornell University, New York State Agricultural Experiment Station, Geneva; and ninth author: United States Department of Agriculture-Agricultural Research Service, Grape Genetics Research Unit, Geneva, NY 14456
| | - Marianna Kocsis
- First and seventh authors: CSIRO Agriculture Flagship, Urrbrae, South Australia 5064, Australia; second author: Department of Plant Biology, University of Pécs, Pécs 7624, Hungary; third and sixth authors: Department of Viticulture and Enology, University of California, Davis 95616; fourth author: Institute of Plant and Environment Protection, Beijing Academy of Agriculture & Forestry Sciences, Beijing 100097; fifth author: Plant Pathology and Plant-Microbe Biology Section, Cornell University, New York State Agricultural Experiment Station, Geneva 14456; eighth author: Horticulture Section, Cornell University, New York State Agricultural Experiment Station, Geneva; and ninth author: United States Department of Agriculture-Agricultural Research Service, Grape Genetics Research Unit, Geneva, NY 14456
| | - Summaira Riaz
- First and seventh authors: CSIRO Agriculture Flagship, Urrbrae, South Australia 5064, Australia; second author: Department of Plant Biology, University of Pécs, Pécs 7624, Hungary; third and sixth authors: Department of Viticulture and Enology, University of California, Davis 95616; fourth author: Institute of Plant and Environment Protection, Beijing Academy of Agriculture & Forestry Sciences, Beijing 100097; fifth author: Plant Pathology and Plant-Microbe Biology Section, Cornell University, New York State Agricultural Experiment Station, Geneva 14456; eighth author: Horticulture Section, Cornell University, New York State Agricultural Experiment Station, Geneva; and ninth author: United States Department of Agriculture-Agricultural Research Service, Grape Genetics Research Unit, Geneva, NY 14456
| | - Wei Zhang
- First and seventh authors: CSIRO Agriculture Flagship, Urrbrae, South Australia 5064, Australia; second author: Department of Plant Biology, University of Pécs, Pécs 7624, Hungary; third and sixth authors: Department of Viticulture and Enology, University of California, Davis 95616; fourth author: Institute of Plant and Environment Protection, Beijing Academy of Agriculture & Forestry Sciences, Beijing 100097; fifth author: Plant Pathology and Plant-Microbe Biology Section, Cornell University, New York State Agricultural Experiment Station, Geneva 14456; eighth author: Horticulture Section, Cornell University, New York State Agricultural Experiment Station, Geneva; and ninth author: United States Department of Agriculture-Agricultural Research Service, Grape Genetics Research Unit, Geneva, NY 14456
| | - David M Gadoury
- First and seventh authors: CSIRO Agriculture Flagship, Urrbrae, South Australia 5064, Australia; second author: Department of Plant Biology, University of Pécs, Pécs 7624, Hungary; third and sixth authors: Department of Viticulture and Enology, University of California, Davis 95616; fourth author: Institute of Plant and Environment Protection, Beijing Academy of Agriculture & Forestry Sciences, Beijing 100097; fifth author: Plant Pathology and Plant-Microbe Biology Section, Cornell University, New York State Agricultural Experiment Station, Geneva 14456; eighth author: Horticulture Section, Cornell University, New York State Agricultural Experiment Station, Geneva; and ninth author: United States Department of Agriculture-Agricultural Research Service, Grape Genetics Research Unit, Geneva, NY 14456
| | - M Andrew Walker
- First and seventh authors: CSIRO Agriculture Flagship, Urrbrae, South Australia 5064, Australia; second author: Department of Plant Biology, University of Pécs, Pécs 7624, Hungary; third and sixth authors: Department of Viticulture and Enology, University of California, Davis 95616; fourth author: Institute of Plant and Environment Protection, Beijing Academy of Agriculture & Forestry Sciences, Beijing 100097; fifth author: Plant Pathology and Plant-Microbe Biology Section, Cornell University, New York State Agricultural Experiment Station, Geneva 14456; eighth author: Horticulture Section, Cornell University, New York State Agricultural Experiment Station, Geneva; and ninth author: United States Department of Agriculture-Agricultural Research Service, Grape Genetics Research Unit, Geneva, NY 14456
| | - Ian B Dry
- First and seventh authors: CSIRO Agriculture Flagship, Urrbrae, South Australia 5064, Australia; second author: Department of Plant Biology, University of Pécs, Pécs 7624, Hungary; third and sixth authors: Department of Viticulture and Enology, University of California, Davis 95616; fourth author: Institute of Plant and Environment Protection, Beijing Academy of Agriculture & Forestry Sciences, Beijing 100097; fifth author: Plant Pathology and Plant-Microbe Biology Section, Cornell University, New York State Agricultural Experiment Station, Geneva 14456; eighth author: Horticulture Section, Cornell University, New York State Agricultural Experiment Station, Geneva; and ninth author: United States Department of Agriculture-Agricultural Research Service, Grape Genetics Research Unit, Geneva, NY 14456
| | - Bruce Reisch
- First and seventh authors: CSIRO Agriculture Flagship, Urrbrae, South Australia 5064, Australia; second author: Department of Plant Biology, University of Pécs, Pécs 7624, Hungary; third and sixth authors: Department of Viticulture and Enology, University of California, Davis 95616; fourth author: Institute of Plant and Environment Protection, Beijing Academy of Agriculture & Forestry Sciences, Beijing 100097; fifth author: Plant Pathology and Plant-Microbe Biology Section, Cornell University, New York State Agricultural Experiment Station, Geneva 14456; eighth author: Horticulture Section, Cornell University, New York State Agricultural Experiment Station, Geneva; and ninth author: United States Department of Agriculture-Agricultural Research Service, Grape Genetics Research Unit, Geneva, NY 14456
| | - Lance Cadle-Davidson
- First and seventh authors: CSIRO Agriculture Flagship, Urrbrae, South Australia 5064, Australia; second author: Department of Plant Biology, University of Pécs, Pécs 7624, Hungary; third and sixth authors: Department of Viticulture and Enology, University of California, Davis 95616; fourth author: Institute of Plant and Environment Protection, Beijing Academy of Agriculture & Forestry Sciences, Beijing 100097; fifth author: Plant Pathology and Plant-Microbe Biology Section, Cornell University, New York State Agricultural Experiment Station, Geneva 14456; eighth author: Horticulture Section, Cornell University, New York State Agricultural Experiment Station, Geneva; and ninth author: United States Department of Agriculture-Agricultural Research Service, Grape Genetics Research Unit, Geneva, NY 14456
| |
Collapse
|
55
|
Stewart JE, Brooks K, Brannen PM, Cline WO, Brewer MT. Elevated Genetic Diversity in the Emerging Blueberry Pathogen Exobasidium maculosum. PLoS One 2015; 10:e0132545. [PMID: 26207812 PMCID: PMC4514876 DOI: 10.1371/journal.pone.0132545] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 06/17/2015] [Indexed: 01/26/2023] Open
Abstract
Emerging diseases caused by fungi are increasing at an alarming rate. Exobasidium leaf and fruit spot of blueberry, caused by the fungus Exobasidium maculosum, is an emerging disease that has rapidly increased in prevalence throughout the southeastern USA, severely reducing fruit quality in some plantings. The objectives of this study were to determine the genetic diversity of E. maculosum in the southeastern USA to elucidate the basis of disease emergence and to investigate if populations of E. maculosum are structured by geography, host species, or tissue type. We sequenced three conserved loci from 82 isolates collected from leaves and fruit of rabbiteye blueberry (Vaccinium virgatum), highbush blueberry (V. corymbosum), and southern highbush blueberry (V. corymbosum hybrids) from commercial fields in Georgia and North Carolina, USA, and 6 isolates from lowbush blueberry (V. angustifolium) from Maine, USA, and Nova Scotia, Canada. Populations of E. maculosum from the southeastern USA and from lowbush blueberry in Maine and Nova Scotia are distinct, but do not represent unique species. No difference in genetic structure was detected between different host tissues or among different host species within the southeastern USA; however, differentiation was detected between populations in Georgia and North Carolina. Overall, E. maculosum showed extreme genetic diversity within the conserved loci with 286 segregating sites among the 1,775 sequenced nucleotides and each isolate representing a unique multilocus haplotype. However, 94% of the nucleotide substitutions were silent, so despite the high number of mutations, selective constraints have limited changes to the amino acid sequences of the housekeeping genes. Overall, these results suggest that the emergence of Exobasidium leaf and fruit spot is not due to a recent introduction or host shift, or the recent evolution of aggressive genotypes of E. maculosum, but more likely as a result of an increasing host population or an environmental change.
Collapse
Affiliation(s)
- Jane E. Stewart
- Department of Plant Pathology, University of Georgia, Athens, Georgia, United States of America
| | - Kyle Brooks
- Department of Plant Pathology, University of Georgia, Athens, Georgia, United States of America
| | - Phillip M. Brannen
- Department of Plant Pathology, University of Georgia, Athens, Georgia, United States of America
| | - William O. Cline
- Department of Plant Pathology, North Carolina State University, Horticultural Crops Research Station, Castle Hayne, North Carolina, United States of America
| | - Marin T. Brewer
- Department of Plant Pathology, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
56
|
Brewer MT, Rath M, Li HX. Genetic Diversity and Population Structure of Cucurbit Gummy Stem Blight Fungi Based on Microsatellite Markers. PHYTOPATHOLOGY 2015; 105:815-824. [PMID: 25710205 DOI: 10.1094/phyto-10-14-0282-r] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Combining population genetics with epidemiology provides insight into the population biology of pathogens, which could lead to improved management of plant diseases. Gummy stem blight, caused by three closely related species of Stagonosporopsis-Stagonosporopsis cucurbitacearum (syn. Didymella bryoniae), S. citrulli, and S. caricae-is a devastating disease of cucurbits worldwide. Sources of inoculum for epidemics, mechanisms of dispersal, and the mating system of these species are not well understood. To improve our knowledge of gummy stem blight epidemiology, we developed 18 polymorphic microsatellite markers by combining microsatellite motif enrichment with next-generation sequencing. When tested on 46 isolates from diverse cucurbit hosts and regions, the markers were robust for the dominant and widely distributed S. citrulli. Within this species, we found no population structure based on broad-scale geographic region or host of origin. Using the microsatellites, a rapid polymerase chain reaction-based method was developed to distinguish the three morphologically similar species causing gummy stem blight. To better understand dispersal, reproduction, and fine-scale genetic diversity of S. citrulli within and among watermelon fields, 155 isolates from two field populations in Georgia, United States were genotyped with the 18 microsatellite loci. Although dominant and widespread clones were detected, we found relatively high genotypic diversity and recombinant genotypes consistent with outcrossing. Significant population genetic structure between the two field populations demonstrated that there is regional geographic structure and limited dispersal among fields. This study provides insight into the fine-scale genetic diversity and reproductive biology of the gummy stem blight pathogen S. citrulli in the field.
Collapse
Affiliation(s)
| | - Manisha Rath
- Department of Plant Pathology, University of Georgia, Athens
| | - Hao-Xi Li
- Department of Plant Pathology, University of Georgia, Athens
| |
Collapse
|
57
|
Qiu W, Feechan A, Dry I. Current understanding of grapevine defense mechanisms against the biotrophic fungus (Erysiphe necator), the causal agent of powdery mildew disease. HORTICULTURE RESEARCH 2015; 2:15020. [PMID: 26504571 PMCID: PMC4595975 DOI: 10.1038/hortres.2015.20] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/19/2015] [Accepted: 04/19/2015] [Indexed: 05/02/2023]
Abstract
The most economically important disease of cultivated grapevines worldwide is powdery mildew (PM) caused by the ascomycete fungus Erysiphe necator. The majority of grapevine cultivars used for wine, table grape, and dried fruit production are derived from the Eurasian grape species Vitis vinifera because of its superior aroma and flavor characteristics. However, this species has little genetic resistance against E. necator meaning that grape production is highly dependent on the frequent use of fungicides. The integration of effective genetic resistance into cultivated grapevines would lead to significant financial and environmental benefits and represents a major challenge for viticultural industries and researchers worldwide. This review will outline the strategies being used to increase our understanding of the molecular basis of V. vinifera susceptibility to this fungal pathogen. It will summarize our current knowledge of different resistance loci/genes that have evolved in wild grapevine species to restrict PM infection and assess the potential application of these defense genes in the generation of PM-resistant grapevine germplasm. Finally, it addresses future research priorities which will be important in the rapid identification, evaluation, and deployment of new PM resistance genes which are capable of conferring effective and durable resistance in the vineyard.
Collapse
Affiliation(s)
- Wenping Qiu
- Center for Grapevine Biotechnology, W. H. Darr School of Agriculture, Missouri State University, Mountain Grove, MO 65711, USA
| | - Angela Feechan
- School of Agriculture & Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ian Dry
- CSIRO Agriculture, Wine Innovation West Building, Waite Campus, Hartley Grove, Urrbrae, SA 5064, Australia
| |
Collapse
|
58
|
Frenkel O, Cadle-Davidson L, Wilcox WF, Milgroom MG. Mechanisms of Resistance to an Azole Fungicide in the Grapevine Powdery Mildew Fungus, Erysiphe necator. PHYTOPATHOLOGY 2015; 105:370-7. [PMID: 25271353 DOI: 10.1094/phyto-07-14-0202-r] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We studied the mechanisms of azole resistance in Erysiphe necator by quantifying the sensitivity to myclobutanil (EC50) in 65 isolates from the eastern United States and 12 from Chile. From each isolate, we sequenced the gene for sterol 14α-demethylase (CYP51), and measured the expression of CYP51 and homologs of four putative efflux transporter genes, which we identified in the E. necator transcriptome. Sequence variation in CYP51 was relatively low, with sequences of 40 U.S. isolates identical to the reference sequence. Nine U.S. isolates and five from Chile carried a previously identified A to T nucleotide substitution in position 495 (A495T), which results in an amino acid substitution in codon 136 (Y136F) and correlates with high levels of azole resistance. We also found a nucleotide substitution in position 1119 (A1119C) in 15 U.S. isolates, whose mean EC50 value was equivalent to that for the Y136F isolates. Isolates carrying mutation A1119C had significantly greater CYP51 expression, even though A1119C does not affect the CYP51 amino acid sequence. Regression analysis showed no significant effects of the expression of efflux transporter genes on EC50. Both the Y136F mutation in CYP51 and increased CYP51 expression appear responsible for azole resistance in eastern U.S. populations of E. necator.
Collapse
|
59
|
Jones L, Riaz S, Morales-Cruz A, Amrine KCH, McGuire B, Gubler WD, Walker MA, Cantu D. Adaptive genomic structural variation in the grape powdery mildew pathogen, Erysiphe necator. BMC Genomics 2014; 15:1081. [PMID: 25487071 PMCID: PMC4298948 DOI: 10.1186/1471-2164-15-1081] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 12/01/2014] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Powdery mildew, caused by the obligate biotrophic fungus Erysiphe necator, is an economically important disease of grapevines worldwide. Large quantities of fungicides are used for its control, accelerating the incidence of fungicide-resistance. Copy number variations (CNVs) are unbalanced changes in the structure of the genome that have been associated with complex traits. In addition to providing the first description of the large and highly repetitive genome of E. necator, this study describes the impact of genomic structural variation on fungicide resistance in Erysiphe necator. RESULTS A shotgun approach was applied to sequence and assemble the genome of five E. necator isolates, and RNA-seq and comparative genomics were used to predict and annotate protein-coding genes. Our results show that the E. necator genome is exceptionally large and repetitive and suggest that transposable elements are responsible for genome expansion. Frequent structural variations were found between isolates and included copy number variation in EnCYP51, the target of the commonly used sterol demethylase inhibitor (DMI) fungicides. A panel of 89 additional E. necator isolates collected from diverse vineyard sites was screened for copy number variation in the EnCYP51 gene and for presence/absence of a point mutation (Y136F) known to result in higher fungicide tolerance. We show that an increase in EnCYP51 copy number is significantly more likely to be detected in isolates collected from fungicide-treated vineyards. Increased EnCYP51 copy numbers were detected with the Y136F allele, suggesting that an increase in copy number becomes advantageous only after the fungicide-tolerant allele is acquired. We also show that EnCYP51 copy number influences expression in a gene-dose dependent manner and correlates with fungal growth in the presence of a DMI fungicide. CONCLUSIONS Taken together our results show that CNV can be adaptive in the development of resistance to fungicides by providing increasing quantitative protection in a gene-dosage dependent manner. The results of this work not only demonstrate the effectiveness of using genomics to dissect complex traits in organisms with very limited molecular information, but also may have broader implications for understanding genomic dynamics in response to strong selective pressure in other pathogens with similar genome architectures.
Collapse
Affiliation(s)
- Laura Jones
- />Department of Viticulture and Enology, University of California Davis, One Shields Ave, Davis, CA 95616 USA
| | - Summaira Riaz
- />Department of Viticulture and Enology, University of California Davis, One Shields Ave, Davis, CA 95616 USA
| | - Abraham Morales-Cruz
- />Department of Viticulture and Enology, University of California Davis, One Shields Ave, Davis, CA 95616 USA
| | - Katherine CH Amrine
- />Department of Viticulture and Enology, University of California Davis, One Shields Ave, Davis, CA 95616 USA
| | - Brianna McGuire
- />Department of Plant Pathology, University of California Davis, One Shields Ave, Davis, CA 95616 USA
| | - W Douglas Gubler
- />Department of Plant Pathology, University of California Davis, One Shields Ave, Davis, CA 95616 USA
| | - M Andrew Walker
- />Department of Viticulture and Enology, University of California Davis, One Shields Ave, Davis, CA 95616 USA
| | - Dario Cantu
- />Department of Viticulture and Enology, University of California Davis, One Shields Ave, Davis, CA 95616 USA
| |
Collapse
|
60
|
Rallos LEE, Johnson NG, Schmale DG, Prussin AJ, Baudoin AB. Fitness of Erysiphe necator with G143A-Based Resistance to Quinone Outside Inhibitors. PLANT DISEASE 2014; 98:1494-1502. [PMID: 30699792 DOI: 10.1094/pdis-12-13-1202-re] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Management of grape powdery mildew (Erysiphe necator) using quinone outside inhibitors (QoIs) has eroded in an increasing number of regions due to resistance development. To determine persistence of resistance when QoIs are withdrawn, competition assays were conducted on unsprayed grape plants (Vitis vinifera 'Chardonnay') by cycling mixtures of resistant and sensitive isolates characterized as genetically diverse based on microsatellite analyses. Under laboratory conditions, %G143A, quantified by quantitative polymerase chain reaction (qPCR), increased significantly, indicating competitiveness of the resistant fraction. To confirm competitiveness in the field, trials using potted plants were conducted. Percent G143A tended to decrease in one growing season, probably due to spore migration and mixing of populations with natural background inoculum. In a second season, QoI resistance persisted at high frequency for 4 weeks. Resistant populations were also found to persist in one vineyard without QoI application for four consecutive years. The frequency was still about 25% in the fourth year, with higher frequency (36%) in a hotspot section. QoI-resistant populations with >5% G143A also harbored Y136F in the cyp51 gene that confers some resistance to sterol demethylation inhibitors, another fungicide class for powdery mildew control. Double resistance could have been partly responsible for persistence of QoI resistance at this location.
Collapse
Affiliation(s)
- Lynn Esther E Rallos
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA 24061
| | - Nels G Johnson
- Laboratory for Interdisciplinary Statistical Analysis (LISA), Department of Statistics, Virginia Tech, Blacksburg, VA 24061
| | - David G Schmale
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA 24061
| | - Aaron J Prussin
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA 24061
| | - Anton B Baudoin
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA 24061
| |
Collapse
|
61
|
Wang L, Wei J, Zou Y, Xu K, Wang Y, Cui L, Xu Y. Molecular characteristics and biochemical functions of VpPR10s from Vitis pseudoreticulata associated with biotic and abiotic stresses. Int J Mol Sci 2014; 15:19162-82. [PMID: 25340981 PMCID: PMC4227267 DOI: 10.3390/ijms151019162] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/05/2014] [Accepted: 10/13/2014] [Indexed: 11/17/2022] Open
Abstract
Grapes are one of the world's oldest and most important fruit crops. They are of high economic value in many countries, but the susceptibility of the dominant winegrape species Vitis vinifera to fungal disease is a significant problem. The Chinese wild grape species are a rich source of disease-resistance genes and these can be used to discover how disease resistance in V. vinifera grapevines might be enhanced. Pathogenesis-related (PR) 10 proteins are involved in the disease-response. Here, we use the genomic DNA of the Chinese wild species Vitis pseudoreticulata accession "Baihe-35-1" as the template to design specific primers based on VvPR10s sequences. We used overlap extension PCR to obtain the sequences: VpPR10.4, VpPR10.6, VpPR10.7 and VpPR10.9. The coding sequences of the VpPR10s were then cloned into the pGEX-4T-1 vector. The purified proteins VpPR10.4, VpPR10.6, VpPR10.7 and VpPR10.9 were used to analyse nuclease activity. Meanwhile, functional analysis of VpPR10s under different biotic and abiotic stresses was carried out to further clarify the disease-resistance mechanisms of the Chinese wild grapevine VpPR10 genes. The analysis of protein structure indicates that VpPR10.4 and VpPR10.7 had the P-loop domain and the Bet v 1 motif, which are a consistent feature of plant PR10. However, there was no P-loop domain or Bet v 1 motif in VpPR10.9 and we could not find the Bet v 1 motif in VpPR10.6. The results of the nuclease activity assay and of the functional analyses of VpPR10s under different biotic and abiotic stresses also confirm that VpPR10.4 and VpPR10.7 proteins have marked RNase, DNase, anti-fungal activities and respond to abiotic stresses. The VpPR10.6 and VpPR10.9 proteins do not have these activities and functions.
Collapse
Affiliation(s)
- Lan Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Jinyu Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Ying Zou
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Keyao Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yuejin Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Lu Cui
- College of Food Science Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yan Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
62
|
Ciampi-Guillardi M, Baldauf C, Souza AP, Silva-Junior GJ, Amorim L. Recent introduction and recombination in Colletotrichum acutatum populations associated with citrus postbloom fruit drop epidemics in São Paulo, Brazil. PHYTOPATHOLOGY 2014; 104:769-778. [PMID: 24423403 DOI: 10.1094/phyto-06-13-0165-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Citrus crops in São Paulo State, Brazil, have been severely affected by postbloom fruit drop disease (PFD), which is caused by Colletotrichum acutatum. This disease leads to the drop of up to 100% of young fruits. Previous studies have assumed that this pathogen exhibits a clonal reproductive mode, although no population genetic studies have been conducted so far. Thus, the genetic structure of six C. acutatum populations from sweet orange orchards showing PFD symptoms was determined using nine microsatellite markers, enabling inference on predominant mode of reproduction. C. acutatum populations exhibit a nearly panmictic genetic structure and a high degree of admixture, indicating either ongoing contemporary gene flow at a regional scale or a recent introduction from a common source, since this pathogen was introduced in Brazil only very recently. Sharing haplotypes among orchards separated by 400 km suggests the natural dispersal of fungal propagules, with the possible involvement of pollinators. A significant population expansion was detected, which was consistent with an increase in host density associated with crop expansion toward new areas across the state. Findings of moderate to high levels of haplotypic diversity and gametic equilibrium suggest that recombination might play an important role in these pathogen populations, possibly via parasexual reproduction or a cryptic sexual cycle. This study provides additional tools for epidemiological studies of C. acutatum to improve prevention and management strategies for this disease.
Collapse
|
63
|
Rolshausen PE, Baumgartner K, Travadon R, Fujiyoshi P, Pouzoulet J, Wilcox WF. Identification of Eutypa spp. Causing Eutypa Dieback of Grapevine in Eastern North America. PLANT DISEASE 2014; 98:483-491. [PMID: 30708722 DOI: 10.1094/pdis-08-13-0883-re] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Eutypa dieback of grapevine is caused by Eutypa lata in production areas with Mediterranean climates in California, Australasia, Europe, and South Africa. Eutypa dieback has also been described in the colder, eastern North American vineyards where cultivars adapted from native Vitis spp. (e.g., Vitis × labruscana 'Concord') are primarily grown. However, the causal agents associated with the diseases in this region have not been conclusively identified. Examination of 48 vineyards showing symptoms of dieback in the northeastern United States (Connecticut, Massachusetts, Michigan, New York, Ohio, and Rhode Island) and Ontario, Canada revealed that vineyards were mainly infected by Eutypa spp. other than E. lata. Multigene phylogenies (internal transcribed spacer ribosomal DNA, β-tubulin, and RNA polymerase II) of isolates recovered from these vineyards indicated that Eutypa dieback is caused primarily by an undescribed Eutypa sp. and E. laevata. Eutypa sp. was recovered from 56% of the vineyards examined, whereas E. laevata and E. lata were less far common (17 and 6%, respectively). Fruiting body morphology and spore dimensions supported phylogenetic separation of the three taxa. Pathogenicity tests conducted on Vitis vinifera 'Chardonnay' in the greenhouse and in the field verified that all three species were able to cause wood canker and to infect pruning wounds, respectively.
Collapse
Affiliation(s)
| | - Kendra Baumgartner
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Davis, CA 95616
| | - Renaud Travadon
- Department of Plant Pathology, University of California, Davis 95616
| | | | - Jérome Pouzoulet
- Department of Botany and Plant Sciences, University of California, Riverside
| | - Wayne F Wilcox
- Department of Plant Pathology and Plant Microbe Biology, Cornell University, Geneva, NY 14456
| |
Collapse
|
64
|
Vela-Corcía D, Bellón-Gómez D, López-Ruiz F, Torés JA, Pérez-García A. The Podosphaera fusca TUB2 gene, a molecular “Swiss Army knife” with multiple applications in powdery mildew research. Fungal Biol 2014; 118:228-41. [DOI: 10.1016/j.funbio.2013.12.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 11/28/2013] [Accepted: 12/04/2013] [Indexed: 10/25/2022]
|
65
|
Travadon R, Rolshausen PE, Gubler WD, Cadle-Davidson L, Baumgartner K. Susceptibility of Cultivated and Wild Vitis spp. to Wood Infection by Fungal Trunk Pathogens. PLANT DISEASE 2013; 97:1529-1536. [PMID: 30716856 DOI: 10.1094/pdis-05-13-0525-re] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Cultivars of European grapevine, Vitis vinifera, show varying levels of susceptibility to Eutypa dieback and Esca, in terms of foliar symptoms. However, little is known regarding cultivar susceptibility of their woody tissues to canker formation. Accordingly, we evaluated the relative susceptibility of V. vinifera cultivars ('Cabernet Franc', 'Cabernet Sauvignon', 'Chardonnay', 'Merlot', 'Riesling', 'Petite Syrah', and 'Thompson Seedless') and species or interspecific hybrids of North American Vitis (Vitis hybrid 'Concord', V. arizonica 'b42-26', V. rupestris × V. cinerea 'Ill547-1', and Fennell 6 [V. aestivalis] × Malaga [V. vinifera] 'DVIT0166') to canker formation by seven trunk pathogens (Neofusicoccum parvum, Lasiodiplodia theobromae, Phaeomoniella chlamydospora, Togninia minima, Phomopsis viticola, Eutypa lata, and an undescribed Eutypa sp.). Susceptibility was based on the length of wood discoloration (LWD) in the woody stems of rooted plants in duplicate greenhouse experiments. Cultivars of V. vinifera and Concord did not vary significantly in susceptibility to N. parvum or L. theobromae (LWD of 21 to 88 mm at 14 weeks post inoculation; P > 0.16), suggesting that they are similarly susceptible to Botryosphaeria dieback. The table-grape Thompson Seedless was most susceptible to P. viticola (mean LWD of 61 mm at 11 months post inoculation; P < 0.0001). V. vinifera cultivars and Concord showed similar susceptibility to the Esca pathogens, Phaeomoniella chlamydospora and T. minima. Susceptibility to E. lata was greatest in V. arizonica b42-26 (mean LWD of 96 mm at 11 months post inoculation; P < 0.03). In fact, all four American Vitis spp. were more susceptible to Eutypa dieback than the V. vinifera cultivars. Our findings suggest that no one cultivar is likely to provide resistance to the range of trunk pathogens but that certain cultivars may be promising candidates for commercially relevant host resistance in grape-production systems where the dominant cultivars are very susceptible.
Collapse
Affiliation(s)
- Renaud Travadon
- Department of Plant Pathology, University of California, Davis 95616
| | | | - Walter D Gubler
- Department of Plant Pathology, University of California, Davis
| | - Lance Cadle-Davidson
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Grape Genetics Research Unit, Geneva, NY 14456
| | | |
Collapse
|
66
|
Cozzi G, Paciolla C, Haidukowski M, De Leonardis S, Mulè G, Logrieco A. Increase of fumonisin b2 and ochratoxin a production by black Aspergillus species and oxidative stress in grape berries damaged by powdery mildew. J Food Prot 2013; 76:2031-6. [PMID: 24290677 DOI: 10.4315/0362-028x.jfp-13-149] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Powdery mildew (PM), caused by the fungus Erysiphe necator, is one of the most widespread fungal disease of grape and may cause extensive openings on the berry surface during the infection. We evaluated the effect of damage caused by PM in grape berries on the growth of and mycotoxin production by Aspergillus and on the oxidative stress in infected berries. Berries of Vitis vinifera L. cv. Negroamaro with sound skin (SS) and those naturally infected by PM were surface sterilized and inoculated with either fumonisin B2(FB2)-producing strains of Aspergillus niger or ochratoxin A (OTA)-producing strains of Aspergillus carbonarius and incubated at 20 and 30°C. The PM berries were significantly more susceptible to both Aspergillus colonization (5 to 15 times more susceptible) and OTA and FB2 contamination (2 to 9 times more susceptible) than were SS berries. The highest toxin concentration was detected in inoculated PM berries both for OTA (9 ng/g) at 20°C and for FB2 (687 ng/g) at 30°C. In inoculated SS and PM berries, although malondialdehyde and hydrogen peroxide concentrations did not increase, the two black Aspergillus species caused a significant decrease in ascorbate content, thus inducing a pro-oxidant effect. These results indicate that grape berries affected by PM are more susceptible to black Aspergillus growth and to production and/or accumulation of FB2 and OTA. Thus, preventive control of E. necator on grape berries could reduce the mycotoxicological risk from black Aspergillus infection.
Collapse
Affiliation(s)
- Giuseppe Cozzi
- Institute of Sciences of Food Production, National Research Council, via Amendola 122/0, 70126 Bari, Italy
| | | | | | | | | | | |
Collapse
|
67
|
Feechan A, Anderson C, Torregrosa L, Jermakow A, Mestre P, Wiedemann-Merdinoglu S, Merdinoglu D, Walker AR, Cadle-Davidson L, Reisch B, Aubourg S, Bentahar N, Shrestha B, Bouquet A, Adam-Blondon AF, Thomas MR, Dry IB. Genetic dissection of a TIR-NB-LRR locus from the wild North American grapevine species Muscadinia rotundifolia identifies paralogous genes conferring resistance to major fungal and oomycete pathogens in cultivated grapevine. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:661-74. [PMID: 24033846 DOI: 10.1111/tpj.12327] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 08/22/2013] [Accepted: 09/02/2013] [Indexed: 05/20/2023]
Abstract
The most economically important diseases of grapevine cultivation worldwide are caused by the fungal pathogen powdery mildew (Erysiphe necator syn. Uncinula necator) and the oomycete pathogen downy mildew (Plasmopara viticola). Currently, grapegrowers rely heavily on the use of agrochemicals to minimize the potentially devastating impact of these pathogens on grape yield and quality. The wild North American grapevine species Muscadinia rotundifolia was recognized as early as 1889 to be resistant to both powdery and downy mildew. We have now mapped resistance to these two mildew pathogens in M. rotundifolia to a single locus on chromosome 12 that contains a family of seven TIR-NB-LRR genes. We further demonstrate that two highly homologous (86% amino acid identity) members of this gene family confer strong resistance to these unrelated pathogens following genetic transformation into susceptible Vitis vinifera winegrape cultivars. These two genes, designated resistance to Uncinula necator (MrRUN1) and resistance to Plasmopara viticola (MrRPV1) are the first resistance genes to be cloned from a grapevine species. Both MrRUN1 and MrRPV1 were found to confer resistance to multiple powdery and downy mildew isolates from France, North America and Australia; however, a single powdery mildew isolate collected from the south-eastern region of North America, to which M. rotundifolia is native, was capable of breaking MrRUN1-mediated resistance. Comparisons of gene organization and coding sequences between M. rotundifolia and the cultivated grapevine V. vinifera at the MrRUN1/MrRPV1 locus revealed a high level of synteny, suggesting that the TIR-NB-LRR genes at this locus share a common ancestor.
Collapse
Affiliation(s)
- Angela Feechan
- CSIRO Plant Industry, PO Box 350, Glen Osmond, SA, 5064, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Yu Y, Xu W, Wang J, Wang L, Yao W, Yang Y, Xu Y, Ma F, Du Y, Wang Y. The Chinese wild grapevine (Vitis pseudoreticulata) E3 ubiquitin ligase Erysiphe necator-induced RING finger protein 1 (EIRP1) activates plant defense responses by inducing proteolysis of the VpWRKY11 transcription factor. THE NEW PHYTOLOGIST 2013; 200:834-846. [PMID: 23905547 DOI: 10.1111/nph.12418] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 06/20/2013] [Indexed: 05/19/2023]
Abstract
Ubiquitin-mediated regulation responds rapidly to specific stimuli; this rapidity is particularly important for defense responses to pathogen attack. Here, we investigated the role of the E3 ubiquitin ligase Erysiphe necator-induced RING finger protein 1 (EIRP1) in the defense response of Chinese wild grapevine Vitis pseudoreticulata. The regulatory function of E3 ubiquitin ligase EIRP1 was investigated using molecular, genetic and biochemical approaches. EIRP1 encodes a C3HC4-type Really Interesting New Gene (RING) finger protein that harbors E3 ligase activity. This activity requires the conserved RING domain, and VpWRKY11 also interacts with EIRP1 through the RING domain. VpWRKY11 localizes to the nucleus and activates W-box-dependent transcription in planta. EIRP1 targeted VpWRKY11 in vivo, resulting in VpWRKY11 degradation. The expression of EIRP1 and VpWRKY11 responds rapidly to powdery mildew in Vitis pseudoreticulata grapevine; also, overexpression of EIRP1 in Arabidopsis confers enhanced resistance to the pathogens Golovinomyces cichoracearum and Pseudomonas syringae pv tomato DC3000. Our data suggest that the EIRP1 E3 ligase positively regulates plant disease resistance by mediating proteolysis of the negative regulator VpWRKY11 via degradation by the 26S proteasome.
Collapse
Affiliation(s)
- Yihe Yu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Weirong Xu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jie Wang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Lei Wang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wenkong Yao
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yazhou Yang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yan Xu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fuli Ma
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yangjian Du
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yuejin Wang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
69
|
Asalf B, Gadoury DM, Tronsmo AM, Seem RC, Cadle-Davidson L, Brewer MT, Stensvand A. Temperature regulates the initiation of chasmothecia in powdery mildew of strawberry. PHYTOPATHOLOGY 2013; 103:717-724. [PMID: 23384856 DOI: 10.1094/phyto-09-12-0252-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The formation of chasmothecia by the strawberry powdery mildew pathogen (Podosphaera aphanis) is widespread but often sporadic throughout the range of strawberry cultivation. In some production regions, notably in warmer climates, chasmothecia are reportedly rare. We confirmed that the pathogen is heterothallic, and that initiation of chasmothecia is not only dependent upon the presence of isolates of both mating types but also largely suppressed at temperatures >13°C. Compared with incubation at a constant temperature of 25°C, progressively more chasmothecia were initiated when temperatures were decreased to 13°C for progressively longer times. At lower temperatures, production of chasmothecia was associated with a decline in but not total cessation of conidial formation, and pairings of compatible isolates sporulated abundantly at 25°C. We developed mating-type markers specific to P. aphanis and used these to confirm the presence of both mating types in populations that had not yet initiated chasmothecia. The geographic discontinuity of chasmothecia production and the sporadic and seemingly unpredictable appearance of chasmothecia in P. aphanis are possibly due to the combined influence of heterothallism and suppression of chasmothecia formation by high temperatures.
Collapse
Affiliation(s)
- Belachew Asalf
- Department of Plant and Environment Sciences, Norwegian University of Life Sciences, Norway.
| | | | | | | | | | | | | |
Collapse
|
70
|
Fontaine MC, Gladieux P, Hood ME, Giraud T. History of the invasion of the anther smut pathogen on Silene latifolia in North America. THE NEW PHYTOLOGIST 2013; 198:946-956. [PMID: 23406496 DOI: 10.1111/nph.12177] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 01/09/2013] [Indexed: 06/01/2023]
Abstract
Understanding the routes of pathogen introduction contributes greatly to efforts to protect against future disease emergence. Here, we investigated the history of the invasion in North America by the fungal pathogen Microbotryum lychnidis-dioicae, which causes the anther smut disease on the white campion Silene latifolia. This system is a well-studied model in evolutionary biology and ecology of infectious disease in natural systems. Analyses based on microsatellite markers show that the introduced American M. lychnidis-dioicae probably came from Scotland, from a single population, and thus suffered from a drastic bottleneck compared with genetic diversity in the native European range. The pattern in M. lychnidis-dioicae contrasts with that found by previous studies in its host plant species S. latifolia, also introduced in North America. In the plant, several European lineages have been introduced from across Europe. The smaller number of introductions for M. lychnidis-dioicae probably relates to its life history traits, as it is an obligate, specialized pathogen that is neither transmitted by the seeds nor persistent in the environment. The results show that even a nonagricultural, biotrophic, and insect-vectored pathogen suffering from a very strong bottleneck can successfully establish populations on its introduced host.
Collapse
Affiliation(s)
- Michael C Fontaine
- Université Paris-Sud, Laboratoire Ecologie, Systématique et Evolution, UMR8079, Orsay Cedex, F-91405, France
- CNRS, UMR 8079, Orsay Cedex, F-91405, France
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Pierre Gladieux
- Université Paris-Sud, Laboratoire Ecologie, Systématique et Evolution, UMR8079, Orsay Cedex, F-91405, France
- CNRS, UMR 8079, Orsay Cedex, F-91405, France
- Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Michael E Hood
- Department of Biology, Amherst College, Amherst, MA, USA
| | - Tatiana Giraud
- Université Paris-Sud, Laboratoire Ecologie, Systématique et Evolution, UMR8079, Orsay Cedex, F-91405, France
- CNRS, UMR 8079, Orsay Cedex, F-91405, France
| |
Collapse
|
71
|
Fontaine MC, Austerlitz F, Giraud T, Labbé F, Papura D, Richard-Cervera S, Delmotte F. Genetic signature of a range expansion and leap-frog event after the recent invasion of Europe by the grapevine downy mildew pathogenPlasmopara viticola. Mol Ecol 2013; 22:2771-86. [DOI: 10.1111/mec.12293] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 02/11/2013] [Accepted: 02/14/2013] [Indexed: 01/26/2023]
Affiliation(s)
- Michael C. Fontaine
- Ecologie, Systématique et Evolution; UMR 8079 Université Paris Sud Laboratoire Ecologie; Systematique et Evolution; UMR8079 Orsay Cedex F-91405 France
- Eco-Anthropologie et Ethnobiologie; UMR 7206 CNRS; MNHN; Univ Paris Diderot; Sorbonne Paris Cité F-75231 Paris Cedex 5 France
| | - Fréderic Austerlitz
- Ecologie, Systématique et Evolution; UMR 8079 Université Paris Sud Laboratoire Ecologie; Systematique et Evolution; UMR8079 Orsay Cedex F-91405 France
- Eco-Anthropologie et Ethnobiologie; UMR 7206 CNRS; MNHN; Univ Paris Diderot; Sorbonne Paris Cité F-75231 Paris Cedex 5 France
| | - Tatiana Giraud
- Ecologie, Systématique et Evolution; UMR 8079 Université Paris Sud Laboratoire Ecologie; Systematique et Evolution; UMR8079 Orsay Cedex F-91405 France
| | - Frédéric Labbé
- Ecologie, Systématique et Evolution; UMR 8079 Université Paris Sud Laboratoire Ecologie; Systematique et Evolution; UMR8079 Orsay Cedex F-91405 France
| | - Daciana Papura
- INRA; UMR1065 Santé et Agroécologie du Vignoble; ISVV; F-33883 Villenave d'Ornon Cedex France
| | - Sylvie Richard-Cervera
- INRA; UMR1065 Santé et Agroécologie du Vignoble; ISVV; F-33883 Villenave d'Ornon Cedex France
| | - François Delmotte
- INRA; UMR1065 Santé et Agroécologie du Vignoble; ISVV; F-33883 Villenave d'Ornon Cedex France
| |
Collapse
|
72
|
Brewer MT, Frenkel O, Milgroom MG. Linkage disequilibrium and spatial aggregation of genotypes in sexually reproducing populations of Erysiphe necator. PHYTOPATHOLOGY 2012; 102:997-1005. [PMID: 22755546 DOI: 10.1094/phyto-11-11-0321] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Random mating and recombination in heterothallic ascomycetes should result in high genotypic diversity, 1:1 mating-type ratios, and random associations of alleles, or linkage equilibrium, at different loci. To test for random mating in populations of the grape powdery mildew fungus Erysiphe necator, we sampled isolates from vineyards of Vitis vinifera in Burdett, NY (NY09) and Winchester, VA (VA09) at the end of the epidemic in fall 2009. We also sampled isolates from the same Winchester, VA vineyard in spring 2010 at the onset of the next epidemic. Isolates were genotyped for mating type and 11 microsatellite markers. In the spring sample, which originated from ascospore infections, nearly every isolate had a unique genotype. In contrast, fall populations were less diverse. In all, 9 of 45 total genotypes in VA09 were represented by two or more isolates; 3 of 40 total genotypes in NY09 were represented by two or more isolates, with 1 genotype represented by 20 isolates. After clone correction, mating-type ratios in the three populations did not deviate from 1:1. However, even with clone correction, we detected significant linkage disequilibrium (LD) in all populations. Mantel tests detected positive correlations between genetic and physical distances within vineyards. Spatial autocorrelation showed aggregations up to 42 and 3 m in VA09 and NY09, respectively. Spatial autocorrelation most likely results from short dispersal distances. Overall, these results suggest that spatial genetic aggregation and clonal genotypes that arise during the asexual phase of the epidemic contribute to persistent LD even though populations undergo sexual reproduction annually.
Collapse
Affiliation(s)
- Marin Talbot Brewer
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, USA
| | | | | |
Collapse
|
73
|
Troch V, Audenaert K, Bekaert B, Höfte M, Haesaert G. Phylogeography and virulence structure of the powdery mildew population on its 'new' host triticale. BMC Evol Biol 2012; 12:76. [PMID: 22658131 PMCID: PMC3457899 DOI: 10.1186/1471-2148-12-76] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 05/10/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Powdery mildew, caused by the obligate biotrophic fungus Blumeria graminis, is a major problem in cereal production as it can reduce quality and yield. B. graminis has evolved eight distinct formae speciales (f.sp.) which display strict host specialization. In the last decade, powdery mildew has emerged on triticale, the artificial intergeneric hybrid between wheat and rye. This emergence is probably triggered by a host range expansion of the wheat powdery mildew B. graminis f.sp. tritici. To gain more precise information about the evolutionary processes that led to this host range expansion, we pursued a combined pathological and genetic approach. RESULTS B. graminis isolates were sampled from triticale, wheat and rye from different breeding regions in Europe. Pathogenicity tests showed that isolates collected from triticale are highly pathogenic on most of the tested triticale cultivars. Moreover, these isolates were also able to infect several wheat cultivars (their previous hosts), although a lower aggressiveness was observed compared to isolates collected from wheat. Phylogenetic analysis of nuclear gene regions identified two statistically significant clades, which to a certain extent correlated with pathogenicity. No differences in virulence profiles were found among the sampled regions, but the distribution of genetic variation demonstrated to be geography dependent. A multilocus haplotype network showed that haplotypes pathogenic on triticale are distributed at different sites in the network, but always clustered at or near the tips of the network. CONCLUSIONS This study reveals a genetic structure in B. graminis with population differentiation according to geography and host specificity. In addition, evidence is brought forward demonstrating that the host range expansion of wheat isolates to the new host triticale occurred recently and multiple times at different locations in Europe.
Collapse
Affiliation(s)
- Veronique Troch
- Associated Faculty of Applied Bioscience Engineering, University College Ghent, Valentin Vaerwyckweg 1, B-9000, Ghent, Belgium
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000, Ghent, Belgium
| | - Kris Audenaert
- Associated Faculty of Applied Bioscience Engineering, University College Ghent, Valentin Vaerwyckweg 1, B-9000, Ghent, Belgium
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000, Ghent, Belgium
| | - Boris Bekaert
- Associated Faculty of Applied Bioscience Engineering, University College Ghent, Valentin Vaerwyckweg 1, B-9000, Ghent, Belgium
| | - Monica Höfte
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000, Ghent, Belgium
| | - Geert Haesaert
- Associated Faculty of Applied Bioscience Engineering, University College Ghent, Valentin Vaerwyckweg 1, B-9000, Ghent, Belgium
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000, Ghent, Belgium
| |
Collapse
|
74
|
Dutech C, Barrès B, Bridier J, Robin C, Milgroom MG, Ravigné V. The chestnut blight fungus world tour: successive introduction events from diverse origins in an invasive plant fungal pathogen. Mol Ecol 2012; 21:3931-46. [PMID: 22548317 DOI: 10.1111/j.1365-294x.2012.05575.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Clonal expansion has been observed in several invasive fungal plant pathogens colonizing new areas, raising the question of the origin of clonal lineages. Using microsatellite markers, we retraced the evolutionary history of introduction of the chestnut blight fungus, Cryphonectria parasitica, in North America and western Europe. Combining discriminant analysis of principal components and approximate Bayesian computation analysis, we showed that several introduction events from genetically differentiated source populations have occurred in both invaded areas. In addition, a low signal of genetic recombination among different source populations was suggested in North America. Finally, two genetic lineages were present in both invaded areas as well as in the native areas, suggesting the existence of genetic lineages with a high capacity to establish in diverse environments and host species. This study confirmed the importance of multiple introductions, but questioned the role of genetic admixture in the success of introduction of a fungal plant pathogen.
Collapse
Affiliation(s)
- C Dutech
- INRA, UMR1202 BIOGECO, Cestas F-33610, France.
| | | | | | | | | | | |
Collapse
|
75
|
Robert S, Ravigne V, Zapater MF, Abadie C, Carlier J. Contrasting introduction scenarios among continents in the worldwide invasion of the banana fungal pathogen Mycosphaerella fijiensis. Mol Ecol 2012; 21:1098-114. [PMID: 22256778 DOI: 10.1111/j.1365-294x.2011.05432.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Reconstructing and characterizing introduction routes is a key step towards understanding the ecological and evolutionary factors underlying successful invasions and disease emergence. Here, we aimed to decipher scenarios of introduction and stochastic demographic events associated with the global spread of an emerging disease of bananas caused by the destructive fungal pathogen Mycosphaerella fijiensis. We analysed the worldwide population structure of this fungus using 21 microsatellites and 8 sequence-based markers on 735 individuals from 37 countries. Our analyses designated South-East Asia as the source of the global invasion and supported the location of the centre of origin of M. fijiensis within this area. We confirmed the occurrence of bottlenecks upon introduction into other continents followed by widespread founder events within continents. Furthermore, this study suggested contrasting introduction scenarios of the pathogen between the African and American continents. While potential signatures of admixture resulting from multiple introductions were detected in America, all the African samples examined seem to descend from a single successful founder event. In combination with historical information, our study reveals an original and unprecedented global scenario of invasion for this recently emerging disease caused by a wind-dispersed pathogen.
Collapse
Affiliation(s)
- S Robert
- CIRAD, UMR BGPI, Campus International de Baillarguet, Montpellier Cedex 5, France
| | | | | | | | | |
Collapse
|
76
|
Gadoury DM, Cadle-Davidson L, Wilcox WF, Dry IB, Seem RC, Milgroom MG. Grapevine powdery mildew (Erysiphe necator): a fascinating system for the study of the biology, ecology and epidemiology of an obligate biotroph. MOLECULAR PLANT PATHOLOGY 2012; 13:1-16. [PMID: 21726395 PMCID: PMC6638670 DOI: 10.1111/j.1364-3703.2011.00728.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
UNLABELLED Few plant pathogens have had a more profound effect on the evolution of disease management than Erysiphe necator, which causes grapevine powdery mildew. When the pathogen first spread from North America to England in 1845, and onwards to France in 1847, 'germ theory' was neither understood among the general populace nor even generally accepted within the scientific community. Louis Pasteur had only recently reported the microbial nature of fermentation, and it would be another 30 years before Robert Koch would publish his proofs of the microbial nature of certain animal diseases. However, within 6 years after the arrival of the pathogen, nearly 6 million grape growers in France were routinely applying sulphur to suppress powdery mildew on nearly 2.5 million hectares of vineyards (Campbell, 2006). The pathogen has remained a focus for disease management efforts ever since. Because of the worldwide importance of the crop and its susceptibility to the disease, and because conventional management with modern, organic fungicides has been compromised on several occasions since 1980 by the evolution of fungicide resistance, there has also been a renewed effort worldwide to explore the pathogen's biology and ecology, its genetics and molecular interactions with host plants, and to refine current and suggest new management strategies. These latter aspects are the subject of our review. TAXONOMY The most widely accepted classification follows. Family Erysiphaceae, Erysiphe necator Schw. [syn. Uncinula necator (Schw.) Burr., E. tuckeri Berk., U. americana Howe and U. spiralis Berk. & Curt; anamorph Oidium tuckeri Berk.]. Erysiphe necator var. ampelopsidis was found on Parthenocissus spp. in North America according to Braun (1987), although later studies revealed isolates whose host range spanned genera, making the application of this taxon somewhat imprecise (Gadoury and Pearson, 1991). The classification of the genera before 1980 was based on features of the mature ascocarp: (i) numbers of asci; and (ii) morphology of the appendages, in particular the appendage tips. The foregoing has been supplanted by phylogeny inferred from the internal transcribed spacer (ITS) of ribosomal DNA sequences (Saenz and Taylor, 1999), which correlates with conidial ontogeny and morphology (Braun et al., 2002). HOST RANGE The pathogen is obligately parasitic on genera within the Vitaceae, including Vitis, Cissus, Parthenocissus and Ampelopsis (Pearson and Gadoury, 1992). The most economically important host is grapevine (Vitis), particularly the European grape, V. vinifera, which is highly susceptible to powdery mildew. Disease symptoms and signs: In the strictest sense, macroscopically visible mildew colonies are signs of the pathogen rather than symptoms resulting from its infection, but, for convenience, we describe the symptoms and signs together as the collective appearance of colonized host tissues. All green tissues of the host may be infected. Ascospore colonies are most commonly found on the lower surface of the first-formed leaves near the bark of the vine, and may be accompanied by a similarly shaped chlorotic spot on the upper surface. Young colonies appear whitish and those that have not yet sporulated show a metallic sheen. They are roughly circular, ranging in size from a few millimetres to a centimetre or more in diameter, and can occur singly or in groups that coalesce to cover much of the leaf. Senescent colonies are greyish, and may bear cleistothecia in various stages of development. Dead epidermal cells often subtend the colonized area, as natural mortality in the mildew colony, the use of fungicides, mycoparasites or resistance responses in the leaf result in the deaths of segments of the mildew colony and infected epidermal cells. Severely affected leaves usually senesce, develop necrotic blotches and fall prematurely. Infection of stems initially produces symptoms similar to those on leaves, but colonies on shoots are eventually killed as periderm forms, producing a dark, web-like scar on the cane (Gadoury et al., 2011). Inflorescences and berries are most susceptible when young, and can become completely coated with whitish mildew. The growth of the berry epidermal tissue stops when severely infected, which may result in splitting as young fruit expand. Berries in a transitional stage between susceptible and resistant (generally between 3 and 4 weeks after anthesis) develop diffuse, nonsporulating mildew colonies only visible under magnification. Diffuse colonies die as berries continue to mature, leaving behind a network of necrotic epidermal cells (Gadoury et al., 2007). Survival over winter as mycelium in buds results in a distinctive foliar symptom. Shoots arising from these buds may be heavily coated with fungal growth, stark white in colour and stand out like white flags in the vine, resulting in the term 'flag shoots'. More commonly, colonization of a flag shoot is less extensive, and infection of a single leaf, or of leaves on one side of the shoot only, is observed (Gadoury et al., 2011).
Collapse
Affiliation(s)
- David M Gadoury
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456, USA.
| | | | | | | | | | | |
Collapse
|
77
|
Ramming DW, Gabler F, Smilanick JL, Margosan DA, Cadle-Davidson M, Barba P, Mahanil S, Frenkel O, Milgroom MG, Cadle-Davidson L. Identification of race-specific resistance in North American Vitis spp. limiting Erysiphe necator hyphal growth. PHYTOPATHOLOGY 2012; 102:83-93. [PMID: 22165984 DOI: 10.1094/phyto-03-11-0062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Race-specific resistance against powdery mildews is well documented in small grains but, in other crops such as grapevine, controlled analysis of host-pathogen interactions on resistant plants is uncommon. In the current study, we attempted to confirm powdery mildew resistance phenotypes through vineyard, greenhouse, and in vitro inoculations for test cross-mapping populations for two resistance sources: (i) a complex hybrid breeding line, 'Bloodworth 81-107-11', of at least Vitis rotundifolia, V. vinifera, V. berlandieri, V. rupestris, V. labrusca, and V. aestivalis background; and (ii) Vitis hybrid 'Tamiami' of V. aestivalis and V. vinifera origin. Statistical analysis of vineyard resistance data suggested the segregation of two and three race-specific resistance genes from the two sources, respectively. However, in each population, some resistant progeny were susceptible in greenhouse or in vitro screens, which suggested the presence of Erysiphe necator isolates virulent on progeny segregating for one or more resistance genes. Controlled inoculation of resistant and susceptible progeny with a diverse set of E. necator isolates clearly demonstrated the presence of fungal races differentially interacting with race-specific resistance genes, providing proof of race specificity in the grape powdery mildew pathosystem. Consistent with known race-specific resistance mechanisms, both resistance sources were characterized by programmed cell death of host epidermal cells under appressoria, which arrested or slowed hyphal growth; this response was also accompanied by collapse of conidia, germ tubes, appressoria, and secondary hyphae. The observation of prevalent isolates virulent on progeny with multiple race-specific resistance genes before resistance gene deployment has implications for grape breeding strategies. We suggest that grape breeders should characterize the mechanisms of resistance and pyramid multiple resistance genes with different mechanisms for improved durability.
Collapse
Affiliation(s)
- David W Ramming
- United State Department of Agriculture - Agricultural Research Service, Parlier, CA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Interspecific and intraspecific diversity in oak powdery mildews in Europe: coevolution history and adaptation to their hosts. MYCOSCIENCE 2011. [DOI: 10.1007/s10267-010-0100-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
79
|
Identification and structure of the mating-type locus and development of PCR-based markers for mating type in powdery mildew fungi. Fungal Genet Biol 2011; 48:704-13. [PMID: 21515399 DOI: 10.1016/j.fgb.2011.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 03/04/2011] [Accepted: 04/05/2011] [Indexed: 11/23/2022]
Abstract
In ascomycetes, mating compatibility is regulated by the mating-type locus, MAT1. The objectives of this study were to identify and sequence genes at the MAT1 locus in the grape powdery mildew fungus, Erysiphe necator, to develop a PCR-based marker for determining mating type in E. necator, and to develop degenerate primers for amplification by PCR of conserved regions of mating-type idiomorphs in other powdery mildew fungi. We identified MAT1-2-1 of the MAT1-2 idiomorph in E. necator based on the homologous sequence in the genome of Blumeria graminis f. sp. hordei and we found MAT1-1-1 and MAT1-1-3 of the MAT1-1 idiomorph from transcriptome sequences of E. necator. We developed and applied a reliable PCR-based multiplex marker to confirm that genotype correlated with mating phenotype, which was determined by pairing with mating-type tester isolates. Additionally, we used the marker to genotype populations of E. necator from different Vitis spp. from throughout the USA. We found both mating types were present in all populations and mating-type ratios did not deviate from 1:1. The mating-type genes in E. necator are similar to those of other Leotiomycetes; however, the structure of the MAT1 locus in E. necator, like the MAT1-2 idiomorph of B. graminis, is markedly different from other ascomycetes in that it is greatly expanded and may contain a large amount of repetitive DNA. As a result, we were unable to amplify and sequence either idiomorph in its entirety. We designed degenerate primers that amplify conserved regions of MAT1-1 and MAT1-2 in E. necator, Podosphaera xanthii, Microsphaera syringae, and B. graminis, representing the major clades of the Erysiphales. These degenerate primers or sequences obtained in this study from these species can be used to identify and sequence MAT1 genes or design mating-type markers in other powdery mildew fungi as well.
Collapse
|
80
|
Ramming DW, Gabler F, Smilanick J, Cadle-Davidson M, Barba P, Mahanil S, Cadle-Davidson L. A single dominant locus, ren4, confers rapid non-race-specific resistance to grapevine powdery mildew. PHYTOPATHOLOGY 2011; 101:502-8. [PMID: 21091183 DOI: 10.1094/phyto-09-10-0237] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
In the present study we screened the progeny of Vitis vinifera × V. romanetii populations segregating for resistance to powdery mildew and determined the presence of a single, dominant locus, Ren4, conferring rapid and extreme resistance to the grapevine powdery mildew fungus Erysiphe necator. In each of nine Ren4 pseudo-backcross 2 (pBC(2)) and pBC(3) populations (1,030 progeny), resistance fit a 1:1 segregation ratio and overall segregated as 543 resistant progeny to 487 susceptible. In full-sib progeny, microscopic observations revealed the reduction of penetration success rate (as indicated by the emergence of secondary hyphae) from 86% in susceptible progeny to below 10% in resistant progeny. Similarly, extreme differences were seen macroscopically. Ratings for Ren4 pBC(2) population 03-3004 screened using natural infection in a California vineyard and greenhouse and using artificial inoculation of an aggressive New York isolate were fully consistent among all three pathogen sources and environments. From 2006 to 2010, Ren4 pBC(2) and pBC(3) vines were continuously screened in California and New York (in the center of diversity for E. necator), and no sporulating colonies were observed. For population 03-3004, severity ratings on leaves, shoots, berries, and rachises were highly correlated (R(2) = 0.875 to 0.996) in the vineyard. Together, these data document a powdery mildew resistance mechanism not previously described in the Vitaceae or elsewhere, in which a dominantly inherited resistance prevents hyphal emergence and is non-race-specific and tissue-independent. In addition to its role in breeding for durable resistance, Ren4 may provide mechanistic insights into the early events that enable powdery mildew infection.
Collapse
Affiliation(s)
- David W Ramming
- U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648-9757, USA
| | | | | | | | | | | | | |
Collapse
|
81
|
Frenkel O, Brewer MT, Milgroom MG. Variation in pathogenicity and aggressiveness of Erysiphe necator from different Vitis spp. and geographic origins in the eastern United States. PHYTOPATHOLOGY 2010; 100:1185-1193. [PMID: 20932167 DOI: 10.1094/phyto-01-10-0023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Eastern North America is considered the center of diversity for many Vitis spp. and for the grape powdery mildew pathogen, Erysiphe necator. However, little is known about populations of E. necator from wild Vitis spp. We determined the phenotypic variation in pathogenicity and aggressiveness of E. necator among isolates from wild and domesticated Vitis spp. from diverse geographic regions in the eastern United States. To test pathogenicity, we inoculated 38 E. necator isolates on three wild Vitis spp., two commercially grown hybrids and the European wine grape, Vitis vinifera. V. rotundifolia (muscadine grape) was the only host species on which complete host specialization was evident; it was only susceptible to isolates collected from V. rotundifolia. All isolates, regardless of source host, were pathogenic on the other Vitis spp. We found no differences in components of aggressiveness latent period and lesion size among isolates from different source hosts when inoculated on V. vinifera, which is highly susceptible to powdery mildew. However significant variation was evident among isolates on the more resistant V. labruscana 'Niagara'. Isolates from the wild species V. aestivalis were the most aggressive, whereas isolates from V. vinifera were not more aggressive than isolates from other source hosts. Greater aggressiveness was also detected among isolates from the southeastern United States compared with isolates from the northeastern United States.
Collapse
Affiliation(s)
- Omer Frenkel
- Department of Plant Pathology, Cornell University, Ithaca, NY, USA
| | | | | |
Collapse
|