51
|
Ebeling M, Küng E, See A, Broger C, Steiner G, Berrera M, Heckel T, Iniguez L, Albert T, Schmucki R, Biller H, Singer T, Certa U. Genome-based analysis of the nonhuman primate Macaca fascicularis as a model for drug safety assessment. Genome Res 2011; 21:1746-56. [PMID: 21862625 PMCID: PMC3202291 DOI: 10.1101/gr.123117.111] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 07/11/2011] [Indexed: 01/04/2023]
Abstract
The long-tailed macaque, also referred to as cynomolgus monkey (Macaca fascicularis), is one of the most important nonhuman primate animal models in basic and applied biomedical research. To improve the predictive power of primate experiments for humans, we determined the genome sequence of a Macaca fascicularis female of Mauritian origin using a whole-genome shotgun sequencing approach. We applied a template switch strategy that uses either the rhesus or the human genome to assemble sequence reads. The sixfold sequence coverage of the draft genome sequence enabled discovery of about 2.1 million potential single-nucleotide polymorphisms based on occurrence of a dimorphic nucleotide at a given position in the genome sequence. Homology-based annotation allowed us to identify 17,387 orthologs of human protein-coding genes in the M. fascicularis draft genome, and the predicted transcripts enabled the design of a M. fascicularis-specific gene expression microarray. Using liver samples from 36 individuals of different geographic origin we identified 718 genes with highly variable expression in liver, whereas the majority of the transcriptome shows relatively stable and comparable expression. Knowledge of the M. fascicularis draft genome is an important contribution to both the use of this animal in disease models and the safety assessment of drugs and their metabolites. In particular, this information allows high-resolution genotyping and microarray-based gene-expression profiling for animal stratification, thereby allowing the use of well-characterized animals for safety testing. Finally, the genome sequence presented here is a significant contribution to the global "3R" animal welfare initiative, which has the goal to reduce, refine, and replace animal experiments.
Collapse
Affiliation(s)
- Martin Ebeling
- Translational Research Sciences, F. Hoffmann-La Roche AG, Pharmaceutical Research and Early Development (pRED), 4070 Basel, Switzerland
| | - Erich Küng
- Global Non-clinical Safety, F. Hoffmann-La Roche AG, Pharmaceutical Research and Early Development (pRED), 4070 Basel, Switzerland
| | - Angela See
- Roche NimbleGen, Inc., Madison, Wisconsin 53719, USA
| | - Clemens Broger
- Research Informatics, F. Hoffmann-La Roche AG, Pharmaceutical Research and Early Development (pRED), 4070 Basel, Switzerland
| | - Guido Steiner
- Translational Research Sciences, F. Hoffmann-La Roche AG, Pharmaceutical Research and Early Development (pRED), 4070 Basel, Switzerland
| | - Marco Berrera
- Translational Research Sciences, F. Hoffmann-La Roche AG, Pharmaceutical Research and Early Development (pRED), 4070 Basel, Switzerland
| | - Tobias Heckel
- Global Non-clinical Safety, F. Hoffmann-La Roche AG, Pharmaceutical Research and Early Development (pRED), 4070 Basel, Switzerland
| | | | - Thomas Albert
- Roche NimbleGen, Inc., Madison, Wisconsin 53719, USA
| | - Roland Schmucki
- Translational Research Sciences, F. Hoffmann-La Roche AG, Pharmaceutical Research and Early Development (pRED), 4070 Basel, Switzerland
| | - Hermann Biller
- Research Informatics, F. Hoffmann-La Roche AG, Pharmaceutical Research and Early Development (pRED), 4070 Basel, Switzerland
| | - Thomas Singer
- Global Non-clinical Safety, F. Hoffmann-La Roche AG, Pharmaceutical Research and Early Development (pRED), 4070 Basel, Switzerland
| | - Ulrich Certa
- Global Non-clinical Safety, F. Hoffmann-La Roche AG, Pharmaceutical Research and Early Development (pRED), 4070 Basel, Switzerland
| |
Collapse
|
52
|
Positive selection of Toll-like receptor 2 polymorphisms in two closely related old world monkey species, rhesus and Japanese macaques. Immunogenetics 2011; 64:15-29. [PMID: 21744114 DOI: 10.1007/s00251-011-0556-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 06/21/2011] [Indexed: 12/13/2022]
Abstract
Toll-like receptor 2 (TLR2) plays an important role in the recognition of a variety of pathogenic microbes. In the present study, we compared polymorphisms of TLR2 locus in two closely related old world monkey species, rhesus monkey (Macaca mulatta) and Japanese monkey (Macaca fuscata). By nucleotide sequencing of the third exon of TLR2 gene from 21 to 35 respective individuals, we could assign 17 haplotype combinations of 17 coding SNPs of ten non-synonymous and seven synonymous substitutions. A non-synonymous substitution at codon position 326 appeared to be differentially fixed in each species, asparagine for M. mulatta whereas tyrosine for M. fuscata, and may contribute to certain functional properties because it locates in the region contributing to ligand binding and interaction with dimerization partner of TLR2-TLR1 heterodimeric complex. Although TLR2 alleles have diverged to similar extent in both species, they have evolved in significantly different ways; TLR2 of M. fuscata has undergone purifying selection while the membrane-proximal part of the extracellular domain of M. mulatta TLR2 exhibits higher rates of non-synonymous substitutions, indicating a trace of Darwinian positive selection.
Collapse
|
53
|
Fang X, Zhang Y, Zhang R, Yang L, Li M, Ye K, Guo X, Wang J, Su B. Genome sequence and global sequence variation map with 5.5 million SNPs in Chinese rhesus macaque. Genome Biol 2011; 12:R63. [PMID: 21733155 PMCID: PMC3218825 DOI: 10.1186/gb-2011-12-7-r63] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 05/01/2011] [Accepted: 07/06/2011] [Indexed: 11/25/2022] Open
Abstract
Background Rhesus macaque (Macaca mulatta) is the most widely used nonhuman primate animal in biomedical research. A global map of genetic variations in rhesus macaque is valuable for both evolutionary and functional studies. Results Using next-generation sequencing technology, we sequenced a Chinese rhesus macaque genome with 11.56-fold coverage. In total, 96% of the reference Indian macaque genome was covered by at least one read, and we identified 2.56 million homozygous and 2.94 million heterozygous SNPs. We also detected a total of 125,150 structural variations, of which 123,610 were deletions with a median length of 184 bp (ranging from 25 bp to 10 kb); 63% of these deletions were located in intergenic regions and 35% in intronic regions. We further annotated 5,187 and 962 nonsynonymous SNPs to the macaque orthologs of human disease and drug-target genes, respectively. Finally, we set up a genome-wide genetic variation database with the use of Gbrowse. Conclusions Genome sequencing and construction of a global sequence variation map in Chinese rhesus macaque with the concomitant database provide applicable resources for evolutionary and biomedical research.
Collapse
Affiliation(s)
- Xiaodong Fang
- Beijing Genomics Institute-Shenzhen, Chinese Academy of Sciences, Shenzhen 518083, China
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Fawcett GL, Raveendran M, Deiros DR, Chen D, Yu F, Harris RA, Ren Y, Muzny DM, Reid JG, Wheeler DA, Worley KC, Shelton SE, Kalin NH, Milosavljevic A, Gibbs R, Rogers J. Characterization of single-nucleotide variation in Indian-origin rhesus macaques (Macaca mulatta). BMC Genomics 2011; 12:311. [PMID: 21668978 PMCID: PMC3141668 DOI: 10.1186/1471-2164-12-311] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 06/13/2011] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Rhesus macaques are the most widely utilized nonhuman primate model in biomedical research. Previous efforts have validated fewer than 900 single nucleotide polymorphisms (SNPs) in this species, which limits opportunities for genetic studies related to health and disease. Extensive information about SNPs and other genetic variation in rhesus macaques would facilitate valuable genetic analyses, as well as provide markers for genome-wide linkage analysis and the genetic management of captive breeding colonies. RESULTS We used the available rhesus macaque draft genome sequence, new sequence data from unrelated individuals and existing published sequence data to create a genome-wide SNP resource for Indian-origin rhesus monkeys. The original reference animal and two additional Indian-origin individuals were resequenced to low coverage using SOLiD™ sequencing. We then used three strategies to validate SNPs: comparison of potential SNPs found in the same individual using two different sequencing chemistries, and comparison of potential SNPs in different individuals identified with either the same or different sequencing chemistries. Our approach validated approximately 3 million SNPs distributed across the genome. Preliminary analysis of SNP annotations suggests that a substantial number of these macaque SNPs may have functional effects. More than 700 non-synonymous SNPs were scored by Polyphen-2 as either possibly or probably damaging to protein function and these variants now constitute potential models for studying functional genetic variation relevant to human physiology and disease. CONCLUSIONS Resequencing of a small number of animals identified greater than 3 million SNPs. This provides a significant new information resource for rhesus macaques, an important research animal. The data also suggests that overall genetic variation is high in this species. We identified many potentially damaging non-synonymous coding SNPs, providing new opportunities to identify rhesus models for human disease.
Collapse
Affiliation(s)
- Gloria L Fawcett
- Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Barr A, Premasuthan A, Satkoski J, Smith DG, George D, Kanthaswamy S. A rapid quantitative real-time PCR-based DNA quantification assay coupled with species--assignment capabilities for two hybridizing Macaca species. ACTA ACUST UNITED AC 2011; 82:71-80. [PMID: 21646786 DOI: 10.1159/000328124] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 04/03/2011] [Indexed: 01/28/2023]
Abstract
Regional populations of rhesus and long-tailed macaques exhibit fundamental differences in mitochondrial DNA, short tandem repeat and single nucleotide polymorphism variation between mainland and insular Southeast Asian populations. Some studies have revealed genetic admixture between these species due to natural hybridization and human-assisted intercrosses. A quantitative real-time PCR (qPCR) assay was developed to efficiently determine the species of origin of a macaque biological sample, and to quantify the species-specific template DNA. Prior knowledge of species identity and DNA concentrations are crucial for maintaining cost-effective methods and accurate DNA analysis. DNA from 109 regionally representative rhesus and long-tailed macaques was qPCR amplified to determine the species and template quantities. Of the 19 Vietnamese long-tailed macaques, 3 samples were discovered to be hybrids.
Collapse
Affiliation(s)
- A Barr
- University of California, Davis, Calif., USA
| | | | | | | | | | | |
Collapse
|
56
|
Uno Y, Iwasaki K, Yamazaki H, Nelson DR. Macaque cytochromes P450: nomenclature, transcript, gene, genomic structure, and function. Drug Metab Rev 2011; 43:346-61. [DOI: 10.3109/03602532.2010.549492] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
57
|
Trask JAS, Malhi RS, Kanthaswamy S, Johnson J, Garnica WT, Malladi VS, Smith DG. The effect of SNP discovery method and sample size on estimation of population genetic data for Chinese and Indian rhesus macaques (Macaca mulatta). Primates 2011; 52:129-38. [PMID: 21207104 DOI: 10.1007/s10329-010-0232-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 11/25/2010] [Indexed: 11/28/2022]
Abstract
This study was designed to address issues regarding sample size and marker location that have arisen from the discovery of SNPs in the genomes of poorly characterized primate species and the application of these markers to the study of primate population genetics. We predict the effect of discovery sample size on the probability of discovering both rare and common SNPs and then compare this prediction with the proportion of common and rare SNPs discovered when different numbers of individuals are sequenced. Second, we examine the effect of genomic region on estimates of common population genetic data, comparing markers from both coding and non-coding regions of the rhesus macaque genome and the population genetic data calculated from these markers, to measure the degree and direction of bias introduced by SNPs located in coding versus non-coding regions of the genome. We found that both discovery sample size and genomic region surveyed affect SNP marker attributes and population genetic estimates, even when these are calculated from an expanded data set containing more individuals than the original discovery data set. Although none of the SNP detection methods or genomic regions tested in this study was completely uninformative, these results show that each has a different kind of genetic variation that is suitable for different purposes, and each introduces specific types of bias. Given that each SNP marker has an individual evolutionary history, we calculated that the most complete and unbiased representation of the genetic diversity present in the individual can be obtained by incorporating at least 10 individuals into the discovery sample set, to ensure the discovery of both common and rare polymorphisms.
Collapse
Affiliation(s)
- Jessica A Satkoski Trask
- Department of Anthropology, University of California, Davis, 330 Young Hall, One Shields Avenue, Davis, CA 95616, USA.
| | | | | | | | | | | | | |
Collapse
|
58
|
Uno Y, Uehara S, Yamazaki H. Discovery of Genetic Variants in CYP1D1: Implication for Functional Integrity of CYP1D1 in Cynomolgus Macaques and Rhesus Macaques. Drug Metab Pharmacokinet 2011; 26:627-31. [DOI: 10.2133/dmpk.dmpk-11-nt-026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
59
|
UNO Y, MATSUSHITA A, YAMAZAKI H. CYP1B1 is Polymorphic in Cynomolgus and Rhesus Macaques. J Vet Med Sci 2011; 73:1229-31. [DOI: 10.1292/jvms.11-0137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Yasuhiro UNO
- Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories
| | - Akinori MATSUSHITA
- Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories
| | - Hiroshi YAMAZAKI
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University
| |
Collapse
|
60
|
Kanthaswamy S, Satkoski J, Kou A, Malladi V, Glenn Smith D. Detecting signatures of inter-regional and inter-specific hybridization among the Chinese rhesus macaque specific pathogen-free (SPF) population using single nucleotide polymorphic (SNP) markers. J Med Primatol 2010; 39:252-65. [PMID: 20618591 DOI: 10.1111/j.1600-0684.2010.00430.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND While rates of gene flow between rhesus and longtail macaque populations near their hybrid zone in Indochina have been quantified elsewhere, this study demonstrates that the inter-specific introgression is not limited to the Indochinese hybrid zone but is more geographically widespread. METHODS Twelve rhesus and longtail macaque populations were analyzed using single nucleotide polymorphic (SNP) loci. RESULTS There is evidence for inter-specific admixture between Chinese rhesus and mainland longtails, with implications for genetic diversity both in the Chinese super-SPF population at the California National Primate Research Center and in other primate facilities. Eastern Chinese rhesus appeared more highly derived than western Chinese rhesus, and allele sharing between longtails and Chinese rhesus was not random with regard to geographic distance, but no significant nuclear genetic differences between eastern and western Chinese rhesus were detected among the 245 genic SNPs assayed. CONCLUSION The implications of this inter-specific admixture for the use of Chinese rhesus and mainland longtail in biomedical research should be considered.
Collapse
Affiliation(s)
- Sree Kanthaswamy
- Department of Anthropology, University of California-Davis, Davis, CA, USA.
| | | | | | | | | |
Collapse
|
61
|
Genomic plasticity of the MHC class I A region in rhesus macaques: extensive haplotype diversity at the population level as revealed by microsatellites. Immunogenetics 2010; 63:73-83. [PMID: 20949353 PMCID: PMC3019358 DOI: 10.1007/s00251-010-0486-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 09/30/2010] [Indexed: 12/11/2022]
Abstract
The Mamu-A genes of the rhesus macaque show different degrees of polymorphism, transcription level variation, and differential haplotype distribution. Per haplotype, usually one “major” transcribed gene is present, A1 (A7), in various combinations with “minor” genes, A2 to A6. In silico analysis of the physical map of a heterozygous animal revealed the presence of similar Mamu-A regions consisting of four duplication units, but with dissimilar positions of the A1 genes on both haplotypes, and in combination with different minor genes. Two microsatellites, D6S2854 and D6S2859, have been selected as potential tools to characterize this complex region. Subsequent analysis of a large breeding colony resulted in the description of highly discriminative patterns, displaying copy number variation in concert with microsatellite repeat length differences. Sequencing and segregation analyses revealed that these patterns are unique for each Mamu-A haplotype. In animals of Indian, Burmese, and Chinese origin, 19, 15, or 9 haplotypes, respectively, could be defined, illustrating the occurrence of differential block duplications and subsequent rearrangements by recombination. The haplotypes can be assigned to 12 unique combinations of genes (region configurations). Although most configurations harbor two transcribed A genes, one or three genes per haplotype are also present. Additionally, haplotypes lacking an A1 gene or with an A1 duplication appear to exist. The presence of different transcribed A genes/alleles in monkeys from various origins may have an impact on differential disease susceptibilities. The high-throughput microsatellite technique will be a valuable tool in animal selection for diverse biomedical research projects.
Collapse
|
62
|
Nakanishi Y, Matsushita A, Matsuno K, Iwasaki K, Utoh M, Nakamura C, Uno Y. Regional distribution of cytochrome p450 mRNA expression in the liver and small intestine of cynomolgus monkeys. Drug Metab Pharmacokinet 2010; 25:290-7. [PMID: 20610888 DOI: 10.2133/dmpk.25.290] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cynomolgus monkey is used to study drug metabolism because of its evolutionary closeness to humans. Despite their importance, regional distribution of cytochrome P450 (CYP) enzymes including CYP3As in the liver and small intestine, the major sites of drug metabolism, has not been fully investigated in cynomolgus monkeys. In this study, we measured mRNA expression levels of 14 CYPs in the CYP1, 2, and 3 subfamilies, including orthologs of human CYP3A4 and CYP3A5, in the liver and small intestine of cynomolgus monkeys. Expression levels of each CYP mRNA in various regions of the liver were quantified and comparisons were made between the right lobe, quadrate lobe, left medial lobe, left lateral lobe, and caudate lobe and with four different sections of the right lobe. In the small intestine, the same mRNAs were measured in the duodenum and six different sections from the proximal jejunum to the distal ileum. Expression levels of the CYP mRNAs were not substantially different between liver samples, but varied between the different sections of the small intestine, including CYP3A4. These results suggest that analysis of distinct sections is required for a better understanding of cynomolgus monkey CYPs in the small intestine.
Collapse
Affiliation(s)
- Yasuharu Nakanishi
- Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories Ltd., 16-1 Minami-Akasaka, Kainan, Wakayama, Japan
| | | | | | | | | | | | | |
Collapse
|
63
|
Osada N, Uno Y, Mineta K, Kameoka Y, Takahashi I, Terao K. Ancient genome-wide admixture extends beyond the current hybrid zone between Macaca fascicularis and M. mulatta. Mol Ecol 2010; 19:2884-95. [PMID: 20579289 DOI: 10.1111/j.1365-294x.2010.04687.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Macaca fascicularis and Macaca mulatta are two of the most commonly used laboratory macaques, yet their genetic differences at a genome-wide level remain unclear. We analysed the multilocus DNA sequence data of 54 autosomal loci obtained from M. fascicularis samples from three different geographic origins and M. mulatta samples of Burmese origin. M. fascicularis shows high nucleotide diversity, four to five times higher than humans, and a strong geographic population structure between Indonesian-Malaysian and Philippine macaques. The pattern of divergence and polymorphism between M. fascicularis and M. mulatta shows a footprint of genetic exchange not only within their current hybrid zone but also across a wider range for more than 1 million years. However, genetic admixture may not be a random event in the genome. Whereas randomly selected genic and intergenic regions have the same evolutionary dynamics between the species, some cytochrome oxidase P450 (CYP) genes (major chemical metabolizing genes and potential target genes for local adaptation) have a significantly larger species divergence than other genes. By surveying CYP3A5 gene sequences of more than a hundred macaques, we identified three nonsynonymous single nucleotide polymorphisms that were highly differentiated between the macaques. The mosaic pattern of species divergence in the genomes may be a consequence of genetic differentiation under ecological adaptation and may be a salient feature in the genomes of nascent species under parapatry.
Collapse
Affiliation(s)
- Naoki Osada
- Department of Biomedical Resources, National Institute of Biomedical Innovation, 7-6-8 Saito-Asagi, Ibraki, Osaka 567-0085, Japan.
| | | | | | | | | | | |
Collapse
|
64
|
Sritanaudomchai H, Ma H, Clepper L, Gokhale S, Bogan R, Hennebold J, Wolf D, Mitalipov S. Discovery of a novel imprinted gene by transcriptional analysis of parthenogenetic embryonic stem cells. Hum Reprod 2010; 25:1927-41. [PMID: 20522441 PMCID: PMC2907230 DOI: 10.1093/humrep/deq144] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Parthenogenetic embryonic stem cells (PESCs) may have future utilities in cell replacement therapies since they are closely related to the female from which the activated oocyte was obtained. Furthermore, the avoidance of parthenogenetic development in mammals provides the most compelling rationale for the evolution of genomic imprinting, and the biological process of parthenogenesis raises complex issues regarding differential gene expression. METHODS AND RESULTS We describe here homozygous rhesus monkey PESCs derived from a spontaneously duplicated, haploid oocyte genome. Since the effect of homozygosity on PESCs pluripotency and differentiation potential is unknown, we assessed the similarities and differences in pluripotency markers and developmental potential by in vitro and in vivo differentiation of homozygous and heterozygous PESCs. To understand the differences in gene expression regulation between parthenogenetic and biparental embryonic stem cells (ESCs), we conducted microarray analysis of genome-wide mRNA profiles of primate PESCs and ESCs derived from fertilized embryos using the Affymetrix Rhesus Macaque Genome array. Several known paternally imprinted genes were in the highly down-regulated group in PESCs compared with ESCs. Furthermore, allele-specific expression analysis of other genes whose expression is also down-regulated in PESCs, led to the identification of one novel imprinted gene, inositol polyphosphate-5-phosphatase F (INPP5F), which was exclusively expressed from a paternal allele. CONCLUSION Our findings suggest that PESCs could be used as a model for studying genomic imprinting, and in the discovery of novel imprinted genes.
Collapse
|
65
|
Kanthaswamy S, Capitanio JP, Dubay CJ, Ferguson B, Folks T, Ha JC, Hotchkiss CE, Johnson ZP, Katze MG, Kean LS, Kubisch HM, Lank S, Lyons LA, Miller GM, Nylander J, O'Connor DH, Palermo RE, Smith DG, Vallender EJ, Wiseman RW, Rogers J. Resources for genetic management and genomics research on non-human primates at the National Primate Research Centers (NPRCs). J Med Primatol 2010; 38 Suppl 1:17-23. [PMID: 19863674 DOI: 10.1111/j.1600-0684.2009.00371.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The National Primate Research Centers (NPRCs) established Working Groups (WGs) for developing resources and mechanisms to facilitate collaborations among non-human primate (NHP) researchers. Here we report the progress of the Genome Banking and the Genetics and Genomics WGs in developing resources to advance the exchange, analysis and comparison of NHP genetic and genomic data across the NPRCs. The Genome Banking WG has established a National NHP DNA bank comprising 1250 DNA samples from unrelated animals and family trios from the 10 NHP species housed within the NPRC system. The Genetics and Genomics WG is developing SNP arrays that will provide a uniform, highly informative, efficient and low-cost method for rhesus and long-tailed macaque genotyping across the eight NPRCs. This WG is also establishing a Biomedical Informatics Research Network-based portal for shared bioinformatics resources including vital statistics, genotype and population data and information on the National NHP DNA bank.
Collapse
Affiliation(s)
- S Kanthaswamy
- Department of Anthropology, University of California-Davis, CA 95616, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Vigilant L. Elucidating population histories using genomic DNA sequences. CURRENT ANTHROPOLOGY 2009; 50:201-12. [PMID: 19817223 DOI: 10.1086/592025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In 1993, Cliff Jolly suggested that rather than debating species definitions and classifications, energy would be better spent investigating multidimensional patterns of variation and gene flow among populations. Until now, however, genetic studies of wild primate populations have been limited to very small portions of the genome. Access to complete genome sequences of humans, chimpanzees, macaques, and other primates makes it possible to design studies surveying substantial amounts of DNA sequence variation at multiple genetic loci in representatives of closely related but distinct wild primate populations. Such data can be analyzed with new approaches that estimate not only when populations diverged but also the relative amounts and directions of subsequent gene flow. These analyses will reemphasize the difficulty of achieving consistent species and subspecies definitions by revealing the extent of variation in the amount and duration of gene flow accompanying population divergences.
Collapse
Affiliation(s)
- Linda Vigilant
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany.
| |
Collapse
|
67
|
Uno Y, Matsushita A, Osada N, Uehara S, Kohara S, Nagata R, Fukuzaki K, Utoh M, Murayamay N, Yamazaki H. Genetic Variants of CYP3A4 and CYP3A5 in Cynomolgus and Rhesus Macaques. Drug Metab Dispos 2009; 38:209-14. [DOI: 10.1124/dmd.109.029710] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
68
|
Marques-Bonet T, Ryder OA, Eichler EE. Sequencing primate genomes: what have we learned? Annu Rev Genomics Hum Genet 2009; 10:355-86. [PMID: 19630567 DOI: 10.1146/annurev.genom.9.081307.164420] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We summarize the progress in whole-genome sequencing and analyses of primate genomes. These emerging genome datasets have broadened our understanding of primate genome evolution revealing unexpected and complex patterns of evolutionary change. This includes the characterization of genome structural variation, episodic changes in the repeat landscape, differences in gene expression, new models regarding speciation, and the ephemeral nature of the recombination landscape. The functional characterization of genomic differences important in primate speciation and adaptation remains a significant challenge. Limited access to biological materials, the lack of detailed phenotypic data and the endangered status of many critical primate species have significantly attenuated research into the genetic basis of primate evolution. Next-generation sequencing technologies promise to greatly expand the number of available primate genome sequences; however, such draft genome sequences will likely miss critical genetic differences within complex genomic regions unless dedicated efforts are put forward to understand the full spectrum of genetic variation.
Collapse
Affiliation(s)
- Tomas Marques-Bonet
- Department of Genome Sciences, University of Washington and the Howard Hughes Medical Institute, Seattle, Washington 98105, USA.
| | | | | |
Collapse
|
69
|
Stevison LS, Kohn MH. Divergence population genetic analysis of hybridization between rhesus and cynomolgus macaques. Mol Ecol 2009; 18:2457-75. [PMID: 19457196 DOI: 10.1111/j.1365-294x.2009.04212.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The geographic ranges of rhesus (Macaca mulatta) and cynomolgus (M. fascicularis) macaques adjoin in Indochina where they appear to hybridize. We used published and newly generated DNA sequences from 19 loci spanning approximately 20 kb to test whether introgression has occurred between these macaque species. We studied introgression at the level of nuclear DNA and distinguished between incomplete lineage sorting of ancestral polymorphisms or interspecific gene flow. We implemented a divergence population genetics approach by fitting our data to an isolation model implemented in the software IMa. The model that posits no gene flow from the rhesus into the cynomolgus macaque was rejected (P = 1.99 x 10(-8)). Gene flow in this direction was estimated as 2Nm approximately 1.2, while gene flow in the reverse direction was nonsignificantly different from zero (P = 0.16). The divergence time between species was estimated as approximately 1.3 million years. Balancing selection, a special case of incomplete sorting, was taken into consideration, as well as potential crossbreeding in captivity. Parameter estimates varied between analyses of subsets of data, although we still rejected isolation models. Geographic sampling of the data, where samples of cynomolgus macaques derived from Indochina were excluded, revealed a lost signature of gene flow, indicating that interspecific gene flow is restricted to mainland Indochina. Our results, in conjunction with those by others, justify future detailed analyses into the genetics of reproductive barriers and reticulate evolution in these two genome-enabled primates. Future studies of the natural hybridization between rhesus and cynomolgus macaques would expand the repertoire of systems available for speciation studies in primates.
Collapse
Affiliation(s)
- Laurie S Stevison
- Department of Ecology & Evolutionary Biology, Rice University, MS170, PO Box 1892, Houston, TX 77251-1892, USA
| | | |
Collapse
|
70
|
Kanthaswamy S, Gill L, Satkoski J, Goyal V, Malladi V, Kou A, Basuta K, Sarkisyan L, George D, Smith DG. Development of a Chinese-Indian hybrid (Chindian) rhesus macaque colony at the California National Primate Research Center by introgression. J Med Primatol 2009; 38:86-96. [PMID: 18715266 PMCID: PMC2664393 DOI: 10.1111/j.1600-0684.2008.00305.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Fullbred Chinese and Indian rhesus macaques represent genetically distinct populations. The California National Primate Research Center introduced Chinese founders into its Indian-derived rhesus colony in response to the 1978 Indian embargo on exportation of animals for research and the concern that loss of genetic variation in the closed colony would hamper research efforts. The resulting hybrid rhesus now number well over a thousand animals and represent a growing proportion of the animals in the colony. METHODS We characterized the population genetic structure of the hybrid colony and compared it with that of their pure Indian and Chinese progenitors. RESULTS The hybrid population contains higher genetic diversity and linkage disequilibrium than their full Indian progenitors and represents a resource with unique research applications. CONCLUSIONS The genetic diversity of the hybrids indicates that the strategy to introduce novel genes into the colony by hybridizing Chinese founders and their hybrid offspring with Indian-derived animals was successful.
Collapse
Affiliation(s)
- S Kanthaswamy
- Department of Anthropology, University of California, Davis, CA 95616, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Ouyang D, Xu L, Dai Z, Shi H, Zhang G, Zheng Y, He X. Identification of major histocompatibility complex class I alleles in Chinese rhesus macaques. Acta Biochim Biophys Sin (Shanghai) 2008; 40:919-27. [PMID: 18989572 DOI: 10.1111/j.1745-7270.2008.00474.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Major histocompatibility complex (MHC) class I information is vital for understanding variance of immune responses in HIV vaccination and biomedical models. In this study, 9 Mamu-A and 13 Mamu-B alleles were identified from the cDNA products of 10 Chinese-origin rhesus macaques. Except for two alleles that had been reported by others, eight were novel and twelve extended the partial sequences that are available in GenBank. The additional information of MHC class I antigens might be beneficial to the availability of Chinese macaques in human disease studies. Furthermore, the polymorphism of leading peptides and the natural killer receptor recognition motifs in alpha1 domain both implies that Mamu-A and Mamu-B molecules might play key roles in innate immune responses of natural killer cells.
Collapse
Affiliation(s)
- Dongyun Ouyang
- Institute of Tissue Transplantation and Immunology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | | | | | | | | | | | | |
Collapse
|
72
|
Uno Y, Sakuraba H, Uehara S, Kumano T, Matsuno K, Nakamura C, Kito G, Kamataki T, Nagata R. A Null Allele Impairs Function ofCYP2C76Gene in Cynomolgus Monkeys: A Possible Genetic Tool for Generation of a Better Animal Model in Drug Metabolism. Drug Metab Dispos 2008; 37:14-7. [DOI: 10.1124/dmd.108.023622] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
73
|
Kanthaswamy S, Satkoski J, George D, Kou A, Erickson BJA, Smith DG. INTERSPECIES HYBRIDIZATION AND THE STRATIFICATION OF NUCLEAR GENETIC VARIATION OF RHESUS (MACACA MULATTA) AND LONG-TAILED MACAQUES (MACACA FASCICULARIS). INT J PRIMATOL 2008; 29:1295-1311. [PMID: 19122840 DOI: 10.1007/s10764-008-9295-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Genotypes for 13 short tandem repeats (STRs) were used to assess the genetic diversity within and differentiation among populations of rhesus macaques (Macaca mulatta) from mainland Asia and long-tailed macaques (M. fascicularis) from mainland and insular Southeast Asia. These animals were either recently captured in the wild or derived from wild-caught founders maintained in captivity for biomedical research.A large number of alleles is shared between the two macaque species but a significant genetic division between them persists. This distinction is more clear-cut among populations that are not, or are unlikely to have recently been, geographically contiguous. Our results suggest there has been significant interspecies nuclear gene flow between rhesus macaques and long-tailed macaques on the mainland. Comparisons of mainland and island populations of long-tailed macaques reflect marked genetic subdivisions due to barriers to migration. Geographic isolation has restricted gene flow, allowing island populations to become subdivided and genetically differentiated. Indonesian long-tailed macaques show evidence of long-term separation and genetic isolation from the mainland populations, while long-tailed macaques from the Philippines and Mauritius both display evidence of founder effects and subsequent isolation, with the impact from genetic drift being more profound in the latter.
Collapse
Affiliation(s)
- Sree Kanthaswamy
- Department of Anthropology, University of California-Davis, Davis, California
| | | | | | | | | | | |
Collapse
|
74
|
Khouangsathiene S, Pearson C, Street S, Ferguson B, Dubay C. MonkeySNP: a web portal for non-human primate single nucleotide polymorphisms. ACTA ACUST UNITED AC 2008; 24:2645-6. [PMID: 18796476 DOI: 10.1093/bioinformatics/btn493] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
UNLABELLED MonkeySNP is a web-based resource created by the Genetic Resource and Informatics Program at the Oregon National Primate Research Center to facilitate access to non-human primate (NHP) single nucleotide polymorphisms (SNP) data. MonkeySNP is a mirror of the NCBI dbSNP database and contains additional NHP subpopulation genotype data and visual genotype displays to support SNP review and selection. AVAILABILITY http://monkeysnp.ohsu.edu/snp/ SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Samone Khouangsathiene
- Oregon National Primate Research Center, Oregon Health & Science University, 505 N.W. 185th Avenue, Beaverton, OR 97006, USA
| | | | | | | | | |
Collapse
|
75
|
Francis PJ, Appukuttan B, Simmons E, Landauer N, Stoddard J, Hamon S, Ott J, Ferguson B, Klein M, Stout JT, Neuringer M. Rhesus monkeys and humans share common susceptibility genes for age-related macular disease. Hum Mol Genet 2008; 17:2673-80. [PMID: 18535016 PMCID: PMC2733804 DOI: 10.1093/hmg/ddn167] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Accepted: 06/03/2008] [Indexed: 11/12/2022] Open
Abstract
Age-related macular degeneration (AMD), a complex multigenic disorder and the most common cause of vision loss in the elderly, is associated with polymorphisms in the LOC387715/ARMS2 and HTRA1 genes on 10q26. Like humans, macaque monkeys possess a macula and develop age-related macular pathologies including drusen, the phenotypic hallmark of AMD. We genotyped a cohort of 137 unrelated rhesus macaques with and without macular drusen. As in humans, one variant within LOC387715/ARMS2 and one in HTRA1 were significantly associated with affected status. HTRA1 and the predicted LOC387715/ARMS2 gene were both transcribed in rhesus and human retina and retinal pigment epithelium. Among several primate species, orthologous exons for the human LOC387715/ARMS2 gene were present only in Old World monkeys and apes. In functional analyses, the disease-associated HTRA1 polymorphism resulted in a 2-fold increase in gene expression, supporting a role in pathogenesis. These results demonstrate that two genes associated with AMD in humans are also associated with macular disease in rhesus macaques and that one of these genes is specific to higher primates. This is the first evidence that humans and macaques share the same genetic susceptibility factors for a common complex disease.
Collapse
Affiliation(s)
- Peter J Francis
- Casey Eye Institute, Oregon Health and Science University, Portland, OR 97239, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Vallender EJ, Priddy CM, Hakim S, Yang H, Chen GL, Miller GM. Functional variation in the 3′ untranslated region of the serotonin transporter in human and rhesus macaque. GENES BRAIN AND BEHAVIOR 2008; 7:690-7. [DOI: 10.1111/j.1601-183x.2008.00407.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
77
|
Satkoski JA, Malhi R, Kanthaswamy S, Tito R, Malladi V, Smith D. Pyrosequencing as a method for SNP identification in the rhesus macaque (Macaca mulatta). BMC Genomics 2008; 9:256. [PMID: 18510772 PMCID: PMC2443142 DOI: 10.1186/1471-2164-9-256] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Accepted: 05/29/2008] [Indexed: 11/29/2022] Open
Abstract
Background Rhesus macaques (Macaca mulatta) are the primate most used for biomedical research, but phenotypic differences between Indian-origin and Chinese rhesus macaques have encouraged genetic methods for identifying genetic differences between these two populations. The completion of the rhesus genome has led to the identification of many single nucleotide polymorphisms (SNPs) in this species. These single nucleotide polymorphisms have many advantages over the short tandem repeat (STR) loci currently used to assay genetic variation. However, the number of currently identified polymorphisms is too small for whole genome analysis or studies of quantitative trait loci. To that end, we tested a combination of methods to identify large numbers of high-confidence SNPs, and screen those with high minor allele frequencies (MAF). Results By testing our previously reported single nucleotide polymorphisms, we identified a subset of high-confidence, high-MAF polymorphisms. Resequencing revealed a large number of regionally specific SNPs not identified through a single pyrosequencing run. By resequencing a pooled sample of four individuals, we reliably identified loci with a MAF of at least 12.5%. Finally, we found that when applied to a larger, geographically variable sample of rhesus, a large proportion of our loci were variable in both populations, and very few loci were ancestry informative. Despite this fact, the SNP loci were more effective at discriminating Indian and Chinese rhesus than STR loci. Conclusion Pyrosequencing and pooled resequencing are viable methods for the identification of high-MAF SNP loci in rhesus macaques. These SNP loci are appropriate for screening both the inter- and intra-population genetic variation.
Collapse
Affiliation(s)
- Jessica A Satkoski
- Department of Anthropology, University of California-Davis, One Shields Avenue, Davis, CA, USA.
| | | | | | | | | | | |
Collapse
|
78
|
Osada N, Hashimoto K, Kameoka Y, Hirata M, Tanuma R, Uno Y, Inoue I, Hida M, Suzuki Y, Sugano S, Terao K, Kusuda J, Takahashi I. Large-scale analysis of Macaca fascicularis transcripts and inference of genetic divergence between M. fascicularis and M. mulatta. BMC Genomics 2008; 9:90. [PMID: 18294402 PMCID: PMC2287170 DOI: 10.1186/1471-2164-9-90] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Accepted: 02/24/2008] [Indexed: 01/26/2023] Open
Abstract
Background Cynomolgus macaques (Macaca fascicularis) are widely used as experimental animals in biomedical research and are closely related to other laboratory macaques, such as rhesus macaques (M. mulatta). We isolated 85,721 clones and determined 9407 full-insert sequences from cynomolgus monkey brain, testis, and liver. These sequences were annotated based on homology to human genes and stored in a database, QFbase . Results We found that 1024 transcripts did not represent any public human cDNA sequence and examined their expression using M. fascicularis oligonucleotide microarrays. Significant expression was detected for 544 (51%) of the unidentified transcripts. Moreover, we identified 226 genes containing exon alterations in the untranslated regions of the macaque transcripts, despite the highly conserved structure of the coding regions. Considering the polymorphism in the common ancestor of cynomolgus and rhesus macaques and the rate of PCR errors, the divergence time between the two species was estimated to be around 0.9 million years ago. Conclusion Transcript data from Old World monkeys provide a means not only to determine the evolutionary difference between human and non-human primates but also to unveil hidden transcripts in the human genome. Increasing the genomic resources and information of macaque monkeys will greatly contribute to the development of evolutionary biology and biomedical sciences.
Collapse
Affiliation(s)
- Naoki Osada
- Department of Biomedical Resources, National Institute of Biomedical Innovation, Ibaraki, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Dighe V, Clepper L, Pedersen D, Byrne J, Ferguson B, Gokhale S, Penedo MCT, Wolf D, Mitalipov S. Heterozygous embryonic stem cell lines derived from nonhuman primate parthenotes. Stem Cells 2008; 26:756-66. [PMID: 18192229 DOI: 10.1634/stemcells.2007-0869] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Monoparental parthenotes represent a potential source of histocompatible stem cells that should be isogenic with the oocyte donor and therefore suitable for use in cell or tissue replacement therapy. We generated five rhesus monkey parthenogenetic embryonic stem cell (PESC) lines with stable, diploid female karyotypes that were morphologically indistinguishable from biparental controls, expressed key pluripotent markers, and generated cell derivatives representative of all three germ layers following in vivo and in vitro differentiation. Interestingly, high levels of heterozygosity were observed at the majority of loci that were polymorphic in the oocyte donors. Some PESC lines were also heterozygous in the major histocompatibility complex region, carrying haplotypes identical to those of the egg donor females. Expression analysis revealed transcripts from some imprinted genes that are normally expressed from only the paternal allele. These results indicate that limitations accompanying the potential use of PESC-derived phenotypes in regenerative medicine, including aberrant genomic imprinting and high levels of homozygosity, are cell line-dependent and not always present. PESC lines were derived in high enough yields to be practicable, and their derivatives are suitable for autologous transplantation into oocyte donors or could be used to establish a bank of histocompatible cell lines for a broad spectrum of patients.
Collapse
Affiliation(s)
- Vikas Dighe
- Oregon National Primate Research Center, Beaverton, Oregon 97006, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Street SL, Kyes RC, Grant R, Ferguson B. Single nucleotide polymorphisms (SNPs) are highly conserved in rhesus (Macaca mulatta) and cynomolgus (Macaca fascicularis) macaques. BMC Genomics 2007; 8:480. [PMID: 18166133 PMCID: PMC2248198 DOI: 10.1186/1471-2164-8-480] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Accepted: 12/31/2007] [Indexed: 11/17/2022] Open
Abstract
Background Macaca fascicularis (cynomolgus or longtail macaques) is the most commonly used non-human primate in biomedical research. Little is known about the genomic variation in cynomolgus macaques or how the sequence variants compare to those of the well-studied related species, Macaca mulatta (rhesus macaque). Previously we identified single nucleotide polymorphisms (SNPs) in portions of 94 rhesus macaque genes and reported that Indian and Chinese rhesus had largely different SNPs. Here we identify SNPs from some of the same genomic regions of cynomolgus macaques (from Indochina, Indonesia, Mauritius and the Philippines) and compare them to the SNPs found in rhesus. Results We sequenced a portion of 10 genes in 20 cynomolgus macaques. We identified 69 SNPs in these regions, compared with 71 SNPs found in the same genomic regions of 20 Indian and Chinese rhesus macaques. Thirty six (52%) of the M. fascicularis SNPs were overlapping in both species. The majority (70%) of the SNPs found in both Chinese and Indian rhesus macaque populations were also present in M. fascicularis. Of the SNPs previously found in a single rhesus population, 38% (Indian) and 44% (Chinese) were also identified in cynomolgus macaques. In an alternative approach, we genotyped 100 cynomolgus DNAs using a rhesus macaque SNP array representing 53 genes and found that 51% (29/57) of the rhesus SNPs were present in M. fascicularis. Comparisons of SNP profiles from cynomolgus macaques imported from breeding centers in China (where M. fascicularis are not native) showed they were similar to those from Indochina. Conclusion This study demonstrates a surprisingly high conservation of SNPs between M. fascicularis and M. mulatta, suggesting that the relationship of these two species is closer than that suggested by morphological and mitochondrial DNA analysis alone. These findings indicate that SNP discovery efforts in either species will generate useful resources for both macaque species. Identification of SNPs that are unique to regional populations of cynomolgus macaques indicates that location-specific SNPs could be used to distinguish monkeys of uncertain origin. As an example, cynomolgus macaques obtained from 2 different breeding centers in China were shown to have Indochinese ancestry.
Collapse
Affiliation(s)
- Summer L Street
- Genetics Research and Informatics Program, Oregon National Primate Research Center, Oregon Health & Sciences University, Beaverton, OR 97006, USA.
| | | | | | | |
Collapse
|
81
|
Karl JA, Wiseman RW, Campbell KJ, Blasky AJ, Hughes AL, Ferguson B, Read DS, O'Connor DH. Identification of MHC class I sequences in Chinese-origin rhesus macaques. Immunogenetics 2007; 60:37-46. [PMID: 18097659 DOI: 10.1007/s00251-007-0267-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Accepted: 12/03/2007] [Indexed: 10/22/2022]
Abstract
The rhesus macaque (Macaca mulatta) is an excellent model for human disease and vaccine research. Two populations exhibiting distinctive morphological and physiological characteristics, Indian- and Chinese-origin rhesus macaques, are commonly used in research. Genetic analysis has focused on the Indian macaque population, but the accessibility of these animals for research is limited. Due to their greater availability, Chinese rhesus macaques are now being used more frequently, particularly in vaccine and biodefense studies, although relatively little is known about their immunogenetics. In this study, we discovered major histocompatibility complex (MHC) class I cDNAs in 12 Chinese rhesus macaques and detected 41 distinct Mamu-A and Mamu-B sequences. Twenty-seven of these class I cDNAs were novel, while six and eight of these sequences were previously reported in Chinese and Indian rhesus macaques, respectively. We then performed microsatellite analysis on DNA from these 12 animals, as well as an additional 18 animals, and developed sequence specific primer PCR (PCR-SSP) assays for eight cDNAs found in multiple animals. We also examined our cohort for potential admixture of Chinese and Indian origin animals using a recently developed panel of single nucleotide polymorphisms (SNPs). The discovery of 27 novel MHC class I sequences in this analysis underscores the genetic diversity of Chinese rhesus macaques and contributes reagents that will be valuable for studying cellular immunology in this population.
Collapse
Affiliation(s)
- Julie A Karl
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Producing primate embryonic stem cells by somatic cell nuclear transfer. Nature 2007; 450:497-502. [PMID: 18004281 DOI: 10.1038/nature06357] [Citation(s) in RCA: 346] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Accepted: 10/09/2007] [Indexed: 01/12/2023]
Abstract
Derivation of embryonic stem (ES) cells genetically identical to a patient by somatic cell nuclear transfer (SCNT) holds the potential to cure or alleviate the symptoms of many degenerative diseases while circumventing concerns regarding rejection by the host immune system. However, the concept has only been achieved in the mouse, whereas inefficient reprogramming and poor embryonic development characterizes the results obtained in primates. Here, we used a modified SCNT approach to produce rhesus macaque blastocysts from adult skin fibroblasts, and successfully isolated two ES cell lines from these embryos. DNA analysis confirmed that nuclear DNA was identical to donor somatic cells and that mitochondrial DNA originated from oocytes. Both cell lines exhibited normal ES cell morphology, expressed key stem-cell markers, were transcriptionally similar to control ES cells and differentiated into multiple cell types in vitro and in vivo. Our results represent successful nuclear reprogramming of adult somatic cells into pluripotent ES cells and demonstrate proof-of-concept for therapeutic cloning in primates.
Collapse
|
83
|
Malhi RS, Sickler B, Lin D, Satkoski J, Tito RY, George D, Kanthaswamy S, Smith DG. MamuSNP: a resource for Rhesus Macaque (Macaca mulatta) genomics. PLoS One 2007; 2:e438. [PMID: 17487284 PMCID: PMC1859839 DOI: 10.1371/journal.pone.0000438] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Accepted: 04/19/2007] [Indexed: 11/18/2022] Open
Abstract
We developed a novel method for identifying SNPs widely distributed throughout the coding and non-coding regions of a genome. The method uses large-scale parallel pyrosequencing technology in combination with bioinformatics tools. We used this method to generate approximately 23,000 candidate SNPs throughout the Macaca mulatta genome. We estimate that over 60% of the SNPs will be of high frequency and useful for mapping QTLs, genetic management, and studies of individual relatedness, whereas other less frequent SNPs may be useful as population specific markers for ancestry identification. We have created a web resource called MamuSNP to view the SNPs and associated information online. This resource will also be useful for researchers using a wide variety of Macaca species in their research.
Collapse
Affiliation(s)
- Ripan S Malhi
- Department of Anthropology, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Hernandez RD, Hubisz MJ, Wheeler DA, Smith DG, Ferguson B, Rogers J, Nazareth L, Indap A, Bourquin T, McPherson J, Muzny D, Gibbs R, Nielsen R, Bustamante CD. Demographic histories and patterns of linkage disequilibrium in Chinese and Indian rhesus macaques. Science 2007; 316:240-3. [PMID: 17431170 DOI: 10.1126/science.1140462] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
To understand the demographic history of rhesus macaques (Macaca mulatta) and document the extent of linkage disequilibrium (LD) in the genome, we partially resequenced five Encyclopedia of DNA Elements regions in 9 Chinese and 38 captive-born Indian rhesus macaques. Population genetic analyses of the 1467 single-nucleotide polymorphisms discovered suggest that the two populations separated about 162,000 years ago, with the Chinese population tripling in size since then and the Indian population eventually shrinking by a factor of four. Using coalescent simulations, we confirmed that these inferred demographic events explain a much faster decay of LD in Chinese (r(2) approximately 0.15 at 10 kilobases) versus Indian (r(2) approximately 0.52 at 10 kilobases) macaque populations.
Collapse
Affiliation(s)
- Ryan D Hernandez
- Biological Statistics and Computational Biology, Cornell University, Ithaca, NY 14850, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|