51
|
Everett AD, Yang J, Rahman M, Dulloor P, Brautigan DL. Mitotic phosphorylation activates hepatoma-derived growth factor as a mitogen. BMC Cell Biol 2011; 12:15. [PMID: 21489262 PMCID: PMC3094319 DOI: 10.1186/1471-2121-12-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 04/13/2011] [Indexed: 11/22/2022] Open
Abstract
Background Hepatoma-derived growth factor (HDGF) is a nuclear protein that is a mitogen for a wide variety of cells. Mass spectrometry based methods have identified HDGF as a phosphoprotein without validation or a functional consequence of this post-translational modification. Results We found that HDGF in primary mouse aortic vascular smooth muscle cells (VSMC) was phosphorylated. Wild type HDGF was phosphorylated in asynchronous cells and substitution of S103, S165 and S202 to alanine each demonstrated a decrease in HDGF phosphorylation. A phospho-S103 HDGF specific antibody was developed and demonstrated mitosis-specific phosphorylation. HDGF-S103A was not mitogenic and FACS analysis demonstrated a G2/M arrest in HDGF-S103A expressing cells, whereas cells expressing HDGF-S103D showed cell cycle progression. Nocodazole arrest increased S103 phosphorylation from 1.6% to 29% (P = 0.037). Conclusions Thus, HDGF is a phosphoprotein and phosphorylation of S103 is mitosis related and required for its function as a mitogen. We speculate that cell cycle regulated phosphorylation of HDGF may play an important role in vascular cell proliferation.
Collapse
Affiliation(s)
- Allen D Everett
- Department of Pediatrics, Cardiology Division, Johns Hopkins University, 600 N. Wolfe Street, Baltimore, MD 21287, USA.
| | | | | | | | | |
Collapse
|
52
|
Zhang A, Long W, Guo Z, Liu G, Hu Z, Huang Y, Li Y, Grabinski TM, Yang J, Zhao PX, Everett AD, Zhang Y, Cao BB. Development and clinical evaluation of a multi-purpose mAb and a sandwich ELISA test for hepatoma-derived growth factor in lung cancer patients. J Immunol Methods 2010; 355:61-7. [DOI: 10.1016/j.jim.2010.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 02/18/2010] [Accepted: 02/23/2010] [Indexed: 11/25/2022]
|
53
|
Colzani M, Waridel P, Laurent J, Faes E, Rüegg C, Quadroni M. Metabolic Labeling and Protein Linearization Technology Allow the Study of Proteins Secreted by Cultured Cells in Serum-Containing Media. J Proteome Res 2009; 8:4779-88. [DOI: 10.1021/pr900476b] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- M. Colzani
- Protein Analysis Facility, Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland, Division of Experimental Oncology, Multidisciplinary Oncology Center (CePO), Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland, and National Center of Competence in Research (NCCR) Molecular Oncology, ISREC, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - P. Waridel
- Protein Analysis Facility, Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland, Division of Experimental Oncology, Multidisciplinary Oncology Center (CePO), Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland, and National Center of Competence in Research (NCCR) Molecular Oncology, ISREC, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - J. Laurent
- Protein Analysis Facility, Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland, Division of Experimental Oncology, Multidisciplinary Oncology Center (CePO), Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland, and National Center of Competence in Research (NCCR) Molecular Oncology, ISREC, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - E. Faes
- Protein Analysis Facility, Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland, Division of Experimental Oncology, Multidisciplinary Oncology Center (CePO), Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland, and National Center of Competence in Research (NCCR) Molecular Oncology, ISREC, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - C. Rüegg
- Protein Analysis Facility, Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland, Division of Experimental Oncology, Multidisciplinary Oncology Center (CePO), Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland, and National Center of Competence in Research (NCCR) Molecular Oncology, ISREC, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - M. Quadroni
- Protein Analysis Facility, Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland, Division of Experimental Oncology, Multidisciplinary Oncology Center (CePO), Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland, and National Center of Competence in Research (NCCR) Molecular Oncology, ISREC, School of Life Sciences, EPFL, Lausanne, Switzerland
| |
Collapse
|
54
|
El-Tahir HM, Abouzied MM, Gallitzendoerfer R, Gieselmann V, Franken S. Hepatoma-derived growth factor-related protein-3 interacts with microtubules and promotes neurite outgrowth in mouse cortical neurons. J Biol Chem 2009; 284:11637-51. [PMID: 19237540 DOI: 10.1074/jbc.m901101200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hepatoma-derived growth factor-related proteins (HRP) comprise a family of 6 members, which the biological functions are still largely unclear. Here we show that during embryogenesis HRP-3 is strongly expressed in the developing nervous system. At early stages of development HRP-3 is located in the cytoplasm and neurites of cortical neurons. Upon maturation HRP-3 relocalizes continuously to the nuclei and in the majority of neurons of adult mice it is located exclusively in the nucleus. This redistribution from neurites to nuclei is also found in embryonic cortical neurons maturing in cell culture. We show that HRP-3 is necessary for proper neurite outgrowth in primary cortical neurons. To identify possible mechanisms of how HRP-3 modulate neuritogenesis we isolated HRP-3 interaction partners and demonstrate that it binds tubulin through the N-terminal so called HATH region, which is strongly conserved among members of the HRP family. It promotes tubulin polymerization, stabilizes and bundles microtubules. This activity depends on the extranuclear localization of HRP-3. HRP-3 thus could play an important role during neuronal development by its modulation of the neuronal cytoskeleton.
Collapse
Affiliation(s)
- Heba M El-Tahir
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms Universität, Nussallee 11, 53115 Bonn, Germany
| | | | | | | | | |
Collapse
|
55
|
Hepatoma-derived growth factor represses SET and MYND domain containing 1 gene expression through interaction with C-terminal binding protein. J Mol Biol 2009; 386:938-50. [PMID: 19162039 DOI: 10.1016/j.jmb.2008.12.080] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 11/28/2008] [Accepted: 12/26/2008] [Indexed: 11/22/2022]
Abstract
Hepatoma-derived growth factor (HDGF) is a nuclear protein with both mitogenic and angiogenic activity that is highly expressed in the developing heart and vasculature. To date, the mechanism underlying the function of HDGF is unknown. Oligonucleotide microarray analysis was used to gain insights into HDGF function. Adenoviral expression of HDGF significantly (> or =2-fold) downregulated a large group (66) of genes, and increased expression of a relatively small number of genes (9). Two groups of target genes that are involved in cardiovascular development and transcriptional regulation, including the skeletal/cardiac muscle specific SET and MYND domain containing 1 (SMYD1) gene, were validated by real time PCR. This suggested that HDGF could function as a transcriptional repressor. In a one-hybrid system, GBD-HDGF significantly repressed reporter gene activity in a dose-dependent manner. This demonstrated that HDGF has transcriptional repressive activity. Moreover, in G-7 myoblast cells, over-expression of a GFP-HDGF fusion specifically downregulated SMYD1 mRNA expression and the activity of the human SMYD1 promoter. HDGF repressed SMYD1 gene transcription through interaction with a transcriptional corepressor C-terminal binding protein (CtBP). Over-expression of CtBP potentiated the trans-repressive activity of HDGF; on the other hand, knocking down CtBP attenuated the trans-repressive effect of HDGF. HDGF binds CtBP through a non-canonical binding motif (PKDLF) within the PWWP domain, as mutation of DL to AS abolished HDGF and CtBP interaction, and diminished the trans-repressive effect of HDGF without affecting DNA binding. Finally, fluorescent microscopy showed that HDGF induced the nuclear accumulation of CtBP, suggesting that HDGF forms a transcriptional complex with CtBP. Taken together, our data demonstrate that HDGF functions as a transcriptional repressor of the SMYD1 gene through interaction with the transcriptional corepressor CtBP. Because of moderate conservation of the CtBP binding motif in HDGF family members, trans-repressive activity mediated by CtBP may be a common function among HDGF proteins.
Collapse
|
56
|
Tsang TY, Tang WY, Tsang WP, Co NN, Kong SK, Kwok TT. Downregulation of hepatoma-derived growth factor activates the Bad-mediated apoptotic pathway in human cancer cells. Apoptosis 2008; 13:1135-47. [PMID: 18651222 DOI: 10.1007/s10495-008-0241-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Hepatoma-derived growth factor (HDGF) is highly expressed in human cancer and its expression is correlated with poor prognosis of cancer. The growth factor is known to stimulate cell growth while the underlying mechanism is however not clear. Transfection with HDGF cDNA stimulated while its specific antisense oligonucleotides repressed the growth of human hepatocellular carcinoma HepG2 cells. Furthermore, knock-down of HDGF by antisense oligos also induced apoptosis in HepG2 cells and in other human cancer cells, e.g. human squamous carcinoma A431 cells. HDGF knock-down was found to induce the expression of the pro-apoptotic protein Bad and also inactivate ERK and Akt, which in turn led to dephosphorylation of Bad at Ser-112, Ser-136, and activation of the intrinsic apoptotic pathway, i.e. depolarization of the mitochondrial membrane, release of mitochondrial cytochrome c, increase in the processing of caspase 9 and 3. As HDGF knock-down not only suppresses the growth but also induces apoptosis in human cancer cells, HDGF may therefore serve as a survival factor for human cancer cells and a potential target for cancer therapy.
Collapse
Affiliation(s)
- Tsun Yee Tsang
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | | | | | | | | | | |
Collapse
|
57
|
Identification and characterization of PWWP domain residues critical for LEDGF/p75 chromatin binding and human immunodeficiency virus type 1 infectivity. J Virol 2008; 82:11555-67. [PMID: 18799576 DOI: 10.1128/jvi.01561-08] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Lens epithelium-derived growth factor (LEDGF)/p75 functions as a bimodal tether during lentiviral DNA integration: its C-terminal integrase-binding domain interacts with the viral preintegration complex, whereas the N-terminal PWWP domain can bind to cellular chromatin. The molecular basis for the integrase-LEDGF/p75 interaction is understood, while the mechanism of chromatin binding is unknown. The PWWP domain is homologous to other protein interaction modules that together comprise the Tudor clan. Based on primary amino acid sequence and three-dimensional structural similarities, 24 residues of the LEDGF/p75 PWWP domain were mutagenized to garner essential details of its function during human immunodeficiency virus type 1 (HIV-1) infection. Mutating either Trp-21 or Ala-51, which line the inner wall of a hydrophobic cavity that is common to Tudor clan members, disrupts chromatin binding and virus infectivity. Consistent with a role for chromatin-associated LEDGF/p75 in stimulating integrase activity during infection, recombinant W21A protein is preferentially defective for enhancing integration into chromatinized target DNA in vitro. The A51P mutation corresponds to the S270P change in DNA methyltransferase 3B that causes human immunodeficiency, centromeric instability, and facial anomaly syndrome, revealing a critical role for this amino acid position in the chromatin binding functions of varied PWWP domains. Our results furthermore highlight the requirement for a conserved Glu in the hydrophobic core that mediates interactions between other Tudor clan members and their substrates. This initial systematic mutagenesis of a PWWP domain identifies amino acid residues critical for chromatin binding function and the consequences of their changes on HIV-1 integration and infection.
Collapse
|
58
|
Lin SY, Yang J, Everett AD, Clevenger CV, Koneru M, Mishra PJ, Kamen B, Banerjee D, Glod J. The isolation of novel mesenchymal stromal cell chemotactic factors from the conditioned medium of tumor cells. Exp Cell Res 2008; 314:3107-17. [PMID: 18722367 DOI: 10.1016/j.yexcr.2008.07.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 07/23/2008] [Accepted: 07/23/2008] [Indexed: 01/13/2023]
Abstract
Bone marrow-derived mesenchymal stromal cells (MSCs) localize to solid tumors. Defining the signaling mechanisms that regulate this process is important in understanding the role of MSCs in tumor growth. Using a combination of chromatography and electrospray tandem mass spectrometry we have identified novel soluble signaling molecules that induce MSC chemotaxis present in conditioned medium of the breast carcinoma cell line MDA-MB231. Previous work has employed survey strategies using ELISA assay to identify known chemokines that promote MSC chemotaxis. While these studies provide valuable insights into the intercellular signals that impact MSC behavior, many less well-described, but potentially important soluble signaling molecules could be overlooked using these methods. Through the less directed method of column chromatography we have identified novel candidate MSC chemotactic peptides. Two proteins, cyclophilin B and hepatoma-derived growth factor were then further characterized and shown to promote MSC chemotaxis.
Collapse
Affiliation(s)
- Siang-Yo Lin
- Department of Pharmacology, The Cancer Institute of New Jersey, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ 08903, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Thakar K, Niedenthal R, Okaz E, Franken S, Jakobs A, Gupta S, Kelm S, Dietz F. SUMOylation of the hepatoma-derived growth factor negatively influences its binding to chromatin. FEBS J 2008; 275:1411-1426. [PMID: 18331345 DOI: 10.1111/j.1742-4658.2008.06303.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hepatoma-derived growth factor is a nuclear targeted mitogen containing a PWWP domain that mediates binding to DNA. To date, almost nothing is known about the molecular mechanisms of the functions of hepatoma-derived growth factor, its routes of secretion and internalization or post-translational modifications. In the present study, we show for the first time that hepatoma-derived growth factor is modified by the covalent attachment of small ubiquitin-related modifier 1 (SUMO-1), a post-translational modification with regulatory functions for an increasing number of proteins. Using a basal SUMOylation system in Escherichia coli followed by a MALDI-TOF-MS based peptide analysis, we identified the lysine residue SUMOylated located in the N-terminal part of the protein adjacent to the PWWP domain. Surprisingly, this lysine residue is not part of the consensus motif described for SUMOylation. With a series of hepatoma-derived growth factor mutants, we then confirmed that this unusual location is also used in mammalian cells and that SUMOylation of hepatoma-derived growth factor takes place in the nucleus. Finally, we demonstrate that SUMOylated hepatoma-derived growth factor is not binding to chromatin, in contrast to its unSUMOylated form. These observations potentially provide new perspectives for a better understanding of the functions of hepatoma-derived growth factor.
Collapse
Affiliation(s)
- Ketan Thakar
- Department of Biochemistry, Centre for Biomolecular Interactions Bremen (CBIB), University of Bremen, Germany
| | | | - Elwy Okaz
- Department of Biochemistry, Centre for Biomolecular Interactions Bremen (CBIB), University of Bremen, Germany
| | - Sebastian Franken
- Department of Physiological Chemistry, Rheinische-Friedrich-Wilhelm University of Bonn, Germany
| | - Astrid Jakobs
- Department of Biochemistry, Hannover Medical School, Germany
| | - Shivangi Gupta
- Department of Biochemistry, Centre for Biomolecular Interactions Bremen (CBIB), University of Bremen, Germany
| | - Sørge Kelm
- Department of Biochemistry, Centre for Biomolecular Interactions Bremen (CBIB), University of Bremen, Germany
| | - Frank Dietz
- Department of Biochemistry, Centre for Biomolecular Interactions Bremen (CBIB), University of Bremen, Germany
| |
Collapse
|