51
|
Natarajan S, Kim HT, Thamilarasan SK, Veerappan K, Park JI, Nou IS. Whole Genome Re-Sequencing and Characterization of Powdery Mildew Disease-Associated Allelic Variation in Melon. PLoS One 2016; 11:e0157524. [PMID: 27311063 PMCID: PMC4911151 DOI: 10.1371/journal.pone.0157524] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 06/01/2016] [Indexed: 11/30/2022] Open
Abstract
Powdery mildew is one of the most common fungal diseases in the world. This disease frequently affects melon (Cucumis melo L.) and other Cucurbitaceous family crops in both open field and greenhouse cultivation. One of the goals of genomics is to identify the polymorphic loci responsible for variation in phenotypic traits. In this study, powdery mildew disease assessment scores were calculated for four melon accessions, 'SCNU1154', 'Edisto47', 'MR-1', and 'PMR5'. To investigate the genetic variation of these accessions, whole genome re-sequencing using the Illumina HiSeq 2000 platform was performed. A total of 754,759,704 quality-filtered reads were generated, with an average of 82.64% coverage relative to the reference genome. Comparisons of the sequences for the melon accessions revealed around 7.4 million single nucleotide polymorphisms (SNPs), 1.9 million InDels, and 182,398 putative structural variations (SVs). Functional enrichment analysis of detected variations classified them into biological process, cellular component and molecular function categories. Further, a disease-associated QTL map was constructed for 390 SNPs and 45 InDels identified as related to defense-response genes. Among them 112 SNPs and 12 InDels were observed in powdery mildew responsive chromosomes. Accordingly, this whole genome re-sequencing study identified SNPs and InDels associated with defense genes that will serve as candidate polymorphisms in the search for sources of resistance against powdery mildew disease and could accelerate marker-assisted breeding in melon.
Collapse
Affiliation(s)
- Sathishkumar Natarajan
- Department of Horticulture, Sunchon National University, Suncheon, Jeonnam 540–950, Republic of Korea
| | - Hoy-Taek Kim
- Department of Horticulture, Sunchon National University, Suncheon, Jeonnam 540–950, Republic of Korea
| | | | - Karpagam Veerappan
- Department of Horticulture, Sunchon National University, Suncheon, Jeonnam 540–950, Republic of Korea
| | - Jong-In Park
- Department of Horticulture, Sunchon National University, Suncheon, Jeonnam 540–950, Republic of Korea
| | - Ill-Sup Nou
- Department of Horticulture, Sunchon National University, Suncheon, Jeonnam 540–950, Republic of Korea
| |
Collapse
|
52
|
Zhang H, Yi H, Wu M, Zhang Y, Zhang X, Li M, Wang G. Mapping the Flavor Contributing Traits on "Fengwei Melon" (Cucumis melo L.) Chromosomes Using Parent Resequencing and Super Bulked-Segregant Analysis. PLoS One 2016; 11:e0148150. [PMID: 26840947 PMCID: PMC4739687 DOI: 10.1371/journal.pone.0148150] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 01/13/2016] [Indexed: 11/30/2022] Open
Abstract
We used a next-generation high-throughput sequencing platform to resequence the Xinguowei and Shouxing melon cultivars, the parents of Fengwei melon. We found 84% of the reads (under a coverage rate of “13×”) placed on the reference genome DHL92. There were 2,550,000 single-nucleotide polymorphisms and 140,000 structural variations in the two genomes. We also identified 1,290 polymorphic genes between Xinguowei and Shouxing. We combined specific length amplified fragment sequencing (SLAF-seq) and bulked-segregant analysis (super-BSA) to analyze the two parents and the F2 extreme phenotypes. This combined method yielded 12,438,270 reads, 46,087 SLAF tags, and 4,480 polymorphic markers (average depth of 161.81×). There were six sweet trait-related regions containing 13 differential SLAF markers, and 23 sour trait-related regions containing 48 differential SLAF markers. We further fine-mapped the sweet trait to the genomic regions on chromosomes 6, 10, 11, and 12. Correspondingly, we mapped the sour trait-related genomic regions to chromosomes 2, 3, 4, 5, 9, and 12. Finally, we positioned nine of the 61 differential markers in the sweet and sour trait candidate regions on the parental genome. These markers corresponded to one sweet and eight sour trait-related genes. Our study provides a basis for marker-assisted breeding of desirable sweet and sour traits in Fengwei melons.
Collapse
Affiliation(s)
- Hong Zhang
- Hami Melon Research Center, Xinjiang Academy of Agricultural Science, Urumqi, Xinjiang, China
- * E-mail:
| | - Hongping Yi
- Hami Melon Research Center, Xinjiang Academy of Agricultural Science, Urumqi, Xinjiang, China
| | - Mingzhu Wu
- Hami Melon Research Center, Xinjiang Academy of Agricultural Science, Urumqi, Xinjiang, China
| | - Yongbin Zhang
- Hami Melon Research Center, Xinjiang Academy of Agricultural Science, Urumqi, Xinjiang, China
| | - Xuejin Zhang
- Hami Melon Research Center, Xinjiang Academy of Agricultural Science, Urumqi, Xinjiang, China
| | - Meihua Li
- Hami Melon Research Center, Xinjiang Academy of Agricultural Science, Urumqi, Xinjiang, China
| | - Guangzhi Wang
- Hami Melon Research Center, Xinjiang Academy of Agricultural Science, Urumqi, Xinjiang, China
| |
Collapse
|
53
|
Kim HA, Shin AY, Lee MS, Lee HJ, Lee HR, Ahn J, Nahm S, Jo SH, Park JM, Kwon SY. De Novo Transcriptome Analysis of Cucumis melo L. var. makuwa. Mol Cells 2016; 39:141-8. [PMID: 26743902 PMCID: PMC4757802 DOI: 10.14348/molcells.2016.2264] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 10/30/2015] [Accepted: 11/02/2015] [Indexed: 11/27/2022] Open
Abstract
Oriental melon (Cucumis melo L. var. makuwa) is one of six subspecies of melon and is cultivated widely in East Asia, including China, Japan, and Korea. Although oriental melon is economically valuable in Asia and is genetically distinct from other subspecies, few reports of genome-scale research on oriental melon have been published. We generated 30.5 and 36.8 Gb of raw RNA sequence data from the female and male flowers, leaves, roots, and fruit of two oriental melon varieties, Korean landrace (KM) and Breeding line of NongWoo Bio Co. (NW), respectively. From the raw reads, 64,998 transcripts from KM and 100,234 transcripts from NW were de novo assembled. The assembled transcripts were used to identify molecular markers (e.g., single-nucleotide polymorphisms and simple sequence repeats), detect tissue-specific expressed genes, and construct a genetic linkage map. In total, 234 single-nucleotide polymorphisms and 25 simple sequence repeats were screened from 7,871 and 8,052 candidates, respectively, between the KM and NW varieties and used for construction of a genetic map with 94 F2 population specimens. The genetic linkage map consisted of 12 linkage groups, and 248 markers were assigned. These transcriptome and molecular marker data provide information useful for molecular breeding of oriental melon and further comparative studies of the Cucurbitaceae family.
Collapse
Affiliation(s)
- Hyun A Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806,
Korea
| | - Ah-Young Shin
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806,
Korea
| | | | | | | | | | | | - Sung-Hwan Jo
- SEEDERS, Daeduk Industry Academic Cooperation Building, Daejeon 34016,
Korea
| | - Jeong Mee Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806,
Korea
- Biosystems and Bioengineering Program, University of Science and Technology, Daejeon 305-350,
Korea
| | - Suk-Yoon Kwon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806,
Korea
- Biosystems and Bioengineering Program, University of Science and Technology, Daejeon 305-350,
Korea
| |
Collapse
|
54
|
|
55
|
Grumet R, Colle M. Genomic Analysis of Cucurbit Fruit Growth. GENETICS AND GENOMICS OF CUCURBITACEAE 2016. [DOI: 10.1007/7397_2016_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
56
|
Wu H, He X, Gong H, Luo S, Li M, Chen J, Zhang C, Yu T, Huang W, Luo J. Genetic Linkage Map Construction and QTL Analysis of Two Interspecific Reproductive Isolation Traits in Sponge Gourd. FRONTIERS IN PLANT SCIENCE 2016; 7:980. [PMID: 27458467 PMCID: PMC4935800 DOI: 10.3389/fpls.2016.00980] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/21/2016] [Indexed: 05/22/2023]
Abstract
The hybrids between Luffa acutangula (L.) Roxb. and L.cylindrica (L.) Roem. have strong heterosis effects. However, some reproductive isolation traits hindered their normal hybridization and fructification, which was mainly caused by the flowering time and hybrid pollen sterility. In order to study the genetic basis of two interspecific reproductive isolation traits, we constructed a genetic linkage map using an F2 population derived from a cross between S1174 [L. acutangula (L.) Roxb.] and 93075 [L. cylindrica (L.) Roem.]. The map spans 1436.12 CentiMorgans (cM), with an average of 8.11 cM among markers, and consists of 177 EST-SSR markers distributed in 14 linkage groups (LG) with an average of 102.58 cM per LG. Meanwhile, we conducted colinearity analysis between the sequences of EST-SSR markers and the genomic sequences of cucumber, melon and watermelon. On the basis of genetic linkage map, we conducted QTL mapping of two reproductive isolation traits in sponge gourd, which were the flowering time and hybrid male sterility. Two putative QTLs associated with flowering time (FT) were both detected on LG 1. The accumulated contribution of these two QTLs explained 38.07% of the total phenotypic variance (PV), and each QTL explained 15.36 and 22.71% of the PV respectively. Four QTLs for pollen fertility (PF) were identified on LG 1 (qPF1.1 and qPF1.2), LG 3 (qPF3) and LG 7 (qPF7), respectively. The percentage of PF explained by these QTLs varied from 2.91 to 16.79%, and all together the four QTLs accounted for 39.98% of the total PV. Our newly developed EST-SSR markers and linkage map are very useful for gene mapping, comparative genomics and molecular marker-assisted breeding. These QTLs for interspecific reproductive isolation will also contribute to the cloning of genes relating to interspecific reproductive isolation and the utilization of interspecific heterosis in sponge gourd in further studies.
Collapse
Affiliation(s)
- Haibin Wu
- Vegetable Research Institute, Guangdong Academy of Agricultural ScienceGuangzhou, China
- Guangdong Provincial Key Lab for New Technology Research on VegetablesGuangzhou, China
| | - Xiaoli He
- Vegetable Research Institute, Guangdong Academy of Agricultural ScienceGuangzhou, China
| | - Hao Gong
- Vegetable Research Institute, Guangdong Academy of Agricultural ScienceGuangzhou, China
| | - Shaobo Luo
- Vegetable Research Institute, Guangdong Academy of Agricultural ScienceGuangzhou, China
- Guangdong Provincial Key Lab for New Technology Research on VegetablesGuangzhou, China
| | - Mingzhu Li
- Vegetable Research Institute, Guangdong Academy of Agricultural ScienceGuangzhou, China
| | - Junqiu Chen
- Vegetable Research Institute, Guangdong Academy of Agricultural ScienceGuangzhou, China
| | - Changyuan Zhang
- Vegetable Research Institute, Guangdong Academy of Agricultural ScienceGuangzhou, China
| | - Ting Yu
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural SciencesGuangzhou, China
| | - Wangping Huang
- Vegetable Research Institute, Guangdong Academy of Agricultural ScienceGuangzhou, China
| | - Jianning Luo
- Vegetable Research Institute, Guangdong Academy of Agricultural ScienceGuangzhou, China
- *Correspondence: Jianning Luo
| |
Collapse
|
57
|
A high-density genetic map for anchoring genome sequences and identifying QTLs associated with dwarf vine in pumpkin (Cucurbita maxima Duch.). BMC Genomics 2015; 16:1101. [PMID: 26704908 PMCID: PMC4690373 DOI: 10.1186/s12864-015-2312-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/15/2015] [Indexed: 11/17/2022] Open
Abstract
Background Pumpkin (Cucurbita maxima Duch.) is an economically important crop belonging to the Cucurbitaceae family. However, very few genomic and genetic resources are available for this species. As part of our ongoing efforts to sequence the pumpkin genome, high-density genetic map is essential for anchoring and orienting the assembled scaffolds. In addition, a saturated genetic map can facilitate quantitative trait locus (QTL) mapping. Results A set of 186 F2 plants derived from the cross of pumpkin inbred lines Rimu and SQ026 were genotyped using the genotyping-by-sequencing approach. Using the SNPs we identified, a high-density genetic map containing 458 bin-markers was constructed, spanning a total genetic distance of 2,566.8 cM across the 20 linkage groups of C. maxima with a mean marker density of 5.60 cM. Using this map we were able to anchor 58 assembled scaffolds that covered about 194.5 Mb (71.7 %) of the 271.4 Mb assembled pumpkin genome, of which 44 (183.0 Mb; 67.4 %) were oriented. Furthermore, the high-density genetic map was used to identify genomic regions highly associated with an important agronomic trait, dwarf vine. Three QTLs on linkage groups (LGs) 1, 3 and 4, respectively, were recovered. One QTL, qCmB2, which was located in an interval of 0.42 Mb on LG 3, explained 21.4 % phenotypic variations. Within qCmB2, one gene, Cma_004516, encoding the gibberellin (GA) 20-oxidase in the GA biosynthesis pathway, had a 1249-bp deletion in its promoter in bush type lines, and its expression level was significantly increased during the vine growth and higher in vine type lines than bush type lines, supporting Cma_004516 as a possible candidate gene controlling vine growth in pumpkin. Conclusions A high-density pumpkin genetic map was constructed, which was used to successfully anchor and orient the assembled genome scaffolds, and to identify QTLs highly associated with pumpkin vine length. The map provided a valuable resource for gene cloning and marker assisted breeding in pumpkin and other related species. The identified vine length QTLs would help to dissect the underlying molecular basis regulating pumpkin vine growth. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2312-8) contains supplementary material, which is available to authorized users.
Collapse
|
58
|
Argyris JM, Pujol M, Martín-Hernández AM, Garcia-Mas J. Combined use of genetic and genomics resources to understand virus resistance and fruit quality traits in melon. PHYSIOLOGIA PLANTARUM 2015; 155:4-11. [PMID: 25594580 DOI: 10.1111/ppl.12323] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/23/2014] [Indexed: 05/03/2023]
Abstract
The availability of the genome sequence of many crop species during the past few years has opened a new era in plant biology, allowing for the performance of massive genomic studies in plant species other than the classical models Arabidopsis and rice. One of these crop species is melon (Cucumis melo), a cucurbit of high economic value that has become an interesting model for the study of biological processes such as fruit ripening, sex determination and phloem transport. The recent availability of the melon genome sequence, together with a number of genetic and genomic resources, provides powerful tools that can be used to assist in the main melon breeding targets, namely disease resistance and fruit quality. In this review, we will describe recent data obtained combining the use of a melon near isogenic line (NIL) population and genomic resources to gain insight into agronomically important traits as fruit ripening, resistance to Cucumber Mosaic virus (CMV) and the accumulation of sugars in fruits.
Collapse
Affiliation(s)
- Jason M Argyris
- Institut de Recerca i Tecnologia Agroalimentàries, Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Marta Pujol
- Institut de Recerca i Tecnologia Agroalimentàries, Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Ana Montserrat Martín-Hernández
- Institut de Recerca i Tecnologia Agroalimentàries, Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Jordi Garcia-Mas
- Institut de Recerca i Tecnologia Agroalimentàries, Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
| |
Collapse
|
59
|
CmMDb: a versatile database for Cucumis melo microsatellite markers and other horticulture crop research. PLoS One 2015; 10:e0118630. [PMID: 25885062 PMCID: PMC4401682 DOI: 10.1371/journal.pone.0118630] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 01/21/2015] [Indexed: 12/02/2022] Open
Abstract
Cucumis melo L. that belongs to Cucurbitaceae family ranks among one of the highest valued horticulture crops being cultivated across the globe. Besides its economical and medicinal importance, Cucumis melo L. is a valuable resource and model system for the evolutionary studies of cucurbit family. However, very limited numbers of molecular markers were reported for Cucumis melo L. so far that limits the pace of functional genomic research in melon and other similar horticulture crops. We developed the first whole genome based microsatellite DNA marker database of Cucumis melo L. and comprehensive web resource that aids in variety identification and physical mapping of Cucurbitaceae family. The Cucumis melo L. microsatellite database (CmMDb: http://65.181.125.102/cmmdb2/index.html) encompasses 39,072 SSR markers along with its motif repeat, motif length, motif sequence, marker ID, motif type and chromosomal locations. The database is featured with novel automated primer designing facility to meet the needs of wet lab researchers. CmMDb is a freely available web resource that facilitates the researchers to select the most appropriate markers for marker-assisted selection in melons and to improve breeding strategies.
Collapse
|
60
|
Yildiz M, Cuevas HE, Sensoy S, Erdinc C, Baloch FS. Transferability of Cucurbita SSR markers for genetic diversity assessment of Turkish bottle gourd (Lagenaria siceraria) genetic resources. BIOCHEM SYST ECOL 2015. [DOI: 10.1016/j.bse.2015.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
61
|
Tzuri G, Zhou X, Chayut N, Yuan H, Portnoy V, Meir A, Sa'ar U, Baumkoler F, Mazourek M, Lewinsohn E, Fei Z, Schaffer AA, Li L, Burger J, Katzir N, Tadmor Y. A 'golden' SNP in CmOr governs the fruit flesh color of melon (Cucumis melo). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:267-79. [PMID: 25754094 DOI: 10.1111/tpj.12814] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 02/15/2015] [Accepted: 02/23/2015] [Indexed: 05/19/2023]
Abstract
The flesh color of Cucumis melo (melon) is genetically determined, and can be white, light green or orange, with β-carotene being the predominant pigment. We associated carotenoid accumulation in melon fruit flesh with polymorphism within CmOr, a homolog of the cauliflower BoOr gene, and identified CmOr as the previously described gf locus in melon. CmOr was found to co-segregate with fruit flesh color, and presented two haplotypes (alleles) in a broad germplasm collection, one being associated with orange flesh and the second being associated with either white or green flesh. Allelic variation of CmOr does not affect its transcription or protein level. The variation also does not affect its plastid subcellular localization. Among the identified single nucleotide polymorphisms (SNPs) between CmOr alleles in orange versus green/white-flesh fruit, a single SNP causes a change of an evolutionarily highly conserved arginine to histidine in the CmOr protein. Functional analysis of CmOr haplotypes in an Arabidopsis callus system confirmed the ability of the CmOr orange haplotype to induce β-carotene accumulation. Site-directed mutagenesis of the CmOr green/white haplotype to change the CmOR arginine to histidine triggered β-carotene accumulation. The identification of the 'golden' SNP in CmOr, which is responsible for the non-orange and orange melon fruit phenotypes, provides new tools for studying the Or mechanism of action, and suggests genome editing of the Or gene for nutritional biofortification of crops.
Collapse
Affiliation(s)
- Galil Tzuri
- Plant Science Institute, Israeli Agricultural Research Organization, Newe Ya'ar Research Center, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Leida C, Moser C, Esteras C, Sulpice R, Lunn JE, de Langen F, Monforte AJ, Picó B. Variability of candidate genes, genetic structure and association with sugar accumulation and climacteric behavior in a broad germplasm collection of melon (Cucumis melo L.). BMC Genet 2015; 16:28. [PMID: 25886993 PMCID: PMC4380257 DOI: 10.1186/s12863-015-0183-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/18/2015] [Indexed: 11/15/2022] Open
Abstract
Background A collection of 175 melon (Cucumis melo L.) accessions (including wild relatives, feral types, landraces, breeding lines and commercial cultivars) from 50 countries was selected to study the phenotypic variability for ripening behavior and sugar accumulation. The variability of single nucleotide polymorphisms (SNPs) at 53 selected candidate genes involved in sugar accumulation and fruit ripening processes was studied, as well as their association with phenotypic variation of related traits. Results The collection showed a strong genetic structure, defining seven groups plus a number of accessions that could not be associated to any of the groups (admixture), which fitted well with the botanical classification of melon varieties. The variability in candidate genes for ethylene, cell wall and sugar-related traits was high and similar to SNPs located in reference genes. Variability at ripening candidate genes had an important weight on the genetic stratification of melon germplasm, indicating that traditional farmers might have selected for ripening traits during cultivar diversification. A strong relationship was also found between the genetic structure and phenotypic diversity, which could hamper genetic association studies. Accessions belonging to the ameri group are the most appropriate for association analysis given the high phenotypic and molecular diversity within the group, and lack of genetic structure. The most remarkable association was found between sugar content and SNPs in LG III, where a hotspot of sugar content QTLs has previously been defined. By studying the differences in allelic variation of SNPs within horticultural groups with specific phenotypic features, we also detected differential variation in sugar-related candidates located in LGIX and LGX, and in ripening-related candidates located in LGII and X, all in regions with previously mapped QTLs for the corresponding traits. Conclusions In the current study we have found an important variability at both the phenotypic and candidate gene levels for ripening behavior and sugar accumulation in melon fruit. By combination of differences in allelic diversity and association analysis, we have identified several candidate genes that may be involved in the melon phenotypic diversity. Electronic supplementary material The online version of this article (doi:10.1186/s12863-015-0183-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carmen Leida
- Research and Innovation Center, Department Genomics and Biology of Fruit Crops, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010, San Michele, Italy.
| | - Claudio Moser
- Research and Innovation Center, Department Genomics and Biology of Fruit Crops, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010, San Michele, Italy.
| | - Cristina Esteras
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV-UPV), Universitat Politècnica de Valencia, Camino de Vera s/n, 46022, Valencia, Spain.
| | - Ronan Sulpice
- Max-Planck-Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, 14476, Potsdam, Germany. .,Plant Systems Biology Research Laboratory, Department of Botany and Plant Science, Plant and AgriBiosciences Research Centre, National University of Galway, University Road, Galway, Ireland.
| | - John E Lunn
- Max-Planck-Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, 14476, Potsdam, Germany.
| | - Frank de Langen
- HMCLAUSE (Business Unit of Limagrain), Station de Mas Saint Pierre, La Galine, 13210, Saint-Rémy-de-Provence, France.
| | - Antonio J Monforte
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI), Ed. 8E, C/Ingeniero Fausto Elio s/n, 46022, Valencia, Spain.
| | - Belen Picó
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV-UPV), Universitat Politècnica de Valencia, Camino de Vera s/n, 46022, Valencia, Spain.
| |
Collapse
|
63
|
Freilich S, Lev S, Gonda I, Reuveni E, Portnoy V, Oren E, Lohse M, Galpaz N, Bar E, Tzuri G, Wissotsky G, Meir A, Burger J, Tadmor Y, Schaffer A, Fei Z, Giovannoni J, Lewinsohn E, Katzir N. Systems approach for exploring the intricate associations between sweetness, color and aroma in melon fruits. BMC PLANT BIOLOGY 2015; 15:71. [PMID: 25887588 PMCID: PMC4448286 DOI: 10.1186/s12870-015-0449-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 02/04/2015] [Indexed: 05/02/2023]
Abstract
BACKGROUND Melon (Cucumis melo) fruits exhibit phenotypic diversity in several key quality determinants such as taste, color and aroma. Sucrose, carotenoids and volatiles are recognized as the key compounds shaping the above corresponding traits yet the full network of biochemical events underlying their synthesis have not been comprehensively described. To delineate the cellular processes shaping fruit quality phenotypes, a population of recombinant inbred lines (RIL) was used as a source of phenotypic and genotypic variations. In parallel, ripe fruits were analyzed for both the quantified level of 77 metabolic traits directly associated with fruit quality and for RNA-seq based expression profiles generated for 27,000 unigenes. First, we explored inter-metabolite association patterns; then, we described metabolites versus gene association patterns; finally, we used the correlation-based associations for predicting uncharacterized synthesis pathways. RESULTS Based on metabolite versus metabolite and metabolite versus gene association patterns, we divided metabolites into two key groups: a group including ethylene and aroma determining volatiles whose accumulation patterns are correlated with the expression of genes involved in the glycolysis and TCA cycle pathways; and a group including sucrose and color determining carotenoids whose accumulation levels are correlated with the expression of genes associated with plastid formation. CONCLUSIONS The study integrates multiple processes into a genome scale perspective of cellular activity. This lays a foundation for deciphering the role of gene markers associated with the determination of fruit quality traits.
Collapse
Affiliation(s)
- Shiri Freilich
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | - Shery Lev
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | - Itay Gonda
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | - Eli Reuveni
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | - Vitaly Portnoy
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | - Elad Oren
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | | | - Navot Galpaz
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
- Migal Research Institute, Kiryat Shmona, 11016, Israel.
| | - Einat Bar
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | - Galil Tzuri
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | - Guy Wissotsky
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | - Ayala Meir
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | - Joseph Burger
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | - Yaakov Tadmor
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | - Arthur Schaffer
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | - Zhangjun Fei
- USDA-ARS and Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA.
| | - James Giovannoni
- USDA-ARS and Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA.
| | - Efraim Lewinsohn
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | - Nurit Katzir
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| |
Collapse
|
64
|
Wyatt LE, Strickler SR, Mueller LA, Mazourek M. An acorn squash (Cucurbita pepo ssp. ovifera) fruit and seed transcriptome as a resource for the study of fruit traits in Cucurbita. HORTICULTURE RESEARCH 2015; 2:14070. [PMID: 26504561 PMCID: PMC4595981 DOI: 10.1038/hortres.2014.70] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/18/2014] [Accepted: 12/22/2014] [Indexed: 05/24/2023]
Abstract
Acorn squash (Cucurbita pepo) is an iconic fall vegetable in the United States, known for its unique fruit shape and also prized for its culinary properties. Little is known about the metabolism that underlies the development of fruit quality attributes such as color, sweetness, texture and nutritional qualities in acorn squash, or any other winter squash grown worldwide. To provide insight into winter squash fruit and seed development and add to the genomic resources in the Cucurbita genus, RNA sequencing was used to generate an acorn squash fruit and seed transcriptome from the cultivar Sweet REBA at critical points throughout fruit development. 141 838 600 high-quality paired-end Illumina reads were assembled into 55 949 unigenes. 85% of unigenes with predicted open reading frames had homology with previously identified genes and over 62% could be functionally annotated. Comparison with the watermelon and cucumber genomes provided confirmation that the unigenes are full-length and comprehensive, covering an average of 90% of the coding sequence of their homologs and 72% of the cucumber and watermelon exomes. Key candidate genes associated with carotenoid and carbohydrate metabolism were identified toward a resource for winter squash fruit quality trait dissection. This transcriptome represents a major advance in C. pepo genomics, providing significant new sequence information and revealing the repertoire of genes expressed throughout winter squash fruit and seed development. Future studies on the genetic basis of fruit quality and future breeding efforts will be enhanced by tools and insights developed from this resource.
Collapse
Affiliation(s)
- Lindsay E Wyatt
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY, USA
| | - Susan R Strickler
- Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY, USA
| | - Lukas A Mueller
- Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY, USA
| | - Michael Mazourek
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
65
|
Argyris JM, Ruiz-Herrera A, Madriz-Masis P, Sanseverino W, Morata J, Pujol M, Ramos-Onsins SE, Garcia-Mas J. Use of targeted SNP selection for an improved anchoring of the melon (Cucumis melo L.) scaffold genome assembly. BMC Genomics 2015; 16:4. [PMID: 25612459 PMCID: PMC4316794 DOI: 10.1186/s12864-014-1196-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 12/22/2014] [Indexed: 01/01/2023] Open
Abstract
Background The genome of the melon (Cucumis melo L.) double-haploid line DHL92 was recently sequenced, with 87.5 and 80.8% of the scaffold assembly anchored and oriented to the 12 linkage groups, respectively. However, insufficient marker coverage and a lack of recombination left several large, gene rich scaffolds unanchored, and some anchored scaffolds unoriented. To improve the anchoring and orientation of the melon genome assembly, we used resequencing data between the parental lines of DHL92 to develop a new set of SNP markers from unanchored scaffolds. Results A high-resolution genetic map composed of 580 SNPs was used to anchor 354.8 Mb of sequence, contained in 141 scaffolds (average size 2.5 Mb) and corresponding to 98.2% of the scaffold assembly, to the 12 melon chromosomes. Over 325.4 Mb (90%) of the assembly was oriented. The genetic map revealed regions of segregation distortion favoring SC alleles as well as recombination suppression regions coinciding with putative centromere, 45S, and 5S rDNA sites. New chromosome-scale pseudomolecules were created by incorporating to the previous v3.5 version an additional 38.3 Mb of anchored sequence representing 1,837 predicted genes contained in 55 scaffolds. Using fluorescent in situ hybridization (FISH) with BACs that produced chromosome-specific signals, melon chromosomes that correspond to the twelve linkage groups were identified, and a standardized karyotype of melon inbred line T111 was developed. Conclusions By utilizing resequencing data and targeted SNP selection combined with a large F2 mapping population, we significantly improved the quantity of anchored and oriented melon scaffold genome assembly. Using genome information combined with FISH mapping provided the first cytogenetic map of an inodorus melon type. With these results it was possible to make inferences on melon chromosome structure by relating zones of recombination suppression to centromeres and 45S and 5S heterochromatic regions. This study represents the first steps towards the integration of the high-resolution genetic and cytogenetic maps with the genomic sequence in melon that will provide more information on genome organization and allow for the improvement of the melon genome draft sequence. Electronic supplementary material The online version of this article (doi:10.1186/s12864-014-1196-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jason M Argyris
- IRTA, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, 08193, Barcelona, Spain.
| | - Aurora Ruiz-Herrera
- Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Campus UAB, 08193, Barcelona, Spain. .,Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona, Campus UAB, 08193, Barcelona, Spain.
| | - Pablo Madriz-Masis
- IRTA, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, 08193, Barcelona, Spain.
| | - Walter Sanseverino
- IRTA, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, 08193, Barcelona, Spain. .,Present Address: Sequentia Biotech, Campus UAB - Edifici CRAG, Bellaterra - Cerdanyola del Vallès, 08193, Barcelona, Spain.
| | - Jordi Morata
- IRTA, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, 08193, Barcelona, Spain.
| | - Marta Pujol
- IRTA, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, 08193, Barcelona, Spain.
| | | | - Jordi Garcia-Mas
- IRTA, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, 08193, Barcelona, Spain.
| |
Collapse
|
66
|
Ning X, Xiong L, Wang X, Gao X, Zhang Z, Zhong L, Li G. Genetic diversity among Chinese Hami melon and its relationship with melon germplasm of diverse origins revealed by microsatellite markers. BIOCHEM SYST ECOL 2014. [DOI: 10.1016/j.bse.2014.09.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
67
|
Dogimont C, Chovelon V, Pauquet J, Boualem A, Bendahmane A. The Vat locus encodes for a CC-NBS-LRR protein that confers resistance to Aphis gossypii infestation and A. gossypii-mediated virus resistance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:993-1004. [PMID: 25283874 DOI: 10.1111/tpj.12690] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/23/2014] [Accepted: 09/26/2014] [Indexed: 05/06/2023]
Abstract
Aphis gossypii is a polyphagous sucking aphid and a vector for many viruses. In Cucumis melo, a dominant locus, Vat, confers a high level of resistance to Aphis gossypii infestation and to viruses transmitted by this vector. To investigate the mechanism underlying this double resistance, we first genetically dissected the Vat locus. We delimited the double resistance to a single gene that encodes for a coiled-coil-nucleotide-binding-site-leucine-rich repeat (CC-NBS-LRR) protein type. To validate the genetic data, transgenic lines expressing the Vat gene were generated and assessed for the double resistance. In this analysis, Vat-transgenic plants were resistant to A. gossypii infestation as well as A. gossypii-mediated virus transmission. When the plants were infected mechanically, virus infection occurred on both transgenic and non-transgenic control plants. These results confirmed that the cloned CC-NBS-LRR gene mediates both resistance to aphid infestation and virus infection using A. gossypii as a vector. This resistance also invokes a separate recognition and response phases in which the recognition phase involves the interaction of an elicitor molecule from the aphid and Vat from the plant. The response phase is not specific and blocks both aphid infestation and virus infection. Sequence analysis of Vat alleles suggests a major role of an unusual conserved LRR repeat in the recognition of A. gossypii.
Collapse
Affiliation(s)
- Catherine Dogimont
- INRA, UR 1052, Unité de Génétique et d'Amélioration des Fruits et Légumes, BP 94, F-84143, Montfavet, France
| | | | | | | | | |
Collapse
|
68
|
Díaz A, Zarouri B, Fergany M, Eduardo I, Álvarez JM, Picó B, Monforte AJ. Mapping and introgression of QTL involved in fruit shape transgressive segregation into ‘piel de sapo’ melon (cucumis melo l.) [corrected]. PLoS One 2014; 9:e104188. [PMID: 25126852 PMCID: PMC4134209 DOI: 10.1371/journal.pone.0104188] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 07/10/2014] [Indexed: 11/19/2022] Open
Abstract
A mapping F2 population from the cross ‘Piel de Sapo’ × PI124112 was selectively genotyped to study the genetic control of morphological fruit traits by QTL (Quantitative Trait Loci) analysis. Ten QTL were identified, five for FL (Fruit Length), two for FD (Fruit Diameter) and three for FS (Fruit Shape). At least one robust QTL per character was found, flqs8.1 (LOD = 16.85, R2 = 34%), fdqs12.1 (LOD = 3.47, R2 = 11%) and fsqs8.1 (LOD = 14.85, R2 = 41%). flqs2.1 and fsqs2.1 cosegregate with gene a (andromonoecious), responsible for flower sex determination and with pleiotropic effects on FS. They display a positive additive effect (a) value, so the PI124112 allele causes an increase in FL and FS, producing more elongated fruits. Conversely, the negative a value for flqs8.1 and fsqs8.1 indicates a decrease in FL and FS, what results in rounder fruits, even if PI124112 produces very elongated melons. This is explained by a significant epistatic interaction between fsqs2.1 and fsqs8.1, where the effects of the alleles at locus a are attenuated by the additive PI124112 allele at fsqs8.1. Roundest fruits are produced by homozygous for PI124112 at fsqs8.1 that do not carry any dominant A allele at locus a (PiPiaa). A significant interaction between fsqs8.1 and fsqs12.1 was also detected, with the alleles at fsqs12.1 producing more elongated fruits. fsqs8.1 seems to be allelic to QTL discovered in other populations where the exotic alleles produce elongated fruits. This model has been validated in assays with backcross lines along 3 years and ultimately obtaining a fsqs8.1-NIL (Near Isogenic Line) in ‘Piel de Sapo’ background which yields round melons.
Collapse
Affiliation(s)
- Aurora Díaz
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
- * E-mail: (AD); (AJM)
| | - Belkacem Zarouri
- Laboratorio de Biología Molecular. Dpto. Investigación Agroalimentaria. Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario (IMIDRA), Alcalá de Henares, Madrid, Spain
| | - Mohamed Fergany
- Centre de Recerca en Agrigenòmica (CRAG), IRTA-CSIC-UAB, Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| | - Iban Eduardo
- Centre de Recerca en Agrigenòmica (CRAG), IRTA-CSIC-UAB, Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| | - José M. Álvarez
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Zaragoza, Spain
| | - Belén Picó
- COMAV-UPV, Institute for the Conservation and Breeding of Agricultural Biodiversity, Universitad Politécnica de Valencia, Valencia, Spain
| | - Antonio J. Monforte
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
- * E-mail: (AD); (AJM)
| |
Collapse
|
69
|
Monforte AJ, Diaz A, Caño-Delgado A, van der Knaap E. The genetic basis of fruit morphology in horticultural crops: lessons from tomato and melon. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4625-37. [PMID: 24520021 DOI: 10.1093/jxb/eru017] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Fruits represent an important part of the human diet and show extensive variation in size and shape between and within cultivated species. The genetic basis of such variation has been studied most extensively in tomato, where currently six quantitative trait loci (QTLs) involving these traits have been fine-mapped and the genes underlying the QTLs identified. The genes responsible for the cloned QTLs belong to families with a few to many members. FASCIATED is encoded by a member of the YABBY family, CNR/FW2.2 by a member of the Cell Number Regulator family, SlKLUH/FW3.2 by a cytochrome P450 of the 78A class (CYP78A), LOCULE NUMBER by a member of the WOX family including WUSCHEL, OVATE by a member of the Ovate Family Proteins (OFP), and SUN by a member of the IQ domain family. A high portion of the history and current diversity in fruit morphology among tomato cultivars can be explained by modifications at four of these cloned QTLs. In melon, a number of QTLs involved in fruit morphology have been mapped, but the molecular basis for these QTLs is unknown. In the present review, we examine the current knowledge on the molecular basis of fruit morphology in tomato and transfer that information in order to define candidate genes of melon fruit shape and size QTLs. We hypothesize that different members of the gene families identified in tomato may have a role in the regulation of fruit morphology in other species. We anchored the published melon QTL map on the genome sequence and identified the melon family members of the six cloned tomato QTLs in the genome. We investigated the co-localization of melon fruit morphology QTLs and the candidate genes. We found that QTLs for fruit weight co-localized frequently with members of the CNR/FW2.2 and KLUH/FW3.2 families, as well as co-localizations between OFP family members and fruit-shape QTLs, making this family the most suitable to explain fruit shape variation among melon accessions.
Collapse
Affiliation(s)
- Antonio J Monforte
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI), Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - Aurora Diaz
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI), Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - Ana Caño-Delgado
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, 08193 Bellaterra (Barcelona), Spain
| | - Esther van der Knaap
- Department of Horticulture and Crop Science, The Ohio State University/OARDC, 1680 Madison Avenue, Wooster, OH-44691, USA
| |
Collapse
|
70
|
Ren Y, McGregor C, Zhang Y, Gong G, Zhang H, Guo S, Sun H, Cai W, Zhang J, Xu Y. An integrated genetic map based on four mapping populations and quantitative trait loci associated with economically important traits in watermelon (Citrullus lanatus). BMC PLANT BIOLOGY 2014; 14:33. [PMID: 24443961 PMCID: PMC3898567 DOI: 10.1186/1471-2229-14-33] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 01/15/2014] [Indexed: 05/17/2023]
Abstract
BACKGROUND Modern watermelon (Citrullus lanatus L.) cultivars share a narrow genetic base due to many years of selection for desirable horticultural qualities. Wild subspecies within C. lanatus are important potential sources of novel alleles for watermelon breeding, but successful trait introgression into elite cultivars has had limited success. The application of marker assisted selection (MAS) in watermelon is yet to be realized, mainly due to the past lack of high quality genetic maps. Recently, a number of useful maps have become available, however these maps have few common markers, and were constructed using different marker sets, thus, making integration and comparative analysis among maps difficult. The objective of this research was to use single-nucleotide polymorphism (SNP) anchor markers to construct an integrated genetic map for C. lanatus. RESULTS Under the framework of the high density genetic map, an integrated genetic map was constructed by merging data from four independent mapping experiments using a genetically diverse array of parental lines, which included three subspecies of watermelon. The 698 simple sequence repeat (SSR), 219 insertion-deletion (InDel), 36 structure variation (SV) and 386 SNP markers from the four maps were used to construct an integrated map. This integrated map contained 1339 markers, spanning 798 cM with an average marker interval of 0.6 cM. Fifty-eight previously reported quantitative trait loci (QTL) for 12 traits in these populations were also integrated into the map. In addition, new QTL identified for brix, fructose, glucose and sucrose were added. Some QTL associated with economically important traits detected in different genetic backgrounds mapped to similar genomic regions of the integrated map, suggesting that such QTL are responsible for the phenotypic variability observed in a broad array of watermelon germplasm. CONCLUSIONS The integrated map described herein enhances the utility of genomic tools over previous watermelon genetic maps. A large proportion of the markers in the integrated map are SSRs, InDels and SNPs, which are easily transferable across laboratories. Moreover, the populations used to construct the integrated map include all three watermelon subspecies, making this integrated map useful for the selection of breeding traits, identification of QTL, MAS, analysis of germplasm and commercial hybrid seed detection.
Collapse
Affiliation(s)
- Yi Ren
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Cecilia McGregor
- Department of Horticulture and Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602, USA
| | - Yan Zhang
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Guoyi Gong
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Haiying Zhang
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Shaogui Guo
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Honghe Sun
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Wantao Cai
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Jie Zhang
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Yong Xu
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing 100097, China
| |
Collapse
|
71
|
Carotenoids gene markers for sweetpotato (Ipomoea batatas L. Lam): applications in genetic mapping, diversity evaluation and cross-species transference. Mol Genet Genomics 2014; 289:237-51. [PMID: 24384928 DOI: 10.1007/s00438-013-0803-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 12/11/2013] [Indexed: 10/25/2022]
Abstract
Carotenoids play essential biological roles in plants, and genes involved in the carotenoid biosynthesis pathway are evolutionarily conserved. Orange sweetpotato is an important source of β-carotene, a precursor of vitamin A. In spite of this, only a few research studies have focussed on the molecular aspects of carotenoid genes regarding their specific sequence and structure. In this study, we used published carotenoid gene sequences from Ipomoea and other species for "exon-primed intron-crossing" approaches. Fifteen pairs of primers representing six carotenoid genes were designed for different introns, eleven of which amplified scorable and reproducible alleles. The sequence of PCR products showed high homology to the original ones. Moreover, the structure and sequence of the introns and exons from five carotenoid structural genes were partially defined. Intron length polymorphism and intron single nucleotide polymorphisms were detected in amplified sequences. Marker dosages and allelic segregations were analysed in a mapping population. The developed markers were evaluated in a set of Ipomoeas batatas accessions so as to analyse genetic diversity and conservation applicability. Using CG strategy combined with EPIC-PCR technique, we developed carotenoid gene markers in sweetpotato. We reported the first set of polymorphic Candidate Gene markers for I. batatas, and demonstrated transferability in seven wild Ipomoea species. We described the sequence and structure of carotenoid genes and introduced new information about genomic constitution and allele dosage.
Collapse
|
72
|
Yang L, Koo DH, Li D, Zhang T, Jiang J, Luan F, Renner SS, Hénaff E, Sanseverino W, Garcia-Mas J, Casacuberta J, Senalik DA, Simon PW, Chen J, Weng Y. Next-generation sequencing, FISH mapping and synteny-based modeling reveal mechanisms of decreasing dysploidy in Cucumis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:16-30. [PMID: 24127692 DOI: 10.1111/tpj.12355] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 10/07/2013] [Accepted: 10/10/2013] [Indexed: 05/22/2023]
Abstract
In the large Cucurbitaceae genus Cucumis, cucumber (C. sativus) is the only species with 2n = 2x = 14 chromosomes. The majority of the remaining species, including melon (C. melo) and the sister species of cucumber, C. hystrix, have 2n = 2x = 24 chromosomes, implying a reduction from n = 12 to n = 7. To understand the underlying mechanisms, we investigated chromosome synteny among cucumber, C. hystrix and melon using integrated and complementary approaches. We identified 14 inversions and a C. hystrix lineage-specific reciprocal inversion between C. hystrix and melon. The results reveal the location and orientation of 53 C. hystrix syntenic blocks on the seven cucumber chromosomes, and allow us to infer at least 59 chromosome rearrangement events that led to the seven cucumber chromosomes, including five fusions, four translocations, and 50 inversions. The 12 inferred chromosomes (AK1-AK12) of an ancestor similar to melon and C. hystrix had strikingly different evolutionary fates, with cucumber chromosome C1 apparently resulting from insertion of chromosome AK12 into the centromeric region of translocated AK2/AK8, cucumber chromosome C3 originating from a Robertsonian-like translocation between AK4 and AK6, and cucumber chromosome C5 originating from fusion of AK9 and AK10. Chromosomes C2, C4 and C6 were the result of complex reshuffling of syntenic blocks from three (AK3, AK5 and AK11), three (AK5, AK7 and AK8) and five (AK2, AK3, AK5, AK8 and AK11) ancestral chromosomes, respectively, through 33 fusion, translocation and inversion events. Previous results (Huang, S., Li, R., Zhang, Z. et al., , Nat. Genet. 41, 1275-1281; Li, D., Cuevas, H.E., Yang, L., Li, Y., Garcia-Mas, J., Zalapa, J., Staub, J.E., Luan, F., Reddy, U., He, X., Gong, Z., Weng, Y. 2011a, BMC Genomics, 12, 396) showing that cucumber C7 stayed largely intact during the entire evolution of Cucumis are supported. Results from this study allow a fine-scale understanding of the mechanisms of dysploid chromosome reduction that has not been achieved previously.
Collapse
Affiliation(s)
- Luming Yang
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Park I, Kim J, Lee J, Kim S, Cho O, Yang K, Ahn J, Nahm S, Kim H. Development of SSR markers by next-generation sequencing of Korean landraces of chamoe (Cucumis melo var. makuwa). Mol Biol Rep 2013; 40:6855-62. [PMID: 24096890 DOI: 10.1007/s11033-013-2803-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 09/26/2013] [Indexed: 01/25/2023]
Abstract
The oriental melon (Cucumis melo var. makuwa), called 'chamoe' in Korean, is a popular fruit crop cultivated mainly in Asia and a high-market value crop in Korea. To provide molecular breeding resources for chamoe, we developed and characterized genomic SSR markers from the preliminary Illumina read assemblies of Gotgam chamoe (one of the major landraces; KM) and SW3 (the breeding parent). Mononucleotide motifs were the most abundant type of markers, followed by di-, tri-, tetra-, and pentanucleotide motifs. The most abundant dinucleotide was AT, followed by AG and AC, and AAT was the most abundant trinucleotide motif in both assemblies. Following our SSR-marker development strategy, we designed a total of 370 primer sets. Of these, 236 primer sets were tested, exhibiting 93 % polymorphism between KM and SW3. Those polymorphic SSRs were successfully amplified in the netted and Kirkagac melons, which respectively exhibited 81 and 76 % polymorphism relative to KM, and 32 and 38 % polymorphism relative to SW3. Seven selected SSR markers with a total of 17 alleles (2-3 alleles per locus) were used to distinguish between KM, SW3, and four chamoe cultivars. Our results represent the first attempt to provide genomic resources for Korean landraces for the purposes of chamoe breeding, as well as to discover a set of SSR markers capable of discriminating chamoe varieties from Korea and the rest of Asia, which possess little genetic diversity. This study establishes a highly efficient strategy for developing SSR markers from preliminary Illumina assemblies of AT-rich genomes.
Collapse
Affiliation(s)
- Inkyu Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahangno, Daejeon, 305-806, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Quantitative Trait Loci Mapping Problem: An Extinction-Based Multi-Objective Evolutionary Algorithm Approach. ALGORITHMS 2013. [DOI: 10.3390/a6030546] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
75
|
Vegas J, Garcia-Mas J, Monforte AJ. Interaction between QTLs induces an advance in ethylene biosynthesis during melon fruit ripening. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:1531-44. [PMID: 23443139 DOI: 10.1007/s00122-013-2071-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 02/12/2013] [Indexed: 05/03/2023]
Abstract
The coexistence of both climacteric and non-climacteric genotypes and the availability of a set of genetic and genomic resources make melon a suitable model for genetic studies of fruit ripening. We have previously described a QTL, ETHQB3.5, which induces climacteric fruit ripening in the near-isogenic line (NIL) SC3-5 that harbors an introgression on linkage group (LG) III from the non-climacteric melon accession PI 161375 in the, also non-climacteric cultivar, "Piel de Sapo" genetic background. In the current study, a new major QTL, ETHQV6.3, on LG VI was detected on an additional introgression in the same NIL. These QTLs are capable, individually, of inducing climacteric ripening in the non-climacteric background, the effects of ETHQV6.3 being greater than that of ETHQB3.5. The QTLs interact epistatically, advancing the timing of ethylene biosynthesis during ripening and, therefore, the climacteric responses. ETHQV6.3 was fine-mapped to a 4.5 Mb physical region of the melon genome, probably in the centromeric region of LG VI. The results presented will be of value in the molecular identification of the gene underlying ETHQV6.3.
Collapse
Affiliation(s)
- Juan Vegas
- IRTA, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | | | | |
Collapse
|
76
|
Esteras C, Formisano G, Roig C, Díaz A, Blanca J, Garcia-Mas J, Gómez-Guillamón ML, López-Sesé AI, Lázaro A, Monforte AJ, Picó B. SNP genotyping in melons: genetic variation, population structure, and linkage disequilibrium. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:1285-303. [PMID: 23381808 DOI: 10.1007/s00122-013-2053-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 01/19/2013] [Indexed: 05/02/2023]
Abstract
Novel sequencing technologies were recently used to generate sequences from multiple melon (Cucumis melo L.) genotypes, enabling the in silico identification of large single nucleotide polymorphism (SNP) collections. In order to optimize the use of these markers, SNP validation and large-scale genotyping are necessary. In this paper, we present the first validated design for a genotyping array with 768 SNPs that are evenly distributed throughout the melon genome. This customized Illumina GoldenGate assay was used to genotype a collection of 74 accessions, representing most of the botanical groups of the species. Of the assayed loci, 91 % were successfully genotyped. The array provided a large number of polymorphic SNPs within and across accessions. This set of SNPs detected high levels of variation in accessions from this crop's center of origin as well as from several other areas of melon diversification. Allele distribution throughout the genome revealed regions that distinguished between the two main groups of cultivated accessions (inodorus and cantalupensis). Population structure analysis showed a subdivision into five subpopulations, reflecting the history of the crop. A considerably low level of LD was detected, which decayed rapidly within a few kilobases. Our results show that the GoldenGate assay can be used successfully for high-throughput SNP genotyping in melon. Since many of the genotyped accessions are currently being used as the parents of breeding populations in various programs, this set of mapped markers could be used for future mapping and breeding efforts.
Collapse
Affiliation(s)
- Cristina Esteras
- COMAV, Institute for the Conservation and Breeding of Agricultural Biodiversity, Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022 Valencia, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
QTL mapping of growth-related traits in a full-sib family of rubber tree (Hevea brasiliensis) evaluated in a sub-tropical climate. PLoS One 2013; 8:e61238. [PMID: 23620732 PMCID: PMC3631230 DOI: 10.1371/journal.pone.0061238] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 03/06/2013] [Indexed: 11/23/2022] Open
Abstract
The rubber tree (Hevea spp.), cultivated in equatorial and tropical countries, is the primary plant used in natural rubber production. Due to genetic and physiological constraints, inbred lines of this species are not available. Therefore, alternative approaches are required for the characterization of this species, such as the genetic mapping of full-sib crosses derived from outbred parents. In the present study, an integrated genetic map was obtained for a full-sib cross family with simple sequence repeats (SSRs) and expressed sequence tag (EST-SSR) markers, which can display different segregation patterns. To study the genetic architecture of the traits related to growth in two different conditions (winter and summer), quantitative trait loci (QTL) mapping was also performed using the integrated map. Traits evaluated were height and girth growth, and the statistical model was based in an extension of composite interval mapping. The obtained molecular genetic map has 284 markers distributed among 23 linkage groups with a total length of 2688.8 cM. A total of 18 QTLs for growth traits during the summer and winter seasons were detected. A comparison between the different seasons was also conducted. For height, QTLs detected during the summer season were different from the ones detected during winter season. This type of difference was also observed for girth. Integrated maps are important for genetics studies in outbred species because they represent more accurately the polymorphisms observed in the genitors. QTL mapping revealed several interesting findings, such as a dominance effect and unique segregation patterns that each QTL could exhibit, which were independent of the flanking markers. The QTLs identified in this study, especially those related to phenotypic variation associated with winter could help studies of marker-assisted selection that are particularly important when the objective of a breeding program is to obtain phenotypes that are adapted to sub-optimal regions.
Collapse
|
78
|
Yang L, Li D, Li Y, Gu X, Huang S, Garcia-Mas J, Weng Y. A 1,681-locus consensus genetic map of cultivated cucumber including 67 NB-LRR resistance gene homolog and ten gene loci. BMC PLANT BIOLOGY 2013; 13:53. [PMID: 23531125 PMCID: PMC3626583 DOI: 10.1186/1471-2229-13-53] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Accepted: 03/11/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND Cucumber is an important vegetable crop that is susceptible to many pathogens, but no disease resistance (R) genes have been cloned. The availability of whole genome sequences provides an excellent opportunity for systematic identification and characterization of the nucleotide binding and leucine-rich repeat (NB-LRR) type R gene homolog (RGH) sequences in the genome. Cucumber has a very narrow genetic base making it difficult to construct high-density genetic maps. Development of a consensus map by synthesizing information from multiple segregating populations is a method of choice to increase marker density. As such, the objectives of the present study were to identify and characterize NB-LRR type RGHs, and to develop a high-density, integrated cucumber genetic-physical map anchored with RGH loci. RESULTS From the Gy14 draft genome, 70 NB-containing RGHs were identified and characterized. Most RGHs were in clusters with uneven distribution across seven chromosomes. In silico analysis indicated that all 70 RGHs had EST support for gene expression. Phylogenetic analysis classified 58 RGHs into two clades: CNL and TNL. Comparative analysis revealed high-degree sequence homology and synteny in chromosomal locations of these RGH members between the cucumber and melon genomes. Fifty-four molecular markers were developed to delimit 67 of the 70 RGHs, which were integrated into a genetic map through linkage analysis. A 1,681-locus cucumber consensus map including 10 gene loci and spanning 730.0 cM in seven linkage groups was developed by integrating three component maps with a bin-mapping strategy. Physically, 308 scaffolds with 193.2 Mbp total DNA sequences were anchored onto this consensus map that covered 52.6% of the 367 Mbp cucumber genome. CONCLUSIONS Cucumber contains relatively few NB-LRR RGHs that are clustered and unevenly distributed in the genome. All RGHs seem to be transcribed and shared significant sequence homology and synteny with the melon genome suggesting conservation of these RGHs in the Cucumis lineage. The 1,681-locus consensus genetic-physical map developed and the RGHs identified and characterized herein are valuable genomics resources that may have many applications such as quantitative trait loci identification, map-based gene cloning, association mapping, marker-assisted selection, as well as assembly of a more complete cucumber genome.
Collapse
Affiliation(s)
- Luming Yang
- Horticulture Department, University of Wisconsin, Madison, WI 53706, USA
| | - Dawei Li
- Horticulture Department, University of Wisconsin, Madison, WI 53706, USA
- Horticulture College, Northwest A&F University, Yangling, 712100, China
| | - Yuhong Li
- Horticulture Department, University of Wisconsin, Madison, WI 53706, USA
- Horticulture College, Northwest A&F University, Yangling, 712100, China
| | - Xingfang Gu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100018, China
| | - Sanwen Huang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100018, China
| | - Jordi Garcia-Mas
- IRTA, Center for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, Bellaterra, Barcelona, 08193, Spain
| | - Yiqun Weng
- Horticulture Department, University of Wisconsin, Madison, WI 53706, USA
- USDA-ARS Vegetable Crops Research Unit, Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
| |
Collapse
|
79
|
Sherman A, Eshed R, Harel-Beja R, Tzuri G, Portnoy V, Cohen S, Rubinstein M, Schaffer AA, Burger J, Katzir N, Ophir R. Combining bulk segregation analysis and microarrays for mapping of the pH trait in melon. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:349-358. [PMID: 23070028 DOI: 10.1007/s00122-012-1983-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 09/15/2012] [Indexed: 06/01/2023]
Abstract
The availability of sequence information for many plants has opened the way to advanced genetic analysis in many non-model plants. Nevertheless, exploration of genetic variation on a large scale and its use as a tool for the identification of traits of interest are still rare. In this study, we combined a bulk segregation approach with our own-designed microarrays to map the pH locus that influences fruit pH in melon. Using these technologies, we identified a set of markers that are genetically linked to the pH trait. Further analysis using a set of melon cultivars demonstrated that some of these markers are tightly linked to the pH trait throughout our germplasm collection. These results validate the utility of combining microarray technology with a bulk segregation approach in mapping traits of interest in non-model plants.
Collapse
Affiliation(s)
- Amir Sherman
- Genomic Unit, Institute of Plant Sciences, Volcani Research Center, Agricultural Research Organization, 50250 Bet Dagan, Israel.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Gao P, Ma H, Luan F, Song H. DNA fingerprinting of Chinese melon provides evidentiary support of seed quality appraisal. PLoS One 2012; 7:e52431. [PMID: 23285039 PMCID: PMC3527501 DOI: 10.1371/journal.pone.0052431] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 11/14/2012] [Indexed: 11/19/2022] Open
Abstract
Melon, Cucumis melo L. is an important vegetable crop worldwide. At present, there are phenomena of homonyms and synonyms present in the melon seed markets of China, which could cause variety authenticity issues influencing the process of melon breeding, production, marketing and other aspects. Molecular markers, especially microsatellites or simple sequence repeats (SSRs) are playing increasingly important roles for cultivar identification. The aim of this study was to construct a DNA fingerprinting database of major melon cultivars, which could provide a possibility for the establishment of a technical standard system for purity and authenticity identification of melon seeds. In this study, to develop the core set SSR markers, 470 polymorphic SSRs were selected as the candidate markers from 1219 SSRs using 20 representative melon varieties (lines). Eighteen SSR markers, evenly distributed across the genome and with the highest contents of polymorphism information (PIC) were identified as the core marker set for melon DNA fingerprinting analysis. Fingerprint codes for 471 melon varieties (lines) were established. There were 51 materials which were classified into17 groups based on sharing the same fingerprint code, while field traits survey results showed that these plants in the same group were synonyms because of the same or similar field characters. Furthermore, DNA fingerprinting quick response (QR) codes of 471 melon varieties (lines) were constructed. Due to its fast readability and large storage capacity, QR coding melon DNA fingerprinting is in favor of read convenience and commercial applications.
Collapse
Affiliation(s)
- Peng Gao
- College of Horticulture, Northeast Agricultural University, Harbin, Heilongjiang Province, People’s Republic of China
| | - Hongyan Ma
- College of Horticulture, Northeast Agricultural University, Harbin, Heilongjiang Province, People’s Republic of China
| | - Feishi Luan
- College of Horticulture, Northeast Agricultural University, Harbin, Heilongjiang Province, People’s Republic of China
- * E-mail:
| | - Haibin Song
- College of Horticulture, Northeast Agricultural University, Harbin, Heilongjiang Province, People’s Republic of China
| |
Collapse
|
81
|
Cloutier S, Ragupathy R, Miranda E, Radovanovic N, Reimer E, Walichnowski A, Ward K, Rowland G, Duguid S, Banik M. Integrated consensus genetic and physical maps of flax (Linum usitatissimum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 125:1783-95. [PMID: 22890805 PMCID: PMC3493668 DOI: 10.1007/s00122-012-1953-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 07/21/2012] [Indexed: 05/06/2023]
Abstract
Three linkage maps of flax (Linum usitatissimum L.) were constructed from populations CDC Bethune/Macbeth, E1747/Viking and SP2047/UGG5-5 containing between 385 and 469 mapped markers each. The first consensus map of flax was constructed incorporating 770 markers based on 371 shared markers including 114 that were shared by all three populations and 257 shared between any two populations. The 15 linkage group map corresponds to the haploid number of chromosomes of this species. The marker order of the consensus map was largely collinear in all three individual maps but a few local inversions and marker rearrangements spanning short intervals were observed. Segregation distortion was present in all linkage groups which contained 1-52 markers displaying non-Mendelian segregation. The total length of the consensus genetic map is 1,551 cM with a mean marker density of 2.0 cM. A total of 670 markers were anchored to 204 of the 416 fingerprinted contigs of the physical map corresponding to ~274 Mb or 74 % of the estimated flax genome size of 370 Mb. This high resolution consensus map will be a resource for comparative genomics, genome organization, evolution studies and anchoring of the whole genome shotgun sequence.
Collapse
Affiliation(s)
- Sylvie Cloutier
- Cereal Research Centre, Agriculture and Agri-Food Canada, 195 Dafoe Road, Winnipeg, MB, R3T 2M9, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Nakatsuka T, Yamada E, Saito M, Hikage T, Ushiku Y, Nishihara M. Construction of the first genetic linkage map of Japanese gentian (Gentianaceae). BMC Genomics 2012. [PMID: 23186361 PMCID: PMC3561071 DOI: 10.1186/1471-2164-13-672] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Background Japanese gentians (Gentiana triflora and Gentiana scabra) are amongst the most popular floricultural plants in Japan. However, genomic resources for Japanese gentians have not yet been developed, mainly because of the heterozygous genome structure conserved by outcrossing, the long juvenile period, and limited knowledge about the inheritance of important traits. In this study, we developed a genetic linkage map to improve breeding programs of Japanese gentians. Results Enriched simple sequence repeat (SSR) libraries from a G. triflora double haploid line yielded almost 20,000 clones using 454 pyrosequencing technology, 6.7% of which could be used to design SSR markers. To increase the number of molecular markers, we identified three putative long terminal repeat (LTR) sequences using the recently developed inter-primer binding site (iPBS) method. We also developed retrotransposon microsatellite amplified polymorphism (REMAP) markers combining retrotransposon and inter-simple sequence repeat (ISSR) markers. In addition to SSR and REMAP markers, modified amplified fragment length polymorphism (AFLP) and random amplification polymorphic DNA (RAPD) markers were developed. Using 93 BC1 progeny from G. scabra backcrossed with a G. triflora double haploid line, 19 linkage groups were constructed with a total of 263 markers (97 SSR, 97 AFLP, 39 RAPD, and 30 REMAP markers). One phenotypic trait (stem color) and 10 functional markers related to genes controlling flower color, flowering time and cold tolerance were assigned to the linkage map, confirming its utility. Conclusions This is the first reported genetic linkage map for Japanese gentians and for any species belonging to the family Gentianaceae. As demonstrated by mapping of functional markers and the stem color trait, our results will help to explain the genetic basis of agronomic important traits, and will be useful for marker-assisted selection in gentian breeding programs. Our map will also be an important resource for further genetic analyses such as mapping of quantitative trait loci and map-based cloning of genes in this species.
Collapse
Affiliation(s)
- Takashi Nakatsuka
- Iwate Biotechnology Research Center, Narita 22-174-4, Kitakami, Iwate 024-0003, Japan
| | | | | | | | | | | |
Collapse
|
83
|
Abstract
We report the genome sequence of melon, an important horticultural crop worldwide. We assembled 375 Mb of the double-haploid line DHL92, representing 83.3% of the estimated melon genome. We predicted 27,427 protein-coding genes, which we analyzed by reconstructing 22,218 phylogenetic trees, allowing mapping of the orthology and paralogy relationships of sequenced plant genomes. We observed the absence of recent whole-genome duplications in the melon lineage since the ancient eudicot triplication, and our data suggest that transposon amplification may in part explain the increased size of the melon genome compared with the close relative cucumber. A low number of nucleotide-binding site-leucine-rich repeat disease resistance genes were annotated, suggesting the existence of specific defense mechanisms in this species. The DHL92 genome was compared with that of its parental lines allowing the quantification of sequence variability in the species. The use of the genome sequence in future investigations will facilitate the understanding of evolution of cucurbits and the improvement of breeding strategies.
Collapse
|
84
|
Cohen S, Tzuri G, Harel-Beja R, Itkin M, Portnoy V, Sa'ar U, Lev S, Yeselson L, Petrikov M, Rogachev I, Aharoni A, Ophir R, Tadmor Y, Lewinsohn E, Burger Y, Katzir N, Schaffer AA. Co-mapping studies of QTLs for fruit acidity and candidate genes of organic acid metabolism and proton transport in sweet melon (Cucumis melo L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 125:343-53. [PMID: 22406955 DOI: 10.1007/s00122-012-1837-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 02/24/2012] [Indexed: 05/18/2023]
Abstract
Sweet melon cultivars contain a low level of organic acids and, therefore, the quality and flavor of sweet melon fruit is determined almost exclusively by fruit sugar content. However, genetic variability for fruit acid levels in the Cucumis melo species exists and sour fruit accessions are characterized by acidic fruit pH of <5, compared to the sweet cultivars that are generally characterized by mature fruit pH values of >6. In this paper, we report results from a mapping population based on recombinant inbred lines (RILs) derived from the cross between the non-sour 'Dulce' variety and the sour PI 414323 accession. Results show that a single major QTL for pH co-localizes with major QTLs for the two predominant organic acids in melon fruit, citric and malic, together with an additional metabolite which we identified as uridine. While the acidic recombinants were characterized by higher citric and malic acid levels, the non-acidic recombinants had a higher uridine content than did the acidic recombinants. Additional minor QTLs for pH, citric acid and malic acid were also identified and for these the increased acidity was unexpectedly contributed by the non-sour parent. To test for co-localization of these QTLs with genes encoding organic acid metabolism and transport, we mapped the genes encoding structural enzymes and proteins involved in organic acid metabolism, transport and vacuolar H+ pumps. None of these genes co-localized with the major pH QTL, indicating that the gene determining melon fruit pH is not one of the candidate genes encoding this primary metabolic pathway. Linked markers were tested in two additional inter-varietal populations and shown to be linked to the pH trait. The presence of the same QTL in such diverse segregating populations suggests that the trait is determined throughout the species by variability in the same gene and is indicative of a major role of the evolution of this gene in determining the important domestication trait of fruit acidity within the species.
Collapse
Affiliation(s)
- S Cohen
- Deparment of Vegetable Research, Volcani Center-ARO, 50250 Bet Dagan, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Blanca J, Esteras C, Ziarsolo P, Pérez D, Fernã Ndez-Pedrosa V, Collado C, Rodrã Guez de Pablos R, Ballester A, Roig C, Cañizares J, Picó B. Transcriptome sequencing for SNP discovery across Cucumis melo. BMC Genomics 2012; 13:280. [PMID: 22726804 PMCID: PMC3473316 DOI: 10.1186/1471-2164-13-280] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 06/14/2012] [Indexed: 01/25/2023] Open
Abstract
Background Melon (Cucumis melo L.) is a highly diverse species that is cultivated worldwide. Recent advances in massively parallel sequencing have begun to allow the study of nucleotide diversity in this species. The Sanger method combined with medium-throughput 454 technology were used in a previous study to analyze the genetic diversity of germplasm representing 3 botanical varieties, yielding a collection of about 40,000 SNPs distributed in 14,000 unigenes. However, the usefulness of this resource is limited as the sequenced genotypes do not represent the whole diversity of the species, which is divided into two subspecies with many botanical varieties variable in plant, flowering, and fruit traits, as well as in stress response. As a first step to extensively document levels and patterns of nucleotide variability across the species, we used the high-throughput SOLiD™ system to resequence the transcriptomes of a set of 67 genotypes that had previously been selected from a core collection representing the extant variation of the entire species. Results The deep transcriptome resequencing of all of the genotypes, grouped into 8 pools (wild African agrestis, Asian agrestis and acidulus, exotic Far Eastern conomon, Indian momordica and Asian dudaim and flexuosus, commercial cantalupensis, subsp. melo Asian and European landraces, Spanish inodorus landraces, and Piel de Sapo breeding lines) yielded about 300 M reads. Short reads were mapped to the recently generated draft genome assembly of the DHL line Piel de Sapo (inodorus) x Songwhan Charmi (conomon) and to a new version of melon transcriptome. Regions with at least 6X coverage were used in SNV calling, generating a melon collection with 303,883 variants. These SNVs were dispersed across the entire C. melo genome, and distributed in 15,064 annotated genes. The number and variability of in silico SNVs differed considerably between pools. Our finding of higher genomic diversity in wild and exotic agrestis melons from India and Africa as compared to commercial cultivars, cultigens and landraces from Eastern Europe, Western Asia and the Mediterranean basin is consistent with the evolutionary history proposed for the species. Group-specific SNVs that will be useful in introgression programs were also detected. In a sample of 143 selected putative SNPs, we verified 93% of the polymorphisms in a panel of 78 genotypes. Conclusions This study provides the first comprehensive resequencing data for wild, exotic, and cultivated (landraces and commercial) melon transcriptomes, yielding the largest melon SNP collection available to date and representing a notable sample of the species diversity. This data provides a valuable resource for creating a catalog of allelic variants of melon genes and it will aid in future in-depth studies of population genetics, marker-assisted breeding, and gene identification aimed at developing improved varieties.
Collapse
Affiliation(s)
- José Blanca
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV-UPV), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Blanca J, Esteras C, Ziarsolo P, Pérez D, Fernã Ndez-Pedrosa V, Collado C, Rodrã Guez de Pablos R, Ballester A, Roig C, Cañizares J, Picó B. Transcriptome sequencing for SNP discovery across Cucumis melo. BMC Genomics 2012. [PMID: 22726804 DOI: 10.1186/1471‐2164‐13‐280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Melon (Cucumis melo L.) is a highly diverse species that is cultivated worldwide. Recent advances in massively parallel sequencing have begun to allow the study of nucleotide diversity in this species. The Sanger method combined with medium-throughput 454 technology were used in a previous study to analyze the genetic diversity of germplasm representing 3 botanical varieties, yielding a collection of about 40,000 SNPs distributed in 14,000 unigenes. However, the usefulness of this resource is limited as the sequenced genotypes do not represent the whole diversity of the species, which is divided into two subspecies with many botanical varieties variable in plant, flowering, and fruit traits, as well as in stress response. As a first step to extensively document levels and patterns of nucleotide variability across the species, we used the high-throughput SOLiD™ system to resequence the transcriptomes of a set of 67 genotypes that had previously been selected from a core collection representing the extant variation of the entire species. RESULTS The deep transcriptome resequencing of all of the genotypes, grouped into 8 pools (wild African agrestis, Asian agrestis and acidulus, exotic Far Eastern conomon, Indian momordica and Asian dudaim and flexuosus, commercial cantalupensis, subsp. melo Asian and European landraces, Spanish inodorus landraces, and Piel de Sapo breeding lines) yielded about 300 M reads. Short reads were mapped to the recently generated draft genome assembly of the DHL line Piel de Sapo (inodorus) x Songwhan Charmi (conomon) and to a new version of melon transcriptome. Regions with at least 6X coverage were used in SNV calling, generating a melon collection with 303,883 variants. These SNVs were dispersed across the entire C. melo genome, and distributed in 15,064 annotated genes. The number and variability of in silico SNVs differed considerably between pools. Our finding of higher genomic diversity in wild and exotic agrestis melons from India and Africa as compared to commercial cultivars, cultigens and landraces from Eastern Europe, Western Asia and the Mediterranean basin is consistent with the evolutionary history proposed for the species. Group-specific SNVs that will be useful in introgression programs were also detected. In a sample of 143 selected putative SNPs, we verified 93% of the polymorphisms in a panel of 78 genotypes. CONCLUSIONS This study provides the first comprehensive resequencing data for wild, exotic, and cultivated (landraces and commercial) melon transcriptomes, yielding the largest melon SNP collection available to date and representing a notable sample of the species diversity. This data provides a valuable resource for creating a catalog of allelic variants of melon genes and it will aid in future in-depth studies of population genetics, marker-assisted breeding, and gene identification aimed at developing improved varieties.
Collapse
Affiliation(s)
- José Blanca
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV-UPV), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Hudson CJ, Freeman JS, Kullan ARK, Petroli CD, Sansaloni CP, Kilian A, Detering F, Grattapaglia D, Potts BM, Myburg AA, Vaillancourt RE. A reference linkage map for Eucalyptus. BMC Genomics 2012; 13:240. [PMID: 22702473 PMCID: PMC3436727 DOI: 10.1186/1471-2164-13-240] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 06/04/2012] [Indexed: 01/26/2023] Open
Abstract
Background Genetic linkage maps are invaluable resources in plant research. They provide a key tool for many genetic applications including: mapping quantitative trait loci (QTL); comparative mapping; identifying unlinked (i.e. independent) DNA markers for fingerprinting, population genetics and phylogenetics; assisting genome sequence assembly; relating physical and recombination distances along the genome and map-based cloning of genes. Eucalypts are the dominant tree species in most Australian ecosystems and of economic importance globally as plantation trees. The genome sequence of E. grandis has recently been released providing unprecedented opportunities for genetic and genomic research in the genus. A robust reference linkage map containing sequence-based molecular markers is needed to capitalise on this resource. Several high density linkage maps have recently been constructed for the main commercial forestry species in the genus (E. grandis, E. urophylla and E. globulus) using sequenced Diversity Arrays Technology (DArT) and microsatellite markers. To provide a single reference linkage map for eucalypts a composite map was produced through the integration of data from seven independent mapping experiments (1950 individuals) using a marker-merging method. Results The composite map totalled 1107 cM and contained 4101 markers; comprising 3880 DArT, 213 microsatellite and eight candidate genes. Eighty-one DArT markers were mapped to two or more linkage groups, resulting in the 4101 markers being mapped to 4191 map positions. Approximately 13% of DArT markers mapped to identical map positions, thus the composite map contained 3634 unique loci at an average interval of 0.31 cM. Conclusion The composite map represents the most saturated linkage map yet produced in Eucalyptus. As the majority of DArT markers contained on the map have been sequenced, the map provides a direct link to the E. grandis genome sequence and will serve as an important reference for progressing eucalypt research.
Collapse
Affiliation(s)
- Corey J Hudson
- School of Plant Science and CRC for Forestry, University of Tasmania, Private Bag 55 Hobart, Tasmania, 7001, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Truong HT, Ramos AM, Yalcin F, de Ruiter M, van der Poel HJA, Huvenaars KHJ, Hogers RCJ, van Enckevort LJG, Janssen A, van Orsouw NJ, van Eijk MJT. Sequence-based genotyping for marker discovery and co-dominant scoring in germplasm and populations. PLoS One 2012; 7:e37565. [PMID: 22662172 PMCID: PMC3360789 DOI: 10.1371/journal.pone.0037565] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 04/25/2012] [Indexed: 12/14/2022] Open
Abstract
Conventional marker-based genotyping platforms are widely available, but not without their limitations. In this context, we developed Sequence-Based Genotyping (SBG), a technology for simultaneous marker discovery and co-dominant scoring, using next-generation sequencing. SBG offers users several advantages including a generic sample preparation method, a highly robust genome complexity reduction strategy to facilitate de novo marker discovery across entire genomes, and a uniform bioinformatics workflow strategy to achieve genotyping goals tailored to individual species, regardless of the availability of a reference sequence. The most distinguishing features of this technology are the ability to genotype any population structure, regardless whether parental data is included, and the ability to co-dominantly score SNP markers segregating in populations. To demonstrate the capabilities of SBG, we performed marker discovery and genotyping in Arabidopsis thaliana and lettuce, two plant species of diverse genetic complexity and backgrounds. Initially we obtained 1,409 SNPs for arabidopsis, and 5,583 SNPs for lettuce. Further filtering of the SNP dataset produced over 1,000 high quality SNP markers for each species. We obtained a genotyping rate of 201.2 genotypes/SNP and 58.3 genotypes/SNP for arabidopsis (n = 222 samples) and lettuce (n = 87 samples), respectively. Linkage mapping using these SNPs resulted in stable map configurations. We have therefore shown that the SBG approach presented provides users with the utmost flexibility in garnering high quality markers that can be directly used for genotyping and downstream applications. Until advances and costs will allow for routine whole-genome sequencing of populations, we expect that sequence-based genotyping technologies such as SBG will be essential for genotyping of model and non-model genomes alike.
Collapse
|
89
|
Sharma V, Sarkar IN. Bioinformatics opportunities for identification and study of medicinal plants. Brief Bioinform 2012; 14:238-50. [PMID: 22589384 DOI: 10.1093/bib/bbs021] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Plants have been used as a source of medicine since historic times and several commercially important drugs are of plant-based origin. The traditional approach towards discovery of plant-based drugs often times involves significant amount of time and expenditure. These labor-intensive approaches have struggled to keep pace with the rapid development of high-throughput technologies. In the era of high volume, high-throughput data generation across the biosciences, bioinformatics plays a crucial role. This has generally been the case in the context of drug designing and discovery. However, there has been limited attention to date to the potential application of bioinformatics approaches that can leverage plant-based knowledge. Here, we review bioinformatics studies that have contributed to medicinal plants research. In particular, we highlight areas in medicinal plant research where the application of bioinformatics methodologies may result in quicker and potentially cost-effective leads toward finding plant-based remedies.
Collapse
Affiliation(s)
- Vivekanand Sharma
- Department of Microbiology and Molecular Genetics, University of Vermont, 89 Beaumont Avenue, Given Courtyard N309, Burlington, VT 05405, USA
| | | |
Collapse
|
90
|
Esteras C, Gómez P, Monforte AJ, Blanca J, Vicente-Dólera N, Roig C, Nuez F, Picó B. High-throughput SNP genotyping in Cucurbita pepo for map construction and quantitative trait loci mapping. BMC Genomics 2012; 13:80. [PMID: 22356647 PMCID: PMC3359225 DOI: 10.1186/1471-2164-13-80] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 02/22/2012] [Indexed: 11/10/2022] Open
Abstract
Background Cucurbita pepo is a member of the Cucurbitaceae family, the second- most important horticultural family in terms of economic importance after Solanaceae. The "summer squash" types, including Zucchini and Scallop, rank among the highest-valued vegetables worldwide. There are few genomic tools available for this species. The first Cucurbita transcriptome, along with a large collection of Single Nucleotide Polymorphisms (SNP), was recently generated using massive sequencing. A set of 384 SNP was selected to generate an Illumina GoldenGate assay in order to construct the first SNP-based genetic map of Cucurbita and map quantitative trait loci (QTL). Results We herein present the construction of the first SNP-based genetic map of Cucurbita pepo using a population derived from the cross of two varieties with contrasting phenotypes, representing the main cultivar groups of the species' two subspecies: Zucchini (subsp. pepo) × Scallop (subsp. ovifera). The mapping population was genotyped with 384 SNP, a set of selected EST-SNP identified in silico after massive sequencing of the transcriptomes of both parents, using the Illumina GoldenGate platform. The global success rate of the assay was higher than 85%. In total, 304 SNP were mapped, along with 11 SSR from a previous map, giving a map density of 5.56 cM/marker. This map was used to infer syntenic relationships between C. pepo and cucumber and to successfully map QTL that control plant, flowering and fruit traits that are of benefit to squash breeding. The QTL effects were validated in backcross populations. Conclusion Our results show that massive sequencing in different genotypes is an excellent tool for SNP discovery, and that the Illumina GoldenGate platform can be successfully applied to constructing genetic maps and performing QTL analysis in Cucurbita. This is the first SNP-based genetic map in the Cucurbita genus and is an invaluable new tool for biological research, especially considering that most of these markers are located in the coding regions of genes involved in different physiological processes. The platform will also be useful for future mapping and diversity studies, and will be essential in order to accelerate the process of breeding new and better-adapted squash varieties.
Collapse
Affiliation(s)
- Cristina Esteras
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV-UPV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Guo S, Liu J, Zheng Y, Huang M, Zhang H, Gong G, He H, Ren Y, Zhong S, Fei Z, Xu Y. Characterization of transcriptome dynamics during watermelon fruit development: sequencing, assembly, annotation and gene expression profiles. BMC Genomics 2011; 12:454. [PMID: 21936920 PMCID: PMC3197533 DOI: 10.1186/1471-2164-12-454] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 09/21/2011] [Indexed: 11/23/2022] Open
Abstract
Background Cultivated watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai var. lanatus] is an important agriculture crop world-wide. The fruit of watermelon undergoes distinct stages of development with dramatic changes in its size, color, sweetness, texture and aroma. In order to better understand the genetic and molecular basis of these changes and significantly expand the watermelon transcript catalog, we have selected four critical stages of watermelon fruit development and used Roche/454 next-generation sequencing technology to generate a large expressed sequence tag (EST) dataset and a comprehensive transcriptome profile for watermelon fruit flesh tissues. Results We performed half Roche/454 GS-FLX run for each of the four watermelon fruit developmental stages (immature white, white-pink flesh, red flesh and over-ripe) and obtained 577,023 high quality ESTs with an average length of 302.8 bp. De novo assembly of these ESTs together with 11,786 watermelon ESTs collected from GenBank produced 75,068 unigenes with a total length of approximately 31.8 Mb. Overall 54.9% of the unigenes showed significant similarities to known sequences in GenBank non-redundant (nr) protein database and around two-thirds of them matched proteins of cucumber, the most closely-related species with a sequenced genome. The unigenes were further assigned with gene ontology (GO) terms and mapped to biochemical pathways. More than 5,000 SSRs were identified from the EST collection. Furthermore we carried out digital gene expression analysis of these ESTs and identified 3,023 genes that were differentially expressed during watermelon fruit development and ripening, which provided novel insights into watermelon fruit biology and a comprehensive resource of candidate genes for future functional analysis. We then generated profiles of several interesting metabolites that are important to fruit quality including pigmentation and sweetness. Integrative analysis of metabolite and digital gene expression profiles helped elucidating molecular mechanisms governing these important quality-related traits during watermelon fruit development. Conclusion We have generated a large collection of watermelon ESTs, which represents a significant expansion of the current transcript catalog of watermelon and a valuable resource for future studies on the genomics of watermelon and other closely-related species. Digital expression analysis of this EST collection allowed us to identify a large set of genes that were differentially expressed during watermelon fruit development and ripening, which provide a rich source of candidates for future functional analysis and represent a valuable increase in our knowledge base of watermelon fruit biology.
Collapse
Affiliation(s)
- Shaogui Guo
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|