51
|
Abstract
An underlying hallmark of cancers is their genomic instability, which is associated with a greater propensity to accumulate DNA damage. Historical treatment of cancer by radiotherapy and DNA-damaging chemotherapy is based on this principle, yet it is accompanied by significant collateral damage to normal tissue and unwanted side effects. Targeted therapy based on inhibiting the DNA damage response (DDR) in cancers offers the potential for a greater therapeutic window by tailoring treatment to patients with tumors lacking specific DDR functions. The recent approval of olaparib (Lynparza), the poly (ADP-ribose) polymerase (PARP) inhibitor for treating tumors harboring BRCA1 or BRCA2 mutations, represents the first medicine based on this principle, exploiting an underlying cause of tumor formation that also represents an Achilles' heel. This review highlights the different concepts behind targeting DDR in cancer and how this can provide significant opportunities for DDR-based therapies in the future.
Collapse
|
52
|
Majuelos-Melguizo J, Rodríguez MI, López-Jiménez L, Rodríguez-Vargas JM, Martí Martín-Consuegra JM, Serrano-Sáenz S, Gavard J, de Almodóvar JMR, Oliver FJ. PARP targeting counteracts gliomagenesis through induction of mitotic catastrophe and aggravation of deficiency in homologous recombination in PTEN-mutant glioma. Oncotarget 2016; 6:4790-803. [PMID: 25576921 PMCID: PMC4467115 DOI: 10.18632/oncotarget.2993] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 12/10/2014] [Indexed: 12/24/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common primary brain tumour in adults and one of the most aggressive cancers. PARP-1 is a nuclear protein involved in multiple facets of DNA repair and transcriptional regulation. In this study we dissected the action of PARP inhibition in different GBM cell lines with either functional or mutated PTEN that confers resistance to diverse therapies. In PTEN mutant cells, PARP inhibition induced a severe genomic instability, exacerbated homologous recombination repair (HR) deficiency and down-regulated the Spindle Assembly Checkpoint (SAC) factor BUBR1, leading to mitotic catastrophe (MC). EGFR gene amplification also represents a signature of genetic abnormality in GBM. To more effectively target GBM cells, co-treatment with a PARP inhibitor and an EGFR blocker, erlotinib, resulted in a strong suppression of ERK1/2 activation and in vivo the combined effect elicited a robust reduction in tumour development. In conclusion, PARP inhibition targets PTEN-deficient GBM cells through accentuation of SAC repression and aggravation of HR deficiency, leading to the induction of genomic instability and eventually deriving to mitotic catastrophe (MC); the inhibition of PARP and co-treatment with an inhibitor of pro-survival pathways strongly retarded in vivo gliomagenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - F Javier Oliver
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, Granada, Spain
| |
Collapse
|
53
|
Deoxypodophyllotoxin triggers parthanatos in glioma cells via induction of excessive ROS. Cancer Lett 2015; 371:194-204. [PMID: 26683770 DOI: 10.1016/j.canlet.2015.11.044] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 11/27/2015] [Accepted: 11/30/2015] [Indexed: 11/23/2022]
Abstract
Parthanatos is a new form of programmed cell death that is regulated by hyper-activated PARP-1, and is emerging as a new strategy to kill cancer cells. Deoxypodophyllotoxin (DPT) is a natural chemical that is found to induce cancer cell death, in which the role of parthanatos is unknown. Thus, we investigated this issue in this study by using glioma cell lines and mice model of xenograft glioma. We found that DPT induced glioma cell death in vitro and inhibited the growth of xenograft glioma in vivo, which was accompanied with parthanatos-related biochemical events including expressional upregulation of PARP-1, cytoplasmic accumulation of PAR polymer, and nuclear translocation of AIF. In vitro study revealed that genetic knockdown of PARP-1 with small interfering RNA attenuated DPT-induced elevation in the cytoplasmic PAR-polymer and the nuclear AIF, as well as protected glioma cells against the toxicity of DPT. Further, antioxidant NAC, as well as PARP-1 inhibitor 3AB, not only alleviated the overproduction of ROS caused by DPT, but also reversed the above-mentioned biochemical events, maintained mitochondrial membrane potential and rescued glioma cells death. Therefore, we demonstrated that deoxypodophyllotoxin triggered parthanatos in glioma cells via induction of excessive ROS.
Collapse
|
54
|
Gruslova A, Cavazos DA, Miller JR, Breitbart E, Cohen YC, Bangio L, Yakov N, Soundararajan A, Floyd JR, Brenner AJ. VB-111: a novel anti-vascular therapeutic for glioblastoma multiforme. J Neurooncol 2015; 124:365-72. [PMID: 26108658 PMCID: PMC4584173 DOI: 10.1007/s11060-015-1853-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 06/14/2015] [Indexed: 02/01/2023]
Abstract
Glioblastoma multiforme (GBM) is among the most highly vascularized of solid tumors, contributing to the infiltrative nature of the disease, and conferring poor outcome. Due to the critical dependency of GBM on growth of new endothelial vasculature, we evaluated the preclinical activity of a novel adenoviral gene therapy that targets the endothelium within newly formed blood vessels for apoptosis. VB-111, currently in phase II clinical trials, consists of a non-replicating Adenovirus 5 (El deleted) carrying a proapoptotic human Fas-chimera (transgene) under the control of a modified murine promoter (PPE-1-3×) which specifically targets endothelial cells within the tumor vasculature. Here we report that a single intravenous dose of 2.5 × 10(11) or 1 × 10(11) VPs was sufficient to extend survival in nude rats bearing U87MG-luc2 or nude mice bearing U251-luc, respectively. Bioluminescence imaging of nude rats showed that VB-111 effectively inhibited tumor growth within four weeks of treatment. This was confirmed in a select group of animals by MRI. In our mouse model we observed that 3 of 10 nude mice treated with VB-111 completely lost U251 luciferase signal and were considered long term survivors. To assess the antiangiogenic effects of VB-111, we evaluated the tumor-associated microvaculature by CD31, a common marker of neovascularization, and found a significant decrease in the microvessel density by IHC. We further assessed the neovasculature by confocal microscopy and found that VB-111 inhibits vascular density in two separate mouse models bearing U251-RFP xenografts. Collectively, this study supports the clinical development of VB-111 as a treatment for GBM.
Collapse
Affiliation(s)
- Aleksandra Gruslova
- Cancer Therapy and Research Center, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - David A Cavazos
- Cancer Therapy and Research Center, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Jessica R Miller
- Cancer Therapy and Research Center, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Eyal Breitbart
- VBL Therapeutics, 6 Jonathan Netanyahu St., Or Yehuda, 60376, Israel
| | - Yael C Cohen
- VBL Therapeutics, 6 Jonathan Netanyahu St., Or Yehuda, 60376, Israel
| | - Livnat Bangio
- VBL Therapeutics, 6 Jonathan Netanyahu St., Or Yehuda, 60376, Israel
| | - Niva Yakov
- VBL Therapeutics, 6 Jonathan Netanyahu St., Or Yehuda, 60376, Israel
| | - Anu Soundararajan
- Cancer Therapy and Research Center, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - John R Floyd
- Cancer Therapy and Research Center, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Andrew J Brenner
- Cancer Therapy and Research Center, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA.
| |
Collapse
|
55
|
Motta C, D'Angeli F, Scalia M, Satriano C, Barbagallo D, Naletova I, Anfuso CD, Lupo G, Spina-Purrello V. PJ-34 inhibits PARP-1 expression and ERK phosphorylation in glioma-conditioned brain microvascular endothelial cells. Eur J Pharmacol 2015; 761:55-64. [PMID: 25934569 DOI: 10.1016/j.ejphar.2015.04.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 04/17/2015] [Accepted: 04/20/2015] [Indexed: 12/19/2022]
Abstract
Inhibitors of PARP-1(Poly(ADP-ribose) polymerase-1) act by competing with NAD(+), the enzyme physiological substrate, which play a protective role in many pathological conditions characterized by PARP-1 overactivation. It has been shown that PARP-1 also promotes tumor growth and progression through its DNA repair activity. Since angiogenesis is an essential requirement for these activities, we sought to determine whether PARP inhibition might affect rat brain microvascular endothelial cells (GP8.3) migration, stimulated by C6-glioma conditioned medium (CM). Through wound-healing experiments and MTT analysis, we demonstrated that PARP-1 inhibitor PJ-34 [N-(6-Oxo-5,6-dihydrophenanthridin-2-yl)-N,N-dimethylacetamide] abolishes the migratory response of GP8.3 cells and reduces their viability. PARP-1 also acts in a DNA independent way within the Extracellular-Regulated-Kinase (ERK) signaling cascade, which regulates cell proliferation and differentiation. By western analysis and confocal laser scanning microscopy (LSM), we analyzed the effects of PJ-34 on PARP-1 expression, phospho-ERK and phospho-Elk-1 activation. The effect of MEK (mitogen-activated-protein-kinase-kinase) inhibitor PD98059 (2-(2-Amino-3-methoxyphenyl)-4 H-1-benzopyran-4-one) on PARP-1 expression in unstimulated and in CM-stimulated GP8.3 cells was analyzed by RT-PCR. PARP-1 expression and phospho-ERK activation were significantly reduced by treatment of GP8.3 cells with PJ-34 or PD98059. By LSM, we further demonstrated that PARP-1 and phospho-ERK are coexpressed and share the same subcellular localization in GP8.3 cells, in the cytoplasm as well as in nucleoplasm. Based on these data, we propose that PARP-1 and phospho-ERK interact in the cytosol and then translocate to the nucleus, where they trigger a proliferative response. We also propose that PARP-1 inhibition blocks CM-induced endothelial migration by interfering with ERK signal-transduction pathway.
Collapse
Affiliation(s)
- Carla Motta
- Department of Biomedical Sciences and Biotecnology, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy
| | - Floriana D'Angeli
- Department of Biomedical Sciences and Biotecnology, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy
| | - Marina Scalia
- Department of Biomedical Sciences and Biotecnology, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy
| | - Cristina Satriano
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Davide Barbagallo
- Department of Biomedical Sciences and Biotecnology, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy
| | - Irina Naletova
- Department of Biomedical Sciences and Biotecnology, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy
| | - Carmelina Daniela Anfuso
- Department of Biomedical Sciences and Biotecnology, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy
| | - Gabriella Lupo
- Department of Biomedical Sciences and Biotecnology, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy
| | - Vittoria Spina-Purrello
- Department of Biomedical Sciences and Biotecnology, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy.
| |
Collapse
|
56
|
Faraoni I, Compagnone M, Lavorgna S, Angelini DF, Cencioni MT, Piras E, Panetta P, Ottone T, Dolci S, Venditti A, Graziani G, Lo-Coco F. BRCA1, PARP1 and γH2AX in acute myeloid leukemia: Role as biomarkers of response to the PARP inhibitor olaparib. Biochim Biophys Acta Mol Basis Dis 2015; 1852:462-72. [DOI: 10.1016/j.bbadis.2014.12.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/24/2014] [Accepted: 12/01/2014] [Indexed: 11/28/2022]
|
57
|
Balvers RK, Lamfers MLM, Kloezeman JJ, Kleijn A, Berghauser Pont LME, Dirven CMF, Leenstra S. ABT-888 enhances cytotoxic effects of temozolomide independent of MGMT status in serum free cultured glioma cells. J Transl Med 2015; 13:74. [PMID: 25886061 PMCID: PMC4359449 DOI: 10.1186/s12967-015-0427-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 02/04/2015] [Indexed: 01/09/2023] Open
Abstract
Background The current standard of care for Glioblastoma Multiforme (GBM) consists of fractionated focal irradiation with concomitant temozolomide (TMZ) chemotherapy. A promising strategy to increase the efficacy of TMZ is through interference with the DNA damage repair machinery, by poly(ADP-ribose) polymerase protein inhibition(PARPi). The objective of the present study was to investigate the therapeutic benefit of combination therapy in patient-derived glioma stem-like cells (GSC). Methods Combination therapy feasibility was tested on established GBM cell lines U373 and T98. We developed an in vitro drug-screening assay based on GSC cultures derived from a panel of primary patient tissue samples (n = 20) to evaluate the effect of PARPi (ABT-888) monotherapy and combination therapy with TMZ. Therapeutic effect was assessed by viability, double stranded breaks, apoptosis and autophagy assays and longitudinal microscopic cell monitoring was performed. O-6-methylguanine-DNA methyltransferase (MGMT) status was determined by methylation assay and protein expression by western blots. Results PARPi monotherapy was found to decrease viability by more than 25% in 4 of the 20 GSCs (20%) at 10 μM. TMZ monotherapy at 50 μM and 100 μM was effective in 12 and 14 of the 20 GSCs, respectively. TMZ resistance to 100 μM was found in 7 of 8 MGMT protein positive cultures. Potentiation of TMZ therapy through PARPi was found in 90% (n = 20) of GSCs, of which 6 were initially resistant and 7 were sensitive to TMZ monotherapy. Increased induction of double stranded breaks and apoptosis were noted in responsive GSCs. There was a trend noted, albeit statistically insignificant, of increased autophagy both in western blots and accumulation of autophagosomes. Conclusion PARPi mediated potentiation of TMZ is independent of TMZ sensitivity and can override MGMT(-) mediated resistance when administered simultaneously. Response to combination therapy was associated with increased double strand breaks induction, and coincided by increased apoptosis and autophagy. PARPi addition potentiates TMZ treatment in primary GSCs. PARPi could potentially enhance the therapeutic efficacy of the standard of care in GBM.
Collapse
Affiliation(s)
- Rutger K Balvers
- Brain Tumor Center; Department of Neurosurgery, Erasmus MC, Molewaterplein 50, Ee2236, 3015GE, Rotterdam, The Netherlands.
| | - Martine L M Lamfers
- Brain Tumor Center; Department of Neurosurgery, Erasmus MC, Molewaterplein 50, Ee2236, 3015GE, Rotterdam, The Netherlands.
| | - Jenneke J Kloezeman
- Brain Tumor Center; Department of Neurosurgery, Erasmus MC, Molewaterplein 50, Ee2236, 3015GE, Rotterdam, The Netherlands.
| | - Anne Kleijn
- Brain Tumor Center; Department of Neurosurgery, Erasmus MC, Molewaterplein 50, Ee2236, 3015GE, Rotterdam, The Netherlands.
| | - Lotte M E Berghauser Pont
- Brain Tumor Center; Department of Neurosurgery, Erasmus MC, Molewaterplein 50, Ee2236, 3015GE, Rotterdam, The Netherlands.
| | - Clemens M F Dirven
- Brain Tumor Center; Department of Neurosurgery, Erasmus MC, Molewaterplein 50, Ee2236, 3015GE, Rotterdam, The Netherlands.
| | - Sieger Leenstra
- Brain Tumor Center; Department of Neurosurgery, Erasmus MC, Molewaterplein 50, Ee2236, 3015GE, Rotterdam, The Netherlands. .,Department of Neurosurgery, St Elisabeth Hospital, Tilburg, The Netherlands.
| |
Collapse
|
58
|
Goldstein M, Kastan MB. The DNA Damage Response: Implications for Tumor Responses to Radiation and Chemotherapy. Annu Rev Med 2015; 66:129-43. [DOI: 10.1146/annurev-med-081313-121208] [Citation(s) in RCA: 303] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Michael Goldstein
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710; ,
| | - Michael B. Kastan
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710; ,
| |
Collapse
|
59
|
Sørensen MD, Fosmark S, Hellwege S, Beier D, Kristensen BW, Beier CP. Chemoresistance and chemotherapy targeting stem-like cells in malignant glioma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 853:111-38. [PMID: 25895710 DOI: 10.1007/978-3-319-16537-0_7] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Glioblastoma remains a tumor with a dismal prognosis because of failure of current treatment. Glioblastoma cells with stem cell (GSC) properties survive chemotherapy and give rise to tumor recurrences that invariably result in the death of the patients. Here we summarize the current knowledge on chemoresistance of malignant glioma with a strong focus on GSC. Chemoresistant GSC are the most likely cause of tumor recurrence, but it remains controversial if GSC and under which conditions GSC are more chemoresistant than non-GSC within the tumor. Regardless of this uncertainty, the chemoresistance varies and it is mainly mediated by intrinsic factors. O6-methyl-guanidine methyltransferase (MGMT) remains the most potent mediator of chemoresistance, but disturbed mismatch repair system and multidrug resistance proteins contribute substantially. However, the intrinsic resistance by MGMT expression is regulated by extrinsic factors like hypoxia increasing MGMT expression and thereby resistance to alkylating chemotherapy. The search of new biomarkers helping to predict the tumor response to chemotherapy is ongoing and will complement the already known markers like MGMT.
Collapse
Affiliation(s)
- Mia Dahl Sørensen
- Department of Pathology, Odense University Hospital, Odense C, Denmark
| | | | | | | | | | | |
Collapse
|
60
|
Goffart N, Dedobbeleer M, Rogister B. Glioblastoma stem cells: new insights in therapeutic strategies. FUTURE NEUROLOGY 2014. [DOI: 10.2217/fnl.14.56] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
ABSTRACT Despite notable achievements in glioblastoma diagnosis and treatment, the prognosis of glioblastoma patients remains poor and reflects the failure of current therapeutic modalities. In this context, innovative therapeutic strategies have recently been developed to specifically target glioblastoma stem cells, a subpopulation of tumor cells involved in experimental tumorigenesis and known to be critical for tumor recurrence and therapeutic resistance. The current review summarizes the different trails which make glioblastoma stem cells resistant to treatments, mainly focusing on radio-, chemo- and immunotherapy. This broad overview might actually help to set up new bases for glioblastoma therapy in order to better fight tumor relapses and to improve the patients’ prognosis.
Collapse
Affiliation(s)
- Nicolas Goffart
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège, Belgium
| | - Matthias Dedobbeleer
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège, Belgium
| | - Bernard Rogister
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège, Belgium
- Department of Neurology, CHU & University of Liège, Liège, Belgium
- GIGA-Development, Stem Cells & Regenerative Medicine, University of Liège, Liège, Belgium
| |
Collapse
|
61
|
Li XX, Peng JJ, Liang L, Huang LY, Li DW, Shi DB, Zheng HT, Cai SJ. RNA-seq identifies determinants of oxaliplatin sensitivity in colorectal cancer cell lines. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:3763-70. [PMID: 25120752 PMCID: PMC4128987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/23/2014] [Indexed: 06/03/2023]
Abstract
Oxaliplatin-based chemotherapy, such as FOLFOX, is the first-line therapy for advanced colorectal cancer (CRC) or metastatic CRC patients. However, the partial response of patients to these regimes and the severe peripheral neuropathy toxicity induced by oxaliplatin makes it urgent to figure out biomarkers for oxaliplatin sensitivity to select suitable patients who benefit from these treatments. In present work, 21 CRC cell lines with different sensitivities to oxaliplatin were applied to RNA-seq. The basal expression profiles of these cell lines were correlated to their response to oxaliplatin. Bioinformatics analysis suggested that expression of 58 genes was correlated, negatively or positively, to oxaliplatin response across the 21 CRC cell lines. These 58 genes were mainly enriched in small molecules biochemistry, Wnt/β-catenin signaling and EMT pathways. The latter two pathways were predicted to be activated in oxaliplatin-resistant CRC cell lines. Moreover, 15 genes were validated by qPCR that their expression levels were actually closely correlated to their response to oxaliplatin, in line with the biocomputation prediction. Taken together, our work might provide potential biomarkers for oxaliplatin sensitivity in CRC cell lines and therapeutic targets for combinational therapy with oxaliplatin.
Collapse
Affiliation(s)
- Xin-Xiang Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer CenterShanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai 200032, China
| | - Jun-Jie Peng
- Department of Colorectal Surgery, Fudan University Shanghai Cancer CenterShanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai 200032, China
| | - Lei Liang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer CenterShanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai 200032, China
| | - Li-Yong Huang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer CenterShanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai 200032, China
| | - Da-Wei Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer CenterShanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai 200032, China
| | - De-Bing Shi
- Department of Colorectal Surgery, Fudan University Shanghai Cancer CenterShanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai 200032, China
| | - Hong-Tu Zheng
- Department of Colorectal Surgery, Fudan University Shanghai Cancer CenterShanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai 200032, China
| | - San-Jun Cai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer CenterShanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai 200032, China
| |
Collapse
|