52
|
Vasconcelos JR, Bruña–Romero O, Araújo AF, Dominguez MR, Ersching J, de Alencar BCG, Machado AV, Gazzinelli RT, Bortoluci KR, Amarante-Mendes GP, Lopes MF, Rodrigues MM. Pathogen-induced proapoptotic phenotype and high CD95 (Fas) expression accompany a suboptimal CD8+ T-cell response: reversal by adenoviral vaccine. PLoS Pathog 2012; 8:e1002699. [PMID: 22615561 PMCID: PMC3355083 DOI: 10.1371/journal.ppat.1002699] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Accepted: 03/29/2012] [Indexed: 12/03/2022] Open
Abstract
MHC class Ia-restricted CD8+ T cells are important mediators of the adaptive immune response against infections caused by intracellular microorganisms. Whereas antigen-specific effector CD8+ T cells can clear infection caused by intracellular pathogens, in some circumstances, the immune response is suboptimal and the microorganisms survive, causing host death or chronic infection. Here, we explored the cellular and molecular mechanisms that could explain why CD8+ T cell-mediated immunity during infection with the human protozoan parasite Trypanosoma cruzi is not optimal. For that purpose, we compared the CD8+ T-cell mediated immune responses in mice infected with T. cruzi or vaccinated with a recombinant adenovirus expressing an immunodominant parasite antigen. Several functional and phenotypic characteristics of specific CD8+ T cells overlapped. Among few exceptions was an accelerated expansion of the immune response in adenoviral vaccinated mice when compared to infected ones. Also, there was an upregulated expression of the apoptotic-signaling receptor CD95 on the surface of specific T cells from infected mice, which was not observed in the case of adenoviral-vaccinated mice. Most importantly, adenoviral vaccine provided at the time of infection significantly reduced the upregulation of CD95 expression and the proapoptotic phenotype of pathogen-specific CD8+ cells expanded during infection. In parallel, infected adenovirus-vaccinated mice had a stronger CD8 T-cell mediated immune response and survived an otherwise lethal infection. We concluded that a suboptimal CD8+ T-cell response is associated with an upregulation of CD95 expression and a proapoptotic phenotype. Both can be blocked by adenoviral vaccination. Killer lymphocytes are important mediators of the immunological resistance against infections caused by virus, bacteria and parasites. In some circumstances, however, these lymphocytes are unable to properly eliminate the microorganisms which survive, causing death or establishing chronic infections. The purpose of our study was to understand why these killer cells do not succeed during infection with a human protozoan parasite. For that purpose, we compared the immune responses in animals infected or vaccinated. Many characteristics of these killer cells were similar. Among few exceptions was an accelerated immune response in vaccinated animals when compared to infected ones. Also, we observed on the surface of the killer lymphocytes from infected, but not from vaccinated animals, an increased expression of a protein involved in signaling cell death. Most importantly, vaccine significantly reduced the higher expression of this cell-death receptor. In parallel, these animals had a stronger immune response and cured infection. We concluded that a deficient killer cell response observed during infection was associated with an upregulation of this cell-death receptor and it was changed by vaccination.
Collapse
Affiliation(s)
- José Ronnie Vasconcelos
- Centro de Terapia Celular e Molecular (CTCMol), Universidade Federal de São Paulo-Escola Paulista de Medicina, São Paulo, São Paulo, Brazil
- Departmento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo-Escola Paulista de Medicina, São Paulo, São Paulo, Brazil
| | - Oscar Bruña–Romero
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Adriano F. Araújo
- Centro de Terapia Celular e Molecular (CTCMol), Universidade Federal de São Paulo-Escola Paulista de Medicina, São Paulo, São Paulo, Brazil
- Departmento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo-Escola Paulista de Medicina, São Paulo, São Paulo, Brazil
| | - Mariana R. Dominguez
- Centro de Terapia Celular e Molecular (CTCMol), Universidade Federal de São Paulo-Escola Paulista de Medicina, São Paulo, São Paulo, Brazil
- Departmento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo-Escola Paulista de Medicina, São Paulo, São Paulo, Brazil
| | - Jonatan Ersching
- Centro de Terapia Celular e Molecular (CTCMol), Universidade Federal de São Paulo-Escola Paulista de Medicina, São Paulo, São Paulo, Brazil
- Departmento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo-Escola Paulista de Medicina, São Paulo, São Paulo, Brazil
| | - Bruna C. G. de Alencar
- Centro de Terapia Celular e Molecular (CTCMol), Universidade Federal de São Paulo-Escola Paulista de Medicina, São Paulo, São Paulo, Brazil
- Departmento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo-Escola Paulista de Medicina, São Paulo, São Paulo, Brazil
| | | | - Ricardo T. Gazzinelli
- Centro de Pesquisas René Rachou, FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, Minas Gerais, Brazil
- Division of Infectious Disease and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Karina R. Bortoluci
- Centro de Terapia Celular e Molecular (CTCMol), Universidade Federal de São Paulo-Escola Paulista de Medicina, São Paulo, São Paulo, Brazil
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo-Escola Paulista de Medicina, Diadema, São Paulo, Brazil
| | - Gustavo P. Amarante-Mendes
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Marcela F. Lopes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mauricio M. Rodrigues
- Centro de Terapia Celular e Molecular (CTCMol), Universidade Federal de São Paulo-Escola Paulista de Medicina, São Paulo, São Paulo, Brazil
- Departmento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo-Escola Paulista de Medicina, São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
53
|
Health and cellular impacts of air pollutants: from cytoprotection to cytotoxicity. Biochem Res Int 2012; 2012:493894. [PMID: 22550588 PMCID: PMC3328890 DOI: 10.1155/2012/493894] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 01/17/2012] [Accepted: 01/18/2012] [Indexed: 12/11/2022] Open
Abstract
Air pollution as one of the ravages of our modern societies is primarily linked to urban centers, industrial activities, or road traffic. These atmospheric pollutants have been incriminated in deleterious health effects by numerous epidemiological and in vitro studies. Environmental air pollutants are a heterogeneous mixture of particles suspended into a liquid and gaseous phase which trigger the disruption of redox homeostasis—known under the term of cellular oxidative stress—in relation with the establishment of inflammation and cell death via necrosis, apoptosis, or autophagy. Activation or repression of the apoptotic process as an adaptative response to xenobiotics might lead to either acute or chronic toxicity. The purpose of this paper is to highlight the central role of oxidative stress induced by air pollutants and to focus on the subsequent cellular impacts ranging from cytoprotection to cytotoxicity by decreasing or stimulating apoptosis, respectively.
Collapse
|
54
|
Liberman AC, Refojo D, Antunica-Noguerol M, Holsboer F, Arzt E. Underlying mechanisms of cAMP- and glucocorticoid-mediated inhibition of FasL expression in activation-induced cell death. Mol Immunol 2012; 50:220-35. [PMID: 22341864 DOI: 10.1016/j.molimm.2012.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 01/04/2012] [Accepted: 01/21/2012] [Indexed: 11/19/2022]
Abstract
Glucocorticoids (GCs) and cAMP-dependent signaling pathways exert diverse and relevant immune regulatory functions, including a tight control of T cell death and homeostasis. Both of these signaling molecules inhibit TCR-induced cell death and FasL expression, but the underlying mechanisms are still poorly understood. Therefore, to address this question, we performed a comprehensive screening of signaling pathways downstream of the TCR, in order to define which of them are targets of cAMP- and GC-mediated inhibition. We found that cAMP inhibited NF-κB and ERK pathways through a PKA-dependent mechanism, while Dexamethasone blocked TCR-induced NF-κB signaling. Although GCs and cAMP inhibited the induction of endogenous FasL mRNA expression triggered by TCR activation, they potentiated TCR-mediated induction of FasL promoter activity in transient transfection assays. However, when the same FasL promoter was stably transfected, the facilitatory effect of GCs and cAMP became inhibitory, thus resembling the effects on endogenous FasL mRNA expression. Hence, the endogenous chromatinization status known to occur in integrated or genomic vs. episomic DNA might be critical for proper regulation of FasL expression by cAMP and GCs. Our results suggest that the chromatinization status of the FasL promoter may function as a molecular switch, controlling cAMP and GC responsiveness and explaining why these agents inhibit FasL expression in T cells but induce FasL in other cell types.
Collapse
Affiliation(s)
- Ana C Liberman
- Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología y Biología Molecular y Celular, Universidad de Buenos Aires and IBioBA-CONICET, 1428 Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
55
|
Tiba F, Nauwelaers F, Sangaré L, Coulibaly B, Kräusslich HG, Böhler T. Activation and maturation of peripheral blood T cells in HIV-1-infected and HIV-1-uninfected adults in Burkina Faso: a cross-sectional study. J Int AIDS Soc 2011; 14:57. [PMID: 22177276 PMCID: PMC3281784 DOI: 10.1186/1758-2652-14-57] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 12/17/2011] [Indexed: 11/18/2022] Open
Abstract
Background We wanted to explore to what extent environmental exposure to immune stimulants, which is expected to be more present in rural than in urban settings, influences T cell activation and maturation in healthy and in HIV-1-infected individuals in Burkina Faso in west Africa. Methods The proportion of circulating naïve T cells and the expression of the T cell activation markers, CD95 and CD38, were analyzed by immunophenotyping and three-colour flow cytometry in 63 healthy individuals and 137 treatment-naïve HIV-1-infected subjects from Ouagadougou (urban setting) and 26 healthy adults and 61 treatment-naïve patients from Nouna (rural). Results A slightly higher activation level of CD4+ and CD8+ peripheral blood T cells was seen in healthy adults living in Nouna than in those living in Ouagadougou. The percentages of naïve CD45RAbright CCR7+ T cells were not significantly different between both study sites. Taking into consideration that relatively more HIV-1-infected patients in Nouna were in an advanced disease stage, no relevant differences were seen in T cell activation and maturation between patients at both study sites. As expected, the percentage of CD95+ CD4+ and CD38+ CD8+ T cells and the respective antigen density on these cells was significantly higher in patients than in controls in both settings. The percentage of naïve CD8+ T cells was lower in HIV-1-infected subjects than in healthy controls irrespective of the study site, while a lower proportion of naïve CD4+ T cells in patients compared with controls was seen only in Nouna. Conclusions Environmentally triggered immune activation may contribute to the increased expression of the activation markers CD95 and CD38 on peripheral blood T cells from healthy adults living in rural versus urban settings in Burkina Faso. T cell activation is further increased in HIV-1-infected individuals due to T cell loss and high plasma viral load levels. The observed variations in T cell activation levels or the proportion of naïve T cells in our study patients, however, are not explained by differences in CD4+ T cell counts or HIV-1 plasma viral load levels alone.
Collapse
Affiliation(s)
- Fabrice Tiba
- Department of Infectious Diseases, Virology, University of Heidelberg, Heidelberg, Germany
| | | | - Lassana Sangaré
- Centre Hospitalier Universitaire Yalgado Ouedraogo, Ouagadougou, Burkina Faso
| | | | - Hans-Georg Kräusslich
- Department of Infectious Diseases, Virology, University of Heidelberg, Heidelberg, Germany
| | - Thomas Böhler
- Department of Infectious Diseases, Virology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|