51
|
Tseng HC, Arasteh A, Kaur K, Kozlowska A, Topchyan P, Jewett A. Differential Cytotoxicity but Augmented IFN-γ Secretion by NK Cells after Interaction with Monocytes from Humans, and Those from Wild Type and Myeloid-Specific COX-2 Knockout Mice. Front Immunol 2015; 6:259. [PMID: 26106386 PMCID: PMC4460808 DOI: 10.3389/fimmu.2015.00259] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 05/11/2015] [Indexed: 12/25/2022] Open
Abstract
The list of genes, which augment NK cell function when knocked out in neighboring cells is increasing, and may point to the fundamental function of NK cells targeting cells with diminished capability to differentiate optimally since NK cells are able to target less differentiated cells, and aid in their differentiation. In this paper, we aimed at understanding the effect of monocytes from targeted knockout of COX-2 in myeloid cells (Cox-2flox/flox;LysMCre/+) and from control littermates (Cox-2flox/flox;LysM+/+) on ex vivo function of NK cells. Furthermore, we compared the effect of monocytes treated with and without lipopolysaccharide (LPS) on NK cells from mice and humans. NK cells purified from Cox-2flox/flox;LysMCre/+ mice had heightened cytotoxic activity when compared to those obtained from control littermates. In addition, NK cells cultured with autologous Cox-2flox/flox;LysMCre/+ monocytes and DCs, mouse embryonic fibroblasts from global knockout COX-2, but not with knockout of COX-2 in T cells, had increased cytotoxic function as well as augmented IFN-γ secretion when compared to NK cells from control littermates cultured with monocytes. LPS inhibited NK cell cytotoxicity while increasing IFN-γ secretion when cultured in the presence of monocytes from either Cox-2flox/flox;LysMCre/+ or control littermates. In contrast to mice, NK cells from humans when cultured with monocytes lost cytotoxic function and gained ability to secrete large amounts of IFN-γ, a process, which we had previously coined as “split anergy.” Similar to mice, LPS potentiated the loss of human NK cell cytotoxicity while increasing IFN-γ secretion in the presence of monocytes. Greater loss of cytotoxicity and larger secretion of IFN-γ in NK cells induced by gene knockout cells may be important for the greater need of these cells for differentiation.
Collapse
Affiliation(s)
- Han-Ching Tseng
- Division of Oral Biology and Oral Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry and Medicine , Los Angeles, CA , USA
| | - Aida Arasteh
- Division of Oral Biology and Oral Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry and Medicine , Los Angeles, CA , USA
| | - Kawaljit Kaur
- Division of Oral Biology and Oral Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry and Medicine , Los Angeles, CA , USA
| | - Anna Kozlowska
- Division of Oral Biology and Oral Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry and Medicine , Los Angeles, CA , USA ; Department of Tumor Immunology, Poznan University of Medical Sciences , Poznan , Poland
| | - Paytsar Topchyan
- Division of Oral Biology and Oral Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry and Medicine , Los Angeles, CA , USA
| | - Anahid Jewett
- Division of Oral Biology and Oral Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry and Medicine , Los Angeles, CA , USA ; The Jonsson Comprehensive Cancer Center, UCLA School of Dentistry and Medicine , Los Angeles, CA , USA
| |
Collapse
|
52
|
Cheng L, Zhang D, Jiang Y, Deng W, Wu Q, Jiang X, Chen B. Decreased A20 mRNA and protein expression in peripheral blood mononuclear cells in patients with type 2 diabetes and latent autoimmune diabetes in adults. Diabetes Res Clin Pract 2014; 106:611-6. [PMID: 25451900 DOI: 10.1016/j.diabres.2014.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 09/04/2014] [Accepted: 09/15/2014] [Indexed: 12/23/2022]
Abstract
AIMS A20 is a negative regulator of nuclear factor kappa B activation and the central gatekeeper in inflammation and immunity. While its role in type 1 diabetes has been widely studied, its expression level in immune cells from type 2 diabetes (T2D) and latent autoimmune diabetes in adult (LADA) patients remains unclear. This study aimed to clarify whether the expression of A20 is altered in patients with T2D or LADA. METHODS Quantitative real-time polymerase chain reaction and western blotting were utilized to determine the expression of A20 mRNA and protein respectively in peripheral blood mononuclear cells (PBMCs) from patients with T2D (n=36) or LADA (n=17) and sex- and age-matched healthy controls (n=34). RESULTS The mRNA and protein expression of A20 in PBMCs from T2D and LADA patients was significantly decreased compared with healthy controls (P<0.05). Furthermore, A20 mRNA and protein expression was significantly lower in newly diagnosed T2D patients (≤1 year since diagnosis) than in patients with a long T2D duration (>1 year since diagnosis) (P<0.05). CONCLUSIONS Our results suggest that decreased expression of A20 in PBMCs may be involved in the pathogenesis of diabetes, and targeting A20 may offer a potential therapeutic tool in the treatment of diabetes.
Collapse
Affiliation(s)
- Liqing Cheng
- Department of Endocrinology and Metabolism, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Dongmei Zhang
- Department of Dermatology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Youzhao Jiang
- Department of Endocrinology and Metabolism, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Wuquan Deng
- Department of Endocrinology and Metabolism, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Qi'nan Wu
- Department of Endocrinology and Metabolism, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Xiaoyan Jiang
- Department of Endocrinology and Metabolism, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Bing Chen
- Department of Endocrinology and Metabolism, Southwest Hospital, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|