51
|
Reza SH, Delhomme N, Street NR, Ramachandran P, Dalman K, Nilsson O, Minina EA, Bozhkov PV. Transcriptome analysis of embryonic domains in Norway spruce reveals potential regulators of suspensor cell death. PLoS One 2018; 13:e0192945. [PMID: 29499063 PMCID: PMC5834160 DOI: 10.1371/journal.pone.0192945] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/09/2018] [Indexed: 01/04/2023] Open
Abstract
The terminal differentiation and elimination of the embryo-suspensor is the earliest manifestation of programmed cell death (PCD) during plant ontogenesis. Molecular regulation of suspensor PCD remains poorly understood. Norway spruce (Picea abies) embryos provide a powerful model for studying embryo development because of their large size, sequenced genome, and the possibility to obtain a large number of embryos at a specific developmental stage through somatic embryogenesis. Here, we have carried out global gene expression analysis of the Norway spruce embryo-suspensor versus embryonal mass (a gymnosperm analogue of embryo proper) using RNA sequencing. We have identified that suspensors have enhanced expression of the NAC domain-containing transcription factors, XND1 and ANAC075, previously shown to be involved in the initiation of developmental PCD in Arabidiopsis. The analysis has also revealed enhanced expression of Norway spruce homologues of the known executioners of both developmental and stress-induced cell deaths, such as metacaspase 9 (MC9), cysteine endopeptidase-1 (CEP1) and ribonuclease 3 (RNS3). Interestingly, a spruce homologue of bax inhibitor-1 (PaBI-1, for Picea abies BI-1), an evolutionarily conserved cell death suppressor, was likewise up-regulated in the embryo-suspensor. Since Arabidopsis BI-1 so far has been implicated only in the endoplasmic reticulum (ER)-stress induced cell death, we investigated its role in embryogenesis and suspensor PCD using RNA interference (RNAi). We have found that PaBI-1-deficient lines formed a large number of abnormal embryos with suppressed suspensor elongation and disturbed polarity. Cytochemical staining of suspensor cells has revealed that PaBI-1 deficiency suppresses vacuolar cell death and induces necrotic type of cell death previously shown to compromise embryo development. This study demonstrates that a large number of cell-death components are conserved between angiosperms and gymnosperms and establishes a new role for BI-1 in the progression of vacuolar cell death.
Collapse
Affiliation(s)
- Salim H. Reza
- Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, SE, Sweden
- Department of Molecular Sciences, Uppsala BioCenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, SE, Sweden
- * E-mail: (SHR); (EAM); (PVB)
| | - Nicolas Delhomme
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Nathaniel R. Street
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Prashanth Ramachandran
- Department of Organismal Biology, Uppsala BioCenter, Linnean Center for Plant Biology, Uppsala University, Uppsala, SE, Sweden
| | - Kerstin Dalman
- Department of Molecular Sciences, Uppsala BioCenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, SE, Sweden
| | - Ove Nilsson
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Elena A. Minina
- Department of Molecular Sciences, Uppsala BioCenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, SE, Sweden
- * E-mail: (SHR); (EAM); (PVB)
| | - Peter V. Bozhkov
- Department of Molecular Sciences, Uppsala BioCenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, SE, Sweden
- * E-mail: (SHR); (EAM); (PVB)
| |
Collapse
|
52
|
Molecular cloning, in-silico characterization and functional validation of monodehydroascorbate reductase gene in Eleusine coracana. PLoS One 2017; 12:e0187793. [PMID: 29176870 PMCID: PMC5703496 DOI: 10.1371/journal.pone.0187793] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 09/25/2017] [Indexed: 01/19/2023] Open
Abstract
Ascorbic acid is a ubiquitous water soluble antioxidant that plays a critical role in plant growth and environmental stress tolerance. It acts as a free radical scavenger as well as a source of reducing power for several cellular processes. Because of its pivotal role in regulating plant growth under optimal as well as sub-optimal conditions, it becomes obligatory for plants to maintain a pool of reduced ascorbic acid. Several cellular processes help in maintaining the reduced ascorbic acid pool, by regulating its synthesis and regeneration processes. Current study demonstrates that monodehydroascorbate reductase is an important enzyme responsible for maintaining the reduced ascorbate pool, by optimizing the recycling of oxidized ascorbate. Cloning and functional characterization of this important stress inducible gene is of great significance for its imperative use in plant stress management. Therefore, we have cloned and functionally validated the role of monodehydroascorbate reductase gene (mdar) from a drought tolerant variety of Eleusine coracana. The cloned Ecmdar gene comprises of 1437bp CDS, encoding a 478 amino acid long polypeptide. The active site analysis showed presence of conserved Tyr348 residue, facilitating the catalytic activity in electron transfer mechanism. qPCR expression profiling of Ecmdar under stress indicated that it is an early responsive gene. The analysis of Ecmdar overexpressing Arabidopsis transgenic lines suggests that monodehydroascorbate reductase acts as a key stress regulator by modulating the activity of antioxidant enzymes to strengthen the ROS scavenging ability and maintains ROS homeostasis. Thus, it is evident that Ecmdar is an important gene for cellular homeostasis and its over-expression could be successfully used to strengthen stress tolerance in crop plants.
Collapse
|
53
|
Zadražnik T, Moen A, Egge-Jacobsen W, Meglič V, Šuštar-Vozlič J. Towards a better understanding of protein changes in common bean under drought: A case study of N-glycoproteins. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 118:400-412. [PMID: 28711789 DOI: 10.1016/j.plaphy.2017.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/19/2017] [Accepted: 07/04/2017] [Indexed: 06/07/2023]
Abstract
Drought is one of the major abiotic stress conditions limiting crop growth and productivity. Glycosylation of proteins is very important post-translational modification that is involved in many physiological functions and biological pathways. To understand the involvement of N-glycoproteins in the mechanism of drought response in leaves of common bean, a proteomic approach using lectin affinity chromatography, SDS-PAGE and LC-MS/MS was applied. Quantification of N-glycoproteins was performed using MaxQuant with a label free quantification approach. Thirty five glycoproteins were changed in abundance in leaves of common bean under drought. The majority of these proteins were classified into functional groups that include cell wall processes, defence/stress related proteins and proteins related to proteolysis. Beta-glucosidase showed the highest increase in abundance among proteins involved in cell wall metabolism, suggesting its role in cell wall modification under drought stress. These results fit with the general concept of the stress response in plants and suggest that drought stress might affect biochemical metabolism in the cell wall. The structures of N-glycans were determined manually from spectra, where structures of high mannose, complex and hybrid types of N-glycans were found. The present study provided an insight into the glycoproteins related to drought stress in common bean at the proteome level, which is important for further understanding of molecular mechanisms of drought response in this important legume.
Collapse
Affiliation(s)
- Tanja Zadražnik
- Agricultural Institute of Slovenia, 1000 Ljubljana, Slovenia.
| | - Anders Moen
- University of Oslo, Department of Molecular Biosciences, 0316 Oslo, Norway
| | | | - Vladimir Meglič
- Agricultural Institute of Slovenia, 1000 Ljubljana, Slovenia
| | | |
Collapse
|
54
|
Fernández-Marín B, Hernández A, Garcia-Plazaola JI, Esteban R, Míguez F, Artetxe U, Gómez-Sagasti MT. Photoprotective Strategies of Mediterranean Plants in Relation to Morphological Traits and Natural Environmental Pressure: A Meta-Analytical Approach. FRONTIERS IN PLANT SCIENCE 2017; 8:1051. [PMID: 28674548 PMCID: PMC5474485 DOI: 10.3389/fpls.2017.01051] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/31/2017] [Indexed: 05/27/2023]
Abstract
Despite being a small geographic extension, Mediterranean Basin is characterized by an exceptional plant biodiversity. Adaptive responses of this biocoenosis are delineated by an unusual temporal dissociation along the year between optimal temperature for growth and water availability. This fact generates the combination of two environmental stress factors: a period of summer drought, variable in length and intensity, and the occurrence of mild to cold winters. Both abiotic factors, trigger the generation of (photo)oxidative stress and plants orchestrate an arsenal of structural, physiological, biochemical, and molecular mechanisms to withstand such environmental injuries. In the last two decades an important effort has been made to characterize the adaptive morphological and ecophysiological traits behind plant survival strategies with an eye to predict how they will respond to future climatic changes. In the present work, we have compiled data from 89 studies following a meta-analytical approach with the aim of assessing the composition and plasticity of photosynthetic pigments and low-molecular-weight antioxidants (tocopherols, glutathione, and ascorbic acid) of wild Mediterranean plant species. The influence of internal plant and leaf factors on such composition together with the stress responsiveness, were also analyzed. This approach enabled to obtain data from 73 species of the Mediterranean flora, with the genus Quercus being the most frequently studied. Main highlights of present analysis are: (i) sort of photoprotective mechanisms do not differ between Mediterranean plants and other floras but they show higher plasticity indexes; (ii) α-tocopherol among the antioxidants and violaxanthin-cycle pigments show the highest responsiveness to environmental factors; (iii) both winter and drought stresses induce overnight retention of de-epoxidised violaxanthin-cycle pigments; (iv) this retention correlates with depressions of Fv/Fm; and (v) contrary to what could be expected, mature leaves showed higher accumulation of hydrophilic antioxidants than young leaves, and sclerophyllous leaves higher biochemical photoprotective demand than membranous leaves. In a global climatic change scenario, the plasticity of their photoprotective mechanisms will likely benefit Mediterranean species against oceanic ones. Nevertheless, deep research of ecoregions other than the Mediterranean Basin will be needed to fully understand photoprotection strategies of this extremely biodiverse floristic biome: the Mediterranean ecosystem.
Collapse
Affiliation(s)
- Beatriz Fernández-Marín
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU)Bilbao, Spain
| | | | | | | | | | | | | |
Collapse
|
55
|
Fang T, Zhen Q, Liao L, Owiti A, Zhao L, Korban SS, Han Y. Variation of ascorbic acid concentration in fruits of cultivated and wild apples. Food Chem 2017; 225:132-137. [DOI: 10.1016/j.foodchem.2017.01.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/29/2016] [Accepted: 01/04/2017] [Indexed: 01/04/2023]
|
56
|
M. B, M. MR, N. H, M. SU. Exogenous ascorbic acid improved tolerance in maize (Zea mays L.) by increasing antioxidant activity under salinity stress. ACTA ACUST UNITED AC 2017. [DOI: 10.5897/ajar2017.12295] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
57
|
Akram NA, Shafiq F, Ashraf M. Ascorbic Acid-A Potential Oxidant Scavenger and Its Role in Plant Development and Abiotic Stress Tolerance. FRONTIERS IN PLANT SCIENCE 2017; 8:613. [PMID: 28491070 PMCID: PMC5405147 DOI: 10.3389/fpls.2017.00613] [Citation(s) in RCA: 339] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 04/04/2017] [Indexed: 05/18/2023]
Abstract
Over-production of reactive oxygen species (ROS) in plants under stress conditions is a common phenomenon. Plants tend to counter this problem through their ability to synthesize ROS neutralizing substances including non-enzymatic and enzymatic antioxidants. In this context, ascorbic acid (AsA) is one of the universal non-enzymatic antioxidants having substantial potential of not only scavenging ROS, but also modulating a number of fundamental functions in plants both under stress and non-stress conditions. In the present review, the role of AsA, its biosynthesis, and cross-talk with different hormones have been discussed comprehensively. Furthermore, the possible involvement of AsA-hormone crosstalk in the regulation of several key physiological and biochemical processes like seed germination, photosynthesis, floral induction, fruit expansion, ROS regulation and senescence has also been described. A simplified and schematic AsA biosynthetic pathway has been drawn, which reflects key intermediates involved therein. This could pave the way for future research to elucidate the modulation of plant AsA biosynthesis and subsequent responses to environmental stresses. Apart from discussing the role of different ascorbate peroxidase isoforms, the comparative role of two key enzymes, ascorbate peroxidase (APX) and ascorbate oxidase (AO) involved in AsA metabolism in plant cell apoplast is also discussed particularly focusing on oxidative stress perception and amplification. Limited progress has been made so far in terms of developing transgenics which could over-produce AsA. The prospects of generation of transgenics overexpressing AsA related genes and exogenous application of AsA have been discussed at length in the review.
Collapse
Affiliation(s)
- Nudrat A. Akram
- Department of Botany, Government College University FaisalabadFaisalabad, Pakistan
| | - Fahad Shafiq
- Department of Botany, Government College University FaisalabadFaisalabad, Pakistan
| | - Muhammad Ashraf
- Pakistan Science FoundationIslamabad, Pakistan
- Department of Botany and Microbiology, King Saud UniversityRiyadh, Saudi Arabia
| |
Collapse
|
58
|
Wu J, Yang R, Yang Z, Yao S, Zhao S, Wang Y, Li P, Song X, Jin L, Zhou T, Lan Y, Xie L, Zhou X, Chu C, Qi Y, Cao X, Li Y. ROS accumulation and antiviral defence control by microRNA528 in rice. NATURE PLANTS 2017; 3:16203. [PMID: 28059073 DOI: 10.1038/nplants.2016.203] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 11/23/2016] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs) are key regulators of plant-pathogen interactions. Modulating miRNA function has emerged as a new strategy to produce virus resistance traits1-5. However, the miRNAs involved in antiviral defence and the underlying mechanisms remain largely elusive. We previously demonstrated that sequestration by Argonaute (AGO) proteins plays an important role in regulating miRNA function in antiviral defence pathways6. Here we reveal that cleavage-defective AGO18 complexes sequester microRNA528 (miR528) upon viral infection. We show that miR528 negatively regulates viral resistance in rice by cleaving L-ascorbate oxidase (AO) messenger RNA, thereby reducing AO-mediated accumulation of reactive oxygen species. Upon viral infection, miR528 becomes preferentially associated with AGO18, leading to elevated AO activity, higher basal reactive oxygen species accumulation and enhanced antiviral defence. Our findings reveal a mechanism in which antiviral defence is boosted through suppression of an miRNA that negatively regulates viral resistance. This mechanism could be manipulated to engineer virus-resistant crop plants.
Collapse
Affiliation(s)
- Jianguo Wu
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rongxin Yang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhirui Yang
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Shengze Yao
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Shanshan Zhao
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yu Wang
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Pingchuan Li
- Agriculture and Agri-Food Canada, Morden, Manitoba R6M 1Y5, Canada
| | - Xianwei Song
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lian Jin
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Tong Zhou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Ying Lan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Lianhui Xie
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310029, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yijun Qi
- Center for Plant Biology, Tsinghua-Peking Center for Life Sciences, College of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Li
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
59
|
Singh N, Bhardwaj RD. Ascorbic acid alleviates water deficit induced growth inhibition in wheat seedlings by modulating levels of endogenous antioxidants. Biologia (Bratisl) 2016. [DOI: 10.1515/biolog-2016-0050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
60
|
Exploring drought stress-regulated genes in senna (Cassia angustifolia Vahl.): a transcriptomic approach. Funct Integr Genomics 2016; 17:1-25. [PMID: 27709374 DOI: 10.1007/s10142-016-0523-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 09/02/2016] [Accepted: 09/05/2016] [Indexed: 01/08/2023]
Abstract
De novo assembly of reads produced by next-generation sequencing (NGS) technologies offers a rapid approach to obtain expressed gene sequences for non-model organisms. Senna (Cassia angustifolia Vahl.) is a drought-tolerant annual undershrub of Caesalpiniaceae, a subfamily of Fabaceae. There are insufficient transcriptomic and genomic data in public databases for understanding the molecular mechanism underlying the drought tolerance of senna. Therefore, the main purpose of this study was to know the transcriptome profile of senna, with special reference to drought stress. RNA from two different stages of leaf development was extracted and sequenced separately using the Illumina technology. A total of 200 million reads were generated, and a de novo assembly of processed reads in the pooled transcriptome using Trinity yielded 43,413 transcripts which were further annotated using NCBI BLAST with "green plant database (txid 33090)," Swiss Prot, Kyoto Encyclopedia of Genes and Genomes (KEGG), Clusters of Orthologous Groups (COG), and Gene Ontology (GO). Out of the total transcripts, 42,280 (95.0 %) were annotated by BLASTX against the green plant database of NCBI. Senna transcriptome showed the highest similarity to Glycine max (41 %), followed by Phaseolus vulgaris (16 %), Cicer arietinum (15 %), and Medicago trancatula (5 %). The highest number of GO terms were enriched for the molecular functions category; of these "catalytic activity" (GO: 0003824) (25.10 %) and "binding activity" (GO: 0005488) (20.10 %) were most abundantly represented. We used InterProscan to see protein similarity at domain level; a total of 33,256 transcripts were annotated against the Pfam domains. The transcripts were assigned with various KEGG pathways. Coding DNA sequences (CDS) encoding various drought stress-regulated pathways such as signaling factors, protein-modifying/degrading enzymes, biosynthesis of phytohormone, phytohormone signaling, osmotically active compounds, free radical scavengers, chlorophyll metabolism, leaf cuticular wax, polyamines, and protective proteins were identified through BLASTX search. The lucine-rich repeat kinase family was the most abundantly found group of protein kinases. Orphan, bHLH, and bZIP family TFs were the most abundantly found in senna. Six genes encoding MYC2 transcription factor, 9-cis-epoxycarotenoid dioxygenase (NCED), l -ascorbate peroxidase (APX), aminocyclopropane carboxylate oxidase (ACO), abscisic acid 8'-hydroxylase (ABA), and WRKY transcription factor were confirmed through reverse transcriptase-PCR (RT-PCR) and Sanger sequencing for the first time in senna. The potential drought stress-related transcripts identified in this study provide a good start for further investigation into the drought adaptation in senna. Additionally, our transcriptome sequences are the valuable resource for accelerated genomics-assisted genetic improvement programs and facilitate manipulation of biochemical pathways for developing drought-tolerant genotypes of crop plants.
Collapse
|
61
|
Saxena I, Srikanth S, Chen Z. Cross Talk between H2O2 and Interacting Signal Molecules under Plant Stress Response. FRONTIERS IN PLANT SCIENCE 2016; 7:570. [PMID: 27200043 PMCID: PMC4848386 DOI: 10.3389/fpls.2016.00570] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/13/2016] [Indexed: 05/18/2023]
Abstract
It is well established that oxidative stress is an important cause of cellular damage. During stress conditions, plants have evolved regulatory mechanisms to adapt to various environmental stresses. One of the consequences of stress is an increase in the cellular concentration of reactive oxygen species, which is subsequently converted to H2O2. H2O2 is continuously produced as the byproduct of oxidative plant aerobic metabolism. Organelles with a high oxidizing metabolic activity or with an intense rate of electron flow, such as chloroplasts, mitochondria, or peroxisomes are major sources of H2O2 production. H2O2 acts as a versatile molecule because of its dual role in cells. Under normal conditions, H2O2 immerges as an important factor during many biological processes. It has been established that it acts as a secondary messenger in signal transduction networks. In this review, we discuss potential roles of H2O2 and other signaling molecules during various stress responses.
Collapse
Affiliation(s)
| | | | - Zhong Chen
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological UniversitySingapore, Singapore
| |
Collapse
|
62
|
Saxena I, Srikanth S, Chen Z. Cross Talk between H2O2 and Interacting Signal Molecules under Plant Stress Response. FRONTIERS IN PLANT SCIENCE 2016; 7:570. [PMID: 27200043 DOI: 10.3389/ffpls.2016.00570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/13/2016] [Indexed: 05/27/2023]
Abstract
It is well established that oxidative stress is an important cause of cellular damage. During stress conditions, plants have evolved regulatory mechanisms to adapt to various environmental stresses. One of the consequences of stress is an increase in the cellular concentration of reactive oxygen species, which is subsequently converted to H2O2. H2O2 is continuously produced as the byproduct of oxidative plant aerobic metabolism. Organelles with a high oxidizing metabolic activity or with an intense rate of electron flow, such as chloroplasts, mitochondria, or peroxisomes are major sources of H2O2 production. H2O2 acts as a versatile molecule because of its dual role in cells. Under normal conditions, H2O2 immerges as an important factor during many biological processes. It has been established that it acts as a secondary messenger in signal transduction networks. In this review, we discuss potential roles of H2O2 and other signaling molecules during various stress responses.
Collapse
Affiliation(s)
- Ina Saxena
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University Singapore, Singapore
| | - Sandhya Srikanth
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University Singapore, Singapore
| | - Zhong Chen
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University Singapore, Singapore
| |
Collapse
|
63
|
Lallement PA, Roret T, Tsan P, Gualberto JM, Girardet JM, Didierjean C, Rouhier N, Hecker A. Insights into ascorbate regeneration in plants: investigating the redox and structural properties of dehydroascorbate reductases from Populus trichocarpa. Biochem J 2016; 473:717-31. [PMID: 26699905 DOI: 10.1042/bj20151147] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 12/23/2015] [Indexed: 12/20/2022]
Abstract
Dehydroascorbate reductases (DHARs), enzymes belonging to the GST superfamily, catalyse the GSH-dependent reduction of dehydroascorbate into ascorbate in plants. By maintaining a reduced ascorbate pool, they notably participate to H2O2 detoxification catalysed by ascorbate peroxidases (APXs). Despite this central role, the catalytic mechanism used by DHARs is still not well understood and there is no supportive 3D structure. In this context, we have performed a thorough biochemical and structural analysis of the three poplar DHARs and coupled this to the analysis of their transcript expression patterns and subcellular localizations. The transcripts for these genes are mainly detected in reproductive and green organs and the corresponding proteins are expressed in plastids, in the cytosol and in the nucleus, but not in mitochondria and peroxisomes where ascorbate regeneration is obviously necessary. Comparing the kinetic properties and the sensitivity to GSSG-mediated oxidation of DHAR2 and DHAR3A, exhibiting 1 or 3 cysteinyl residues respectively, we observed that the presence of additional cysteines in DHAR3A modifies the regeneration mechanism of the catalytic cysteine by forming different redox states. Finally, from the 3D structure of DHAR3A solved by NMR, we were able to map the residues important for the binding of both substrates (GSH and DHA), showing that DHAR active site is very selective for DHA recognition and providing further insights into the catalytic mechanism and the roles of the additional cysteines found in some DHARs.
Collapse
Affiliation(s)
- Pierre-Alexandre Lallement
- Université de Lorraine, UMR 1136 Interactions Arbres/Microorganismes, Faculté des Sciences et Technologies, 54506 Vandœuvre-lès-Nancy, France INRA, UMR 1136 Interactions Arbres/Microorganismes, Centre INRA Nancy Lorraine, 54280 Champenoux, France
| | - Thomas Roret
- Université de Lorraine, UMR 1136 Interactions Arbres/Microorganismes, Faculté des Sciences et Technologies, 54506 Vandœuvre-lès-Nancy, France INRA, UMR 1136 Interactions Arbres/Microorganismes, Centre INRA Nancy Lorraine, 54280 Champenoux, France
| | - Pascale Tsan
- Université de Lorraine, CRM2, UMR 7036, 54506 Vandœuvre-lès-Nancy, France CNRS, CRM2, UMR 7036, 54506 Vandœuvre-lès-Nancy, France
| | - José M Gualberto
- Institut de Biologie Moléculaire des Plantes, CNRS-UPR 2357, 67084 Strasbourg, France
| | - Jean-Michel Girardet
- Université de Lorraine, UMR 1136 Interactions Arbres/Microorganismes, Faculté des Sciences et Technologies, 54506 Vandœuvre-lès-Nancy, France INRA, UMR 1136 Interactions Arbres/Microorganismes, Centre INRA Nancy Lorraine, 54280 Champenoux, France
| | - Claude Didierjean
- Université de Lorraine, CRM2, UMR 7036, 54506 Vandœuvre-lès-Nancy, France CNRS, CRM2, UMR 7036, 54506 Vandœuvre-lès-Nancy, France
| | - Nicolas Rouhier
- Université de Lorraine, UMR 1136 Interactions Arbres/Microorganismes, Faculté des Sciences et Technologies, 54506 Vandœuvre-lès-Nancy, France INRA, UMR 1136 Interactions Arbres/Microorganismes, Centre INRA Nancy Lorraine, 54280 Champenoux, France
| | - Arnaud Hecker
- Université de Lorraine, UMR 1136 Interactions Arbres/Microorganismes, Faculté des Sciences et Technologies, 54506 Vandœuvre-lès-Nancy, France INRA, UMR 1136 Interactions Arbres/Microorganismes, Centre INRA Nancy Lorraine, 54280 Champenoux, France
| |
Collapse
|
64
|
Morton KJ, Jia S, Zhang C, Holding DR. Proteomic profiling of maize opaque endosperm mutants reveals selective accumulation of lysine-enriched proteins. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1381-96. [PMID: 26712829 PMCID: PMC4762381 DOI: 10.1093/jxb/erv532] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Reduced prolamin (zein) accumulation and defective endoplasmic reticulum (ER) body formation occurs in maize opaque endosperm mutants opaque2 (o2), floury2 (fl2), defective endosperm*B30 (DeB30), and Mucronate (Mc), whereas other opaque mutants such as opaque1 (o1) and floury1 (fl1) are normal in these regards. This suggests that other factors contribute to kernel texture. A liquid chromatography approach coupled with tandem mass spectrometry (LC-MS/MS) proteomics was used to compare non-zein proteins of nearly isogenic opaque endosperm mutants. In total, 2762 proteins were identified that were enriched for biological processes such as protein transport and folding, amino acid biosynthesis, and proteolysis. Principal component analysis and pathway enrichment suggested that the mutants partitioned into three groups: (i) Mc, DeB30, fl2 and o2; (ii) o1; and (iii) fl1. Indicator species analysis revealed mutant-specific proteins, and highlighted ER secretory pathway components that were enriched in selected groups of mutants. The most significantly changed proteins were related to stress or defense and zein partitioning into the soluble fraction for Mc, DeB30, o1, and fl1 specifically. In silico dissection of the most significantly changed proteins revealed novel qualitative changes in lysine abundance contributing to the overall lysine increase and the nutritional rebalancing of the o2 and fl2 endosperm.
Collapse
Affiliation(s)
- Kyla J Morton
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, Beadle Center for Biotechnology, 1901 Vine Street, PO Box 880665, University of Nebraska, Lincoln, NE 68588-0665, USA
| | - Shangang Jia
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, Beadle Center for Biotechnology, 1901 Vine Street, PO Box 880665, University of Nebraska, Lincoln, NE 68588-0665, USA
| | - Chi Zhang
- School of Biological Sciences, Center for Plant Science Innovation, Beadle Center for Biotechnology, 1901 Vine Street, PO Box 880665, University of Nebraska, Lincoln, NE 68588-0665, USA
| | - David R Holding
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, Beadle Center for Biotechnology, 1901 Vine Street, PO Box 880665, University of Nebraska, Lincoln, NE 68588-0665, USA
| |
Collapse
|
65
|
Sun WJ, Lv WJ, Li LN, Yin G, Hang X, Xue Y, Chen J, Shi Z. Eugenol confers resistance to Tomato yellow leaf curl virus (TYLCV) by regulating the expression of SlPer1 in tomato plants. N Biotechnol 2016; 33:345-54. [PMID: 26776605 DOI: 10.1016/j.nbt.2016.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 12/14/2015] [Accepted: 01/07/2016] [Indexed: 10/22/2022]
Abstract
Tomato yellow leaf curl virus (TYLCV) is one of the most devastating plant diseases, and poses a significant agricultural concern because of the lack of an efficient control method. Eugenol is a plant-derived natural compound that has been widely used as a food additive and in medicine. In the present study, we demonstrated the potential of eugenol to enhance the resistance of tomato plants to TYLCV. The anti-TYLCV efficiency of eugenol was significantly higher than that of moroxydine hydrochloride (MH), a widely used commercial antiviral agent. Eugenol application stimulated the production of endogenous nitric oxide (NO) and salicylic acid (SA) in tomato plants. The full-length cDNA of SlPer1, which has been suggested to be a host R gene specific to TYLCV, was isolated from tomato plants. A sequence analysis suggested that SlPer1 might be a nucleobase-ascorbate transporter (NAT) belonging to the permease family. The transcript levels of SlPer1 increased markedly in response to treatment with eugenol or TYLCV inoculation. The results of this study also showed that SlPer1 expression was strongly induced by SA, MeJA (jasmonic acid methyl ester), and NO. Thus, we propose that the increased transcription of SlPer1 contributed to the high anti-TYLCV efficiency of eugenol, which might involve in the generation of endogenous SA and NO. Such findings provide the basis for the development of eugenol as an environmental-friendly agricultural antiviral agent.
Collapse
Affiliation(s)
- Wei-Jie Sun
- College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Wen-Jing Lv
- College of Horticulture, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Li-Na Li
- College of Horticulture, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Gan Yin
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Xiaofang Hang
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, China, 50 Zhongling Street, Nanjing 210014, China
| | - Yanfeng Xue
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China; Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, China, 50 Zhongling Street, Nanjing 210014, China
| | - Jian Chen
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China; Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, China, 50 Zhongling Street, Nanjing 210014, China.
| | - Zhiqi Shi
- College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China; Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China; Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, China, 50 Zhongling Street, Nanjing 210014, China.
| |
Collapse
|
66
|
Saxena I, Srikanth S, Chen Z. Cross Talk between H2O2 and Interacting Signal Molecules under Plant Stress Response. FRONTIERS IN PLANT SCIENCE 2016; 7:570. [PMID: 27200043 DOI: 10.3389/fpls.2016.00570/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/13/2016] [Indexed: 05/20/2023]
Abstract
It is well established that oxidative stress is an important cause of cellular damage. During stress conditions, plants have evolved regulatory mechanisms to adapt to various environmental stresses. One of the consequences of stress is an increase in the cellular concentration of reactive oxygen species, which is subsequently converted to H2O2. H2O2 is continuously produced as the byproduct of oxidative plant aerobic metabolism. Organelles with a high oxidizing metabolic activity or with an intense rate of electron flow, such as chloroplasts, mitochondria, or peroxisomes are major sources of H2O2 production. H2O2 acts as a versatile molecule because of its dual role in cells. Under normal conditions, H2O2 immerges as an important factor during many biological processes. It has been established that it acts as a secondary messenger in signal transduction networks. In this review, we discuss potential roles of H2O2 and other signaling molecules during various stress responses.
Collapse
Affiliation(s)
- Ina Saxena
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University Singapore, Singapore
| | - Sandhya Srikanth
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University Singapore, Singapore
| | - Zhong Chen
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University Singapore, Singapore
| |
Collapse
|
67
|
Kim JH, Tsukaya H. Regulation of plant growth and development by the GROWTH-REGULATING FACTOR and GRF-INTERACTING FACTOR duo. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6093-107. [PMID: 26160584 DOI: 10.1093/jxb/erv349] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Transcription factors are key regulators of gene expression and play pivotal roles in all aspects of living organisms. Therefore, identification and functional characterization of transcription factors is a prerequisite step toward understanding life. This article reviews molecular and biological functions of the two transcription regulator families, GROWTH-REGULATING FACTOR (GRF) and GRF-INTERACTING FACTOR (GIF), which have only recently been recognized. A myriad of experimental evidence clearly illustrates that GRF and GIF are bona fide partner proteins and form a plant-specific transcriptional complex. One of the most conspicuous outcomes from this research field is that the GRF-GIF duo endows the primordial cells of vegetative and reproductive organs with a meristematic specification state, guaranteeing the supply of cells for organogenesis and successful reproduction. It has recently been shown that GIF1 proteins, also known as ANGUSTIFOLIA3, recruit chromatin remodelling complexes to target genes, and that AtGRF expression is directly activated by the floral identity factors, APETALA1 and SEPALLATA3, providing an important insight into understanding of the action of GRF-GIF. Moreover, GRF genes are extensively subjected to post-transcriptional control by microRNA396, revealing the presence of a complex regulatory circuit in regulation of plant growth and development by the GRF-GIF duo.
Collapse
Affiliation(s)
- Jeong Hoe Kim
- Department of Biology, Kyungpook National University, 1370 Sankyuk-dong, Buk-gu, Daegu 702-701, Korea
| | - Hirokazu Tsukaya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|