51
|
Gerić M, Gajski G, Garaj-Vrhovac V. γ-H2AX as a biomarker for DNA double-strand breaks in ecotoxicology. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 105:13-21. [PMID: 24780228 DOI: 10.1016/j.ecoenv.2014.03.035] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 03/27/2014] [Accepted: 03/29/2014] [Indexed: 06/03/2023]
Abstract
The visualisation of DNA damage response proteins enables the indirect measurement of DNA damage. Soon after the occurrence of a DNA double-strand break (DSB), the formation of γ-H2AX histone variants is to be expected. This review is focused on the potential use of the γ-H2AX foci assay in assessing the genotoxicity of environmental contaminants including cytostatic pharmaceuticals, since standard methods may not be sensitive enough to detect the damaging effect of low environmental concentrations of such drugs. These compounds are constantly released into the environment, potentially representing a threat to water quality, aquatic organisms, and, ultimately, human health. Our review of the literature revealed that this method could be used in the biomonitoring and risk assessment of aquatic systems affected by wastewater from the production, usage, and disposal of cytostatic pharmaceuticals.
Collapse
Affiliation(s)
- Marko Gerić
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia
| | - Goran Gajski
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia
| | - Vera Garaj-Vrhovac
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia.
| |
Collapse
|
52
|
Li J, Zhang Y, Gao Y, Cui Y, Liu H, Li M, Tian Y. Downregulation of HNF1 homeobox B is associated with drug resistance in ovarian cancer. Oncol Rep 2014; 32:979-88. [PMID: 24968817 DOI: 10.3892/or.2014.3297] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 05/29/2014] [Indexed: 11/05/2022] Open
Abstract
The expression of HNF1 homeobox B (HNF1B) is associated with cancer risk in several tumors, including ovarian cancer, and its decreased expression play roles in cancer development. However, the study of HNF1B and cancer is limited, and its association with drug resistance in cancer has never been reported. On the basis of array data retrieved from Oncomine and Gene Expression Omnibus (GEO) online database, we found that the mRNA expression of HNF1B in 586 ovarian serous cystadenocarcinomas and in platinum-resistant A2780 epithelial ovarian cancer cells was significantly decreased, indicating a potential role of HNF1B in drug resistance in ovarian cancer. Based on this finding, comprehensive bioinformatics analyses, including protein/gene interaction, protein-small molecule/chemical interaction, biological process annotation, gene co-occurrence and pathway enrichment analysis and microRNA-mRNA interaction, were performed to illustrate the association of HNF1B with drug resistance in ovarian cancer. We found that among the proteins/genes, small molecules/chemicals and microRNAs which directly interacted with HNF1B, the majority was associated with drug resistance in cancer, particularly in ovarian cancer. Biological process annotation revealed that HNF1B closely related to 24 biological processes which were all notably associated with ovarian cancer and drug resistance. These results indicated that the downregulation of HNF1B may contribute to drug resistance in ovarian cancer, via its direct interactions with these drug resistance-related proteins/genes, small molecules/chemicals and microRNAs, and via its regulations on the drug resistance-related biological processes. Pathway enrichment analysis of 36 genes which co-occurred with HNF1B, ovarian cancer and drug resistance indicated that the HNF1B may perform its drug resistance-related functions through 4 pathways including ErbB signaling, focal adhesion, apoptosis and p53 signaling. Collectively, in this study, we illustrated for the first time that HNF1B may contribute to drug resistance in ovarian cancer, potentially through the 4 pathways. The present study may pave the way for further investigation of the drug resistance-related functions of HNF1B in ovarian cancer.
Collapse
Affiliation(s)
- Jianchao Li
- Department of Obstetrics and Gynecology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, P.R. China
| | - Yonghong Zhang
- Department of Obstetrics and Gynecology, Muping Traditional Chinese Medicine Hospital, Yantai, Shandong, P.R. China
| | - Yutao Gao
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Affiliated to Capital Medical University, Beijing, P.R. China
| | - Yuqian Cui
- Center for Reproductive Medicine, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, P.R. China
| | - Hua Liu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, P.R. China
| | - Mi Li
- Department of Nursing, Shandong College of Traditional Chinese Medicine, Yantai, Shandong, P.R. China
| | - Yongjie Tian
- Department of Obstetrics and Gynecology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, P.R. China
| |
Collapse
|
53
|
Papaioannou MD, Koufaris C, Gooderham NJ. The cooked meat-derived mammary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) elicits estrogenic-like microRNA responses in breast cancer cells. Toxicol Lett 2014; 229:9-16. [PMID: 24877718 DOI: 10.1016/j.toxlet.2014.05.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 05/23/2014] [Accepted: 05/26/2014] [Indexed: 01/08/2023]
Abstract
The cooking of meat results in the generation of heterocyclic amines (HCA), the most abundant of which is 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Data from epidemiological, mechanistic, and animal studies indicate that PhIP could be causally linked to breast cancer incidence. Besides the established DNA damaging and mutagenic activities of PhIP, the chemical is reported to have oestrogenic activity that could contribute to its tissue specific carcinogenicity. In this study we investigated the effect of treatment with PhIP and 17-β-estradiol (E2) on global microRNA (miRNA) expression of the oestrogen responsive MCF-7 human breast adenocarcinoma cell line. PhIP and E2 caused widespread and largely over-lapping effects on miRNA expression, with many of the commonly affected miRNA reported to be regulated by oestrogen and have been implicated in the initiation and progression of breast cancer. The regulatory activity of the miRNAs we show here to be responsive to PhIP treatment, are also predicted to mediate cellular phenotypes that are associated with PhIP exposure. Consequently, this study offers further support to the ability of PhIP to induce widespread effects via activation of oestrogen receptor alpha (ERα). Moreover, this study indicates that deregulation of miRNA by PhIP could potentially be an important non-DNA-damaging carcinogenic mechanism in breast cancer.
Collapse
Affiliation(s)
- M D Papaioannou
- Computational and Systems Medicine, Surgery and Cancer, Imperial College London SW7 2AZ, UK
| | - C Koufaris
- Computational and Systems Medicine, Surgery and Cancer, Imperial College London SW7 2AZ, UK
| | - N J Gooderham
- Computational and Systems Medicine, Surgery and Cancer, Imperial College London SW7 2AZ, UK.
| |
Collapse
|
54
|
MicroRNA-24 modulates aflatoxin B1-related hepatocellular carcinoma prognosis and tumorigenesis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:482926. [PMID: 24800232 PMCID: PMC3997078 DOI: 10.1155/2014/482926] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/13/2014] [Accepted: 03/16/2014] [Indexed: 12/12/2022]
Abstract
MicroRNA-24 (miR-24) may be involved in neoplastic process; however, the role of this microRNA in the hepatocellular carcinoma (HCC) related to aflatoxin B1 (AFB1) has not been well elaborated. Here, we tested miR-24 expression in 207 pathology-diagnosed HCC cases from high AFB1 exposure areas and HCC cells. We found that miR-24 was upregulated in HCC tumor tissues relative to adjacent noncancerous tissue samples, and that the high expression of miR-24 was significantly correlated with larger tumor size, higher microvessel density, and tumor dedifferentiation. Additionally, this microRNA overexpression modified the recurrence-free survival (relative hazard ratio [HR], 4.75; 95% confidence interval [CI], 2.66-8.47) and overall survival (HR = 3.58, 95% CI = 2.34-5.46) of HCC patients. Furthermore, we observed some evidence of joint effects between miR-24 and AFB1 exposure on HCC prognosis. Functionally, miR-24 overexpression progressed tumor cells proliferation, inhibited cell apoptosis, and developed the formation of AFB1-DNA adducts. These results indicate for the first time that miR-24 may modify AFB1-related HCC prognosis and tumorigenesis.
Collapse
|
55
|
LIU XIA, GAO YUTAO, LU YI, ZHANG JIAN, LI LI, YIN FUQIANG. Upregulation of NEK2 is associated with drug resistance in ovarian cancer. Oncol Rep 2013; 31:745-54. [DOI: 10.3892/or.2013.2910] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 11/22/2013] [Indexed: 11/06/2022] Open
|
56
|
A hierarchical poisson log-normal model for network inference from RNA sequencing data. PLoS One 2013; 8:e77503. [PMID: 24147011 PMCID: PMC3798343 DOI: 10.1371/journal.pone.0077503] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 09/03/2013] [Indexed: 12/13/2022] Open
Abstract
Gene network inference from transcriptomic data is an important methodological challenge and a key aspect of systems biology. Although several methods have been proposed to infer networks from microarray data, there is a need for inference methods able to model RNA-seq data, which are count-based and highly variable. In this work we propose a hierarchical Poisson log-normal model with a Lasso penalty to infer gene networks from RNA-seq data; this model has the advantage of directly modelling discrete data and accounting for inter-sample variance larger than the sample mean. Using real microRNA-seq data from breast cancer tumors and simulations, we compare this method to a regularized Gaussian graphical model on log-transformed data, and a Poisson log-linear graphical model with a Lasso penalty on power-transformed data. For data simulated with large inter-sample dispersion, the proposed model performs better than the other methods in terms of sensitivity, specificity and area under the ROC curve. These results show the necessity of methods specifically designed for gene network inference from RNA-seq data.
Collapse
|
57
|
Abstract
MicroRNAs (miRNAs) are 18- to 22-nucleotide-long, single-stranded, noncoding RNAs that regulate important biological processes including differentiation, proliferation, and response to cellular stressors such as hypoxia, nutrient depletion, and traversion of the cell cycle by controlling protein expression within the cell. Many investigators have profiled cancer tissue and serum miRNAs to identify potential therapeutic targets, understand the pathways involved in tumorigenesis, and identify diagnostic tumor signatures. In the setting of pancreatic cancer, obtaining pancreatic tissue is invasive and impractical for early diagnosis. Several groups have profiled miRNAs that are present in the blood as a means to diagnose tumor progression and predict prognosis/survival or drug resistance. Several miRNA signatures found in pancreatic tissue and the peripheral blood, as well as the pathways that are associated with pancreatic cancer, are reviewed here in detail. Three miRNA biomarkers (miR-21, miR-155, and miR-200) have been repetitively identified in both pancreatic cancer tissue and patients' blood. Those miRNAs regulate and are regulated by the central genetic and epigenetic changes observed in pancreatic cancer including p53, transforming growth factor β, p16(INK4A), BRCA1/2, and Kras. These miRNAs are involved in DNA repair, cell cycle, and cell invasion and also play important roles in promoting metastases.
Collapse
|
58
|
Dmitriev P, Barat A, Polesskaya A, O'Connell MJ, Robert T, Dessen P, Walsh TA, Lazar V, Turki A, Carnac G, Laoudj-Chenivesse D, Lipinski M, Vassetzky YS. Simultaneous miRNA and mRNA transcriptome profiling of human myoblasts reveals a novel set of myogenic differentiation-associated miRNAs and their target genes. BMC Genomics 2013; 14:265. [PMID: 23597168 PMCID: PMC3639941 DOI: 10.1186/1471-2164-14-265] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 03/26/2013] [Indexed: 01/10/2023] Open
Abstract
Background miRNA profiling performed in myogenic cells and biopsies from skeletal muscles has previously identified miRNAs involved in myogenesis. Results Here, we have performed miRNA transcriptome profiling in human affinity-purified CD56+ myoblasts induced to differentiate in vitro. In total, we have identified 60 miRNAs differentially expressed during myogenic differentiation. Many were not known for being differentially expressed during myogenic differentiation. Of these, 14 (miR-23b, miR-28, miR-98, miR-103, miR-107, miR-193a, miR-210, miR-324-5p, miR-324-3p, miR-331, miR-374, miR-432, miR-502, and miR-660) were upregulated and 6 (miR-31, miR-451, miR-452, miR-565, miR-594 and miR-659) were downregulated. mRNA transcriptome profiling performed in parallel resulted in identification of 6,616 genes differentially expressed during myogenic differentiation. Conclusions This simultaneous miRNA/mRNA transcriptome profiling allowed us to predict with high accuracy target genes of myogenesis-related microRNAs and to deduce their functions.
Collapse
Affiliation(s)
- Petr Dmitriev
- UMR 8126, Univ. Paris-Sud 11, CNRS, Institut de Cancérologie Gustave-Roussy, 39, rue Camille-Desmoulins, Villejuif 94805, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Nguyen T, Rich A, Dahl R. MiR-24 promotes the survival of hematopoietic cells. PLoS One 2013; 8:e55406. [PMID: 23383180 PMCID: PMC3559586 DOI: 10.1371/journal.pone.0055406] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 12/29/2012] [Indexed: 11/19/2022] Open
Abstract
The microRNA, miR-24, inhibits B cell development and promotes myeloid development of hematopoietic progenitors. Differential regulation of cell survival in myeloid and lymphoid cells by miR-24 may explain how miR-24's affects hematopoietic progenitors. MiR-24 is reported to regulate apoptosis, either positively or negatively depending on cell context. However, no role for miR-24 in regulating cell death has been previously described in blood cells. To examine miR-24's effect on survival, we expressed miR-24 via retrovirus in hematopoietic cells and induced cell death with cytokine or serum withdrawal. We observed that miR-24 enhanced survival of myeloid and B cell lines as well as primary hematopoietic cells. Additionally, antagonizing miR-24 with shRNA in hematopoietic cells made them more sensitive to apoptotic stimuli, suggesting miR-24 functions normally to promote blood cell survival. Since we did not observe preferential protection of myeloid over B cells, miR-24's pro-survival effect does not explain its promotion of myelopoiesis. Moreover, expression of pro-survival protein, Bcl-xL, did not mimic miR-24's impact on cellular differentiation, further supporting this conclusion. Our results indicate that miR-24 is a critical regulator of hematopoietic cell survival. This observation has implications for leukemogenesis. Several miRNAs that regulate apoptosis have been shown to function as either tumor suppressors or oncogenes during leukemogenesis. MiR-24 is expressed highly in primary acute myelogenous leukemia, suggesting that its pro-survival activity could contribute to the transformation of hematopoietic cells.
Collapse
Affiliation(s)
- Tan Nguyen
- Department of Microbiology and Immunology, Indiana University School of Medicine, South Bend, Indiana, United States of America
| | - Audrey Rich
- Cancer Research and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Richard Dahl
- Department of Microbiology and Immunology, Indiana University School of Medicine, South Bend, Indiana, United States of America
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- * E-mail:
| |
Collapse
|
60
|
Amelio I, Lena AM, Viticchiè G, Shalom-Feuerstein R, Terrinoni A, Dinsdale D, Russo G, Fortunato C, Bonanno E, Spagnoli LG, Aberdam D, Knight RA, Candi E, Melino G. miR-24 triggers epidermal differentiation by controlling actin adhesion and cell migration. ACTA ACUST UNITED AC 2013; 199:347-63. [PMID: 23071155 PMCID: PMC3471232 DOI: 10.1083/jcb.201203134] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A differentiation-promoting micro-RNA regulates actin cable dynamics, intercellular adhesion, and cell migration in human and mouse epidermis. During keratinocyte differentiation and stratification, cells undergo extensive remodeling of their actin cytoskeleton, which is important to control cell mobility and to coordinate and stabilize adhesive structures necessary for functional epithelia. Limited knowledge exists on how the actin cytoskeleton is remodeled in epithelial stratification and whether cell shape is a key determinant to trigger terminal differentiation. In this paper, using human keratinocytes and mouse epidermis as models, we implicate miR-24 in actin adhesion dynamics and demonstrate that miR-24 directly controls actin cable formation and cell mobility. miR-24 overexpression in proliferating cells was sufficient to trigger keratinocyte differentiation both in vitro and in vivo and directly repressed cytoskeletal modulators (PAK4, Tks5, and ArhGAP19). Silencing of these targets recapitulated the effects of miR-24 overexpression. Our results uncover a new regulatory pathway involving a differentiation-promoting microribonucleic acid that regulates actin adhesion dynamics in human and mouse epidermis.
Collapse
Affiliation(s)
- Ivano Amelio
- Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Truettner JS, Katyshev V, Esen-Bilgin N, Dietrich WD, Dore-Duffy P. Hypoxia alters MicroRNA expression in rat cortical pericytes. Microrna 2013; 2:32-44. [PMID: 24883265 PMCID: PMC4039645 DOI: 10.2174/2211536611302010005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Microvascular adaptation to metabolic stress is important in the maintenance of tissue homeostasis. Nowhere is this more important than in the central nervous system (CNS) where the cellular constituents of the neurovascularture including endothelial cells, pericytes and some astroglia must make fine-tuned autoregulatory modulations that maintain the delicate balance between oxygen availability and metabolic demand. miRNAs have been reported to play an important regulatory role in many cellular functions including cell differentiation, growth and proliferation, lineage determination, and metabolism. In this study, we investigated the possible role of miRNAs in the CNS capillary pericyte response to hypoxic stress. Micro-array analysis was used to examine the expression of 388 rat miRNAs in primary rat cortical pericytes with and without exposure to low oxygen (1%) after 24 or 48 hr. Pericytes subjected to hypoxia showed 27 miRNAs that were higher than control and 31 that were lower. Validation and quantification was performed by Real Time RT-PCR on pericytes subjected to 2 hr, 24 hr, or 48 hr of hypoxia. Hypoxia induced changes included physiological pathways governing the stress response, angiogenesis, migration and cell cycle regulation. miRNAs associated with HIF-1α (miR-322[1], miR-199a [2]), TGF-β1 (miR-140[3], miR-145[4], miR-376b-3p[5]) and VEGF (miR-126a[6], miR-297[7], miR-16[8], miR-17-5p[9]) were differentially regulated. Systematic and integrative analysis of possible gene targets analyzed by DAVID bioinformatics resource (http://david.abcc.ncifcrf.gov) and MetaSearch 2.0 (GeneGo) for some of these miRNAs was conducted to determine possible gene targets and pathways that may be affected by the post-transcriptional changes after hypoxic insult.
Collapse
Affiliation(s)
- Jessie S. Truettner
- Dept of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, Fl. USA
| | - Vladimir Katyshev
- Dept of Neurology Wayne State University School of Medicine, Detroit, Mi, USA
| | - Nilufer Esen-Bilgin
- Dept of Neurology Wayne State University School of Medicine, Detroit, Mi, USA
| | - W. Dalton Dietrich
- Dept of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, Fl. USA
| | - Paula Dore-Duffy
- Dept of Neurology Wayne State University School of Medicine, Detroit, Mi, USA
| |
Collapse
|
62
|
Scheibner KA, Teaboldt B, Hauer MC, Chen X, Cherukuri S, Guo Y, Kelley SM, Liu Z, Baer MR, Heimfeld S, Civin CI. MiR-27a functions as a tumor suppressor in acute leukemia by regulating 14-3-3θ. PLoS One 2012; 7:e50895. [PMID: 23236401 PMCID: PMC3517579 DOI: 10.1371/journal.pone.0050895] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/26/2012] [Indexed: 01/06/2023] Open
Abstract
MicroRNAs (miRs) play major roles in normal hematopoietic differentiation and hematopoietic malignancies. In this work, we report that miR-27a, and its coordinately expressed cluster (miR-23a∼miR-27a∼miR-24-2), was down-regulated in acute leukemia cell lines and primary samples compared to hematopoietic stem-progenitor cells (HSPCs). Decreased miR-23a cluster expression in some acute leukemia cell lines was mediated by c-MYC. Replacement of miR-27a in acute leukemia cell lines inhibited cell growth due, at least in part, to increased cellular apoptosis. We identified a member of the anti-apoptotic 14-3-3 family of proteins, which support cell survival by interacting with and negatively regulating pro-apoptotic proteins such as Bax and Bad, as a target of miR-27a. Specifically, miR-27a regulated 14-3-3θ at both the mRNA and protein levels. These data indicate that miR-27a contributes a tumor suppressor-like activity in acute leukemia cells via regulation of apoptosis, and that miR-27a and 14-3-3θ may be potential therapeutic targets.
Collapse
Affiliation(s)
- Kara A Scheibner
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Cho WCS. [Exploiting the therapeutic potential of microRNAs in human cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2012; 15:C8-12. [PMID: 23066553 PMCID: PMC6134410 DOI: 10.3779/j.issn.1009-3419.2012.08.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
大量研究表明microRNAs(miRNAs)的异常调节与癌症的发生和进展相关。新近研究发现了若干在各种人类癌症中具有可作为治疗靶标巨大潜能的miRNAs。这些肿瘤miRNAs的抑制或过表达可调节相关基因的表达,从而抑制各种癌症的增殖或转移。一些miRNAs可逆转上皮-间质转化的表型,有些则可用于增强细胞对抗癌药物的敏感性。它们大部分的抗癌作用均已在临床前动物模型中得到验证。miRNA治疗的一个优点是它可靶向作用于不同信号通路中的许多基因,但同时亦伴有许多未知的脱靶效应的缺点。此外,对于有效的miRNA治疗来说,成功转运也是一个主要的挑战。然而,新近研究的发现及药物转运系统的高速发展为该领域的飞跃展现了一个乐观的前景。
Collapse
Affiliation(s)
- William C S Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong.
| |
Collapse
|
64
|
Martin EC, Elliott S, Rhodes LV, Antoon JW, Fewell C, Zhu Y, Driver JL, Jodari-Karimi M, Taylor CW, Flemington EK, Beckman BS, Collins-Burow BM, Burow ME. Preferential star strand biogenesis of pre-miR-24-2 targets PKC-alpha and suppresses cell survival in MCF-7 breast cancer cells. Mol Carcinog 2012; 53:38-48. [PMID: 22911661 DOI: 10.1002/mc.21946] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 07/06/2012] [Accepted: 07/11/2012] [Indexed: 12/21/2022]
Abstract
microRNAs (miRNA) are regulators of cellular pathways and alterations of normal miRNA expression levels have been shown to increase tumorigenesis. miR-24 has been demonstrated as having both tumor suppressive and oncogenic properties depending on cell context. Here, we demonstrate a possible role for pre-miR-24-2 as a tumor suppressor in the MCF-7 breast cancer cell line through the preferential processing of mature miR-24-2* over miR-24. Specifically, we show that the ectopic expression of miR-24-2* in MCF-7 breast cancer cells results in a suppression of cellular survival both in vivo and in vitro. Notably, the overexpression of miR-24-2* results in a dampening of cell survival through the targeted suppression of PKCα. In addition, a similar biological change is observed in vivo where MCF-7 cells overexpressing pre-miR-24-2 have decreased tumorigenicity and tumor incidence. Taken together our data demonstrate that when overexpressed biogenesis of the pre-miR-24-2 favors miR-24-2* in the MCF-7 breast cancer cell line and suggests a tumor suppressive role for miR-24-2* observed through the inhibition of PKCα-mediated cellular survival.
Collapse
Affiliation(s)
- Elizabeth C Martin
- Department of Medicine, Section of Hematology and Medical Oncology, Tulane University, New Orleans, Louisiaina
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Brunner S, Herndler‐Brandstetter D, Arnold CR, Wiegers GJ, Villunger A, Hackl M, Grillari J, Moreno‐Villanueva M, Bürkle A, Grubeck‐Loebenstein B. Upregulation of miR-24 is associated with a decreased DNA damage response upon etoposide treatment in highly differentiated CD8(+) T cells sensitizing them to apoptotic cell death. Aging Cell 2012; 11:579-87. [PMID: 22435726 PMCID: PMC3427896 DOI: 10.1111/j.1474-9726.2012.00819.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The life-long homeostasis of memory CD8(+) T cells as well as persistent viral infections have been shown to facilitate the accumulation of highly differentiated CD8(+) CD28(-) T cells, a phenomenon that has been associated with an impaired immune function in humans. However, the molecular mechanisms regulating homeostasis of CD8(+) CD28(-) T cells have not yet been elucidated. In this study, we demonstrate that the miR-23∼24∼27 cluster is up-regulated during post-thymic CD8(+) T-cell differentiation in humans. The increased expression of miR-24 in CD8(+) CD28(-) T cells is associated with decreased expression of the histone variant H2AX, a protein that plays a key role in the DNA damage response (DDR). Following treatment with the classic chemotherapeutic agent etoposide, a topoisomerase II inhibitor, apoptosis was increased in CD8(+) CD28(-) when compared to CD8(+) CD28(+) T cells and correlated with an impaired DDR in this cell type. The reduced capacity of CD8(+) CD28(-) T cell to repair DNA was characterized by the automated fluorimetric analysis of DNA unwinding (FADU) assay as well as by decreased phosphorylation of H2AX at Ser139, of ATM at Ser1981, and of p53 at Ser15. Interleukin (IL)-15 could prevent etoposide-mediated apoptosis of CD8(+) CD28(-) T cells, suggesting a role for IL-15 in the survival and the age-dependent accumulation of CD8(+) CD28(-) T cells in humans.
Collapse
Affiliation(s)
- Stefan Brunner
- Immunology Division, Institute for Biomedical Aging Research, Austrian Academy of Sciences, Innsbruck, Austria
| | | | - Christoph R. Arnold
- Immunology Division, Institute for Biomedical Aging Research, Austrian Academy of Sciences, Innsbruck, Austria
| | - Gerrit Jan Wiegers
- Division of Developmental Immunology, Biocenter, University of Innsbruck, Innsbruck, Austria
| | - Andreas Villunger
- Division of Developmental Immunology, Biocenter, University of Innsbruck, Innsbruck, Austria
| | - Matthias Hackl
- Department of Biotechnology, Aging and Immortalization Research, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | - Johannes Grillari
- Department of Biotechnology, Aging and Immortalization Research, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | | | - Alexander Bürkle
- Molecular Toxicology Group, University of Konstanz, Konstanz, Germany
| | - Beatrix Grubeck‐Loebenstein
- Immunology Division, Institute for Biomedical Aging Research, Austrian Academy of Sciences, Innsbruck, Austria
| |
Collapse
|
66
|
Abstract
MicroRNAs (miRNAs) are a class of highly conserved, noncoding short RNA molecules that regulate gene expression on the post-transcriptional level. MiRNAs are involved in a variety of processes such as proliferation, differentiation, and apoptosis. Deregulated expression of miRNAs has been linked to the development of diseases including cardiovascular disorders. Recently, the miR-23/27/24 cluster has been shown to be involved in angiogenesis and endothelial apoptosis in cardiac ischemia and retinal vascular development. In the present review, we summarize and discuss the role and importance of the miRNA-23/27/24 cluster during cardiovascular angiogenesis. Moreover, we illustrate a novel therapeutic application of the miRNA-23/27/24 cluster in vascular disorders and ischemic heart disease.
Collapse
Affiliation(s)
- Claudia Bang
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | | | | |
Collapse
|
67
|
Zhao L, Bode AM, Cao Y, Dong Z. Regulatory mechanisms and clinical perspectives of miRNA in tumor radiosensitivity. Carcinogenesis 2012; 33:2220-7. [PMID: 22798379 PMCID: PMC3483015 DOI: 10.1093/carcin/bgs235] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
MicroRNA (miRNA) influences carcinogenesis at multiple stages and it can effectively control tumor radiosensitivity by affecting DNA damage repair, cell cycle checkpoint, apoptosis, radio-related signal transduction pathways and tumor microenvironment. MiRNA also efficiently modulates tumor radiosensitivity at multiple levels by blocking the two essential non-homologous end-joining repair and homologous recombination repair pathways in the DNA damage response. It interferes with four radio-related pathways in ionizing radiation, including the PI3-K/Akt, NF-κB, MAPK and TGFβ signaling pathways. Moreover, the regulatory effect of miRNA in radiosensitivity can be enhanced when interacting with various key molecules, including H2AX, BRCA1, ATM, DNA-PK, RAD51, Chk1, Cdc25A, p53, PLK1, HIF-1 and VEGF, which are involved in these processes. Therefore, thoroughly understanding the mechanism of miRNA in tumor radiosensitivity could assist in finding novel targets to improve the radiotherapeutic effects and provide new clinical perspectives and insights for developing effective cancer treatments.
Collapse
Affiliation(s)
- Luqing Zhao
- Cancer Research Institute, Xiangya School of Medicine, Central South University Changsha 410078, China
| | | | | | | |
Collapse
|
68
|
Hui C, Yujie F, Lijia Y, Long Y, Hongxia X, Yong Z, Jundong Z, Qianyong Z, Mantian M. MicroRNA-34a and microRNA-21 play roles in the chemopreventive effects of 3,6-dihydroxyflavone on 1-methyl-1-nitrosourea-induced breast carcinogenesis. Breast Cancer Res 2012; 14:R80. [PMID: 22616882 PMCID: PMC3446343 DOI: 10.1186/bcr3194] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 05/08/2012] [Accepted: 05/22/2012] [Indexed: 12/16/2022] Open
Abstract
Introduction miRNAs are very important regulators in biological processes such as development, cellular differentiation, and carcinogenesis. Given the important role of miRNAs in tumorigenesis and development, it is worth investigating whether some miRNAs play roles in the anticancer mechanism of flavonoids. However, such a role has not yet been reported. We previously selected the promising anticancer agent 3,6-dihydroxyflavone (3,6-DHF) in pharmacodynamic experiments, which may serve as a leading compound for developing more potent anticancer drugs or chemopreventive supplements. The present study aims to investigate the chemopreventive activities of 3,6-DHF against mammary carcinogenesis. Methods The experimental model of breast carcinogenesis was developed by intraperitoneal injection of 1-methyl-1-nitrosourea (MNU). The bioavailability of 3,6-DHF in rats was detected by HPLC. The expression of microRNA-34a (miR-34a) and microRNA-21 (miR-21) was evaluated by real-time quantitative RT-PCR. Cell apoptosis was analyzed by flow cytometry or terminal deoxynucleotidyl transferase dUTP nick end-labeling assay. The mitochondrial membrane potential was assayed using 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl-imidacarbocyanine iodide dye by confocal laser scanning microscopy. The level of cytochrome C in cytosol was evaluated by western blotting. Results Our study showed that oral administration of 3,6-DHF effectively suppressed MNU-induced breast carcinogenesis in rats, decreasing the cancer incidence by 35.7%. The detection of bioavailability indicated that the concentration of 3,6-DHF was 2.5 ± 0.4 μg/ml in plasma of rats within 2 hours after administration, and was 21.7 ± 3.8 μg/ml in urine within 24 hours. Oral administration of 3,6-DHF to BALB/c nude mice bearing breast cancer cell xenografts also significantly suppressed tumor growth in vivo. Furthermore, our study revealed that the global upregulation of miR-21 and downregulation of miR-34a in breast carcinogenesis could be reversed by 3,6-DHF, which significantly upregulated miR-34a expression and decreased miR-21 expression - inducing apoptosis of breast cancer cells in vitro and in vivo. Overexpression of miR-34a induced by plasmid transfection or inhibition of miR-21 by oligonucleotides markedly promoted the pro-apoptotic effect of 3,6-DHF. Inactivation of miR-34a or overproduction of miR-21 compromised the anticancer effects of 3,6-DHF. Conclusion These findings indicate that 3,6-DHF is a potent natural chemopreventive agent, and that miR-34a and miR-21 play roles in MNU-induced breast carcinogenesis and the anticancer mechanism of flavonoids.
Collapse
Affiliation(s)
- Chang Hui
- Chongqing Key Laboratory of Nutrition and Food Safety, Research Center for Nutrition and Food Safety, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Abstract
Dysregulation of microRNAs (miRNAs) has been widely shown to be associated with the development and progression of cancer. Recent studies discovered a handful of miRNAs with great potential to act as therapeutic targets in various human cancers. Inhibition or overexpression of these oncomirs may regulate the expressions of their associated genes, which in turn represses the proliferation or metastasis of different cancers. Some miRNAs can reverse the phenotype of epithelial-mesenchymal transition, while others can be utilized to sensitize cells to DNA-damaging drugs. Most of their anticancer abilities have been validated in preclinical animal models. A merit of miRNA-based therapy is that it can target plenty of genes in different signaling pathways, but this also comes with the drawback of many unknown off-target effects. In addition, successful delivery is also a major obstacle to effective miRNA-based therapeutics. Nevertheless, new findings from recent studies and the rapid advances in systemic drug delivery systems provide an optimistic perspective on the evolution of the field.
Collapse
|
70
|
Singh R, Saini N. Downregulation of BCL2 by miRNAs augments drug-induced apoptosis--a combined computational and experimental approach. J Cell Sci 2012; 125:1568-78. [PMID: 22328513 DOI: 10.1242/jcs.095976] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A number of anti-cancer strategies aim to target the mitochondrial apoptotic machinery to induce tumour cell death. Mitochondria play a key role as death amplifiers by releasing apoptogenic factors from the mitochondrial inter-membrane space into the cytosol. BCL2 proteins are known for their ability to regulate both mitochondrial physiology and cell death, and their deregulated expression often renders cancer cells insensitive to apoptosis-inducing anticancer drugs. Recently, a few microRNAs, a novel class of gene regulators, have been demonstrated to regulate expression of some members of the BCL2 family. Here, we have combined computational and experimental approaches to identify miRNAs that can regulate the anti-apoptotic protein BCL2. We report that miR-195, miR-24-2 and miR-365-2 act as negative regulators of BCL2 through direct binding to their respective binding sites in the 3'-UTR of the human BCL2 gene. Ectopic expression of miR-195, miR-24-2 and miR-365-2 individually led to a significant reduction of the levels of BCL2 protein. Additionally, we found that overexpression of these miRNAs induced dissipation of the mitochondrial membrane potential and release of cytochrome c from mitochondria into the cytosol. Furthermore, we demonstrated that overexpression of these miRNAs not only caused an increase in apoptosis but also augmented the apoptotic effect of etoposide in breast cancer MCF7 cells. These data not only show the apoptotic nature of miR-195, miR-24-2 and miR-365-2 but also highlight the therapeutic potential of these miRNAs.
Collapse
Affiliation(s)
- Richa Singh
- Functional Genomics Unit, Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Mall Road, Delhi-110007, India
| | | |
Collapse
|
71
|
Saumet A, Vetter G, Bouttier M, Antoine E, Roubert C, Orsetti B, Theillet C, Lecellier CH. Estrogen and retinoic acid antagonistically regulate several microRNA genes to control aerobic glycolysis in breast cancer cells. MOLECULAR BIOSYSTEMS 2012; 8:3242-53. [DOI: 10.1039/c2mb25298h] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|