51
|
Margos G, Becker NS, Fingerle V, Sing A, Ramos JA, Carvalho ILD, Norte AC. Core genome phylogenetic analysis of the avian associated Borrelia turdi indicates a close relationship to Borrelia garinii. Mol Phylogenet Evol 2018; 131:93-98. [PMID: 30423440 DOI: 10.1016/j.ympev.2018.10.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/28/2018] [Accepted: 10/31/2018] [Indexed: 02/07/2023]
Abstract
Borrelia burgdorferi sensu lato comprises a species complex of tick-transmitted bacteria that includes the agents of human Lyme borreliosis. Borrelia turdi is a genospecies of this complex that exists in cryptic transmission cycles mainly between ornithophilic tick vectors and their avian hosts. The species has been originally discovered in avian transmission cycles in Asia but has increasingly been found in Europe. Next generation sequencing was used to sequence the genome of B. turdi isolates obtained from ticks feeding on birds in Portugal to better understand the evolution and phylogenetic relationship of this avian and ornithophilic tick-associated genospecies. Here we use draft genomes of these B. turdi isolates for comparative analysis and to determine the taxonomic position within the B. burgdorferi s.l. species complex. The main chromosomes showed a maximum similarity of 93% to other Borrelia species whilst most plasmids had lower similarities. All three isolates had nine or 10 plasmids and, interestingly, one plasmid with a novel partitioning protein; this plasmid was termed lp30. Phylogenetic analysis of multilocus sequence typing housekeeping genes and 113 single copy orthologous genes revealed that the isolates clustered according to their classification as B. turdi. In phylogenies generated from these 113 genes the isolates cluster together with other Eurasian genospecies and form a sister clade to the avian associated B. garinii and the rodent associated B. bavariensis. These findings show that Borrelia species maintained in cryptic ecological cycles need to be included to fully understand the complex ecology and evolutionary history of this bacterial species complex.
Collapse
Affiliation(s)
- Gabriele Margos
- Bavarian Health and Food Safety Authority, German National Reference Centre for Borrelia, Veterinärstr. 2, 85764 Oberschleissheim, Germany.
| | - Noémie S Becker
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Volker Fingerle
- Bavarian Health and Food Safety Authority, German National Reference Centre for Borrelia, Veterinärstr. 2, 85764 Oberschleissheim, Germany
| | - Andreas Sing
- Bavarian Health and Food Safety Authority, German National Reference Centre for Borrelia, Veterinärstr. 2, 85764 Oberschleissheim, Germany
| | - Jaime Albino Ramos
- MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, Largo Marquês de Pombal, Faculty of Sciences and Technology, University of Coimbra, Portugal
| | | | - Ana Claudia Norte
- National Institute of Health Dr. Ricardo Jorge, Infectious Department, Lisbon, Portugal; MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, Largo Marquês de Pombal, Faculty of Sciences and Technology, University of Coimbra, Portugal
| |
Collapse
|
52
|
Genotyping and Quantifying Lyme Pathogen Strains by Deep Sequencing of the Outer Surface Protein C ( ospC) Locus. J Clin Microbiol 2018; 56:JCM.00940-18. [PMID: 30158192 DOI: 10.1128/jcm.00940-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/22/2018] [Indexed: 12/15/2022] Open
Abstract
A mixed infection of a single tick or host by Lyme disease spirochetes is common and a unique challenge for the diagnosis, treatment, and surveillance of Lyme disease. Here, we describe a novel protocol for differentiating Lyme strains on the basis of deep sequencing of the hypervariable outer surface protein C locus (ospC). Improving upon the traditional DNA-DNA hybridization method, the next-generation sequencing-based protocol is high throughput, quantitative, and able to detect new pathogen strains. We applied the method to more than one hundred infected Ixodes scapularis ticks collected from New York State, USA, in 2015 and 2016. An analysis of strain distributions within individual ticks suggests an overabundance of multiple infections by five or more strains, inhibitory interactions among coinfecting strains, and the presence of a new strain closely related to Borreliella bissettiae A supporting bioinformatics pipeline has been developed. The newly designed pair of universal ospC primers target intergenic sequences conserved among all known Lyme pathogens. The protocol could be used for culture-free identification and quantification of Lyme pathogens in wildlife and potentially in clinical specimens.
Collapse
|
53
|
Tyler S, Tyson S, Dibernardo A, Drebot M, Feil EJ, Graham M, Knox NC, Lindsay LR, Margos G, Mechai S, Van Domselaar G, Thorpe HA, Ogden NH. Whole genome sequencing and phylogenetic analysis of strains of the agent of Lyme disease Borrelia burgdorferi from Canadian emergence zones. Sci Rep 2018; 8:10552. [PMID: 30002414 PMCID: PMC6043495 DOI: 10.1038/s41598-018-28908-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/27/2018] [Indexed: 12/19/2022] Open
Abstract
Lyme disease is emerging in southern Canada due to range expansion of the tick vector, followed by invasion of the agent of Lyme disease Borrelia burgdorferi sensu stricto. Strain diversity, as determined by Multi Locus Sequence Typing, occurs in this zone of emergence, and this may have its origins in adaptation to ecological niches, and have phenotypic consequences for pathogenicity and serological test performance. Sixty-four unique strains were cultured from ticks collected in southern Canada and the genomes sequenced using the Illumina MiSeq platform. A maximum likelihood phylogenetic tree of the chromosome revealed two large clades with multiple subclades. Consistent with previous studies on this species, the clades were not geographically defined, and some Canadian strains were highly divergent from previously sequenced US strains. There was evidence for recombination in the chromosome but this did not affect the phylogeny. Analysis of chromosomal genes indicated that these are under intense purifying selection. Phylogenies of the accessory genome and chromosome were congruent. Therefore strain differences identified in the phylogeny of chromosomal genes likely act as a proxy for genetic determinants of phenotypic differences amongst strains that are harboured in the accessory genome. Further studies on health implications of strain diversity are needed.
Collapse
Affiliation(s)
- Shaun Tyler
- Genomics Core Facility, National Microbiology Laboratory, Public Health Agency of Canada, Canadian Science Centre for Human and Animal Health, 1015, Arlington St., Winnipeg, Manitoba, Canada
| | - Shari Tyson
- Genomics Core Facility, National Microbiology Laboratory, Public Health Agency of Canada, Canadian Science Centre for Human and Animal Health, 1015, Arlington St., Winnipeg, Manitoba, Canada
| | - Antonia Dibernardo
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Michael Drebot
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Edward J Feil
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
| | - Morag Graham
- Genomics Core Facility, National Microbiology Laboratory, Public Health Agency of Canada, Canadian Science Centre for Human and Animal Health, 1015, Arlington St., Winnipeg, Manitoba, Canada
| | - Natalie C Knox
- Genomics Core Facility, National Microbiology Laboratory, Public Health Agency of Canada, Canadian Science Centre for Human and Animal Health, 1015, Arlington St., Winnipeg, Manitoba, Canada
| | - L Robbin Lindsay
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Gabriele Margos
- Ludwig Maximilians Universität München, Department for Infectious Diseases and Zoonoses, Munich, Germany.,National Reference Centre for Borrelia, Oberschleissheim and Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | - Samir Mechai
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, Québec, J2S 2M2, Canada
| | - Gary Van Domselaar
- Genomics Core Facility, National Microbiology Laboratory, Public Health Agency of Canada, Canadian Science Centre for Human and Animal Health, 1015, Arlington St., Winnipeg, Manitoba, Canada
| | - Harry A Thorpe
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
| | - Nick H Ogden
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, Québec, J2S 2M2, Canada.
| |
Collapse
|
54
|
Anacker ML, Drecktrah D, LeCoultre RD, Lybecker M, Samuels DS. RNase III Processing of rRNA in the Lyme Disease Spirochete Borrelia burgdorferi. J Bacteriol 2018; 200:e00035-18. [PMID: 29632096 PMCID: PMC5996687 DOI: 10.1128/jb.00035-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/04/2018] [Indexed: 02/08/2023] Open
Abstract
The rRNA genes of Borrelia (Borreliella) burgdorferi are unusually organized; the spirochete has a single 16S rRNA gene that is more than 3 kb from a tandem pair of 23S-5S rRNA operons. We generated an rnc null mutant in B. burgdorferi that exhibits a pleiotropic phenotype, including decreased growth rate and increased cell length. Here, we demonstrate that endoribonuclease III (RNase III) is, as expected, involved in processing the 23S rRNA in B. burgdorferi The 5' and 3' ends of the three rRNAs were determined in the wild type and rncBb mutants; the results suggest that RNase III in B. burgdorferi is required for the full maturation of the 23S rRNA but not for the 5S rRNA nor, curiously, for the 16S rRNA.IMPORTANCE Lyme disease, the most common tick-borne zoonosis in the Northern Hemisphere, is caused by the bacterium Borrelia (Borreliella) burgdorferi, a member of the deeply branching spirochete phylum. B. burgdorferi carries a limited suite of ribonucleases, enzymes that cleave RNA during processing and degradation. Several ribonucleases, including RNase III, are involved in the production of ribosomes, which catalyze translation and are a major target of antibiotics. This is the first study to dissect the role of an RNase in any spirochete. We demonstrate that an RNase III mutant is viable but has altered processing of rRNA.
Collapse
MESH Headings
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Borrelia burgdorferi/enzymology
- Borrelia burgdorferi/genetics
- Borrelia burgdorferi/metabolism
- Humans
- Lyme Disease/microbiology
- Operon
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/metabolism
- RNA, Ribosomal, 5S/genetics
- RNA, Ribosomal, 5S/metabolism
- Ribonuclease III/genetics
- Ribonuclease III/metabolism
Collapse
Affiliation(s)
- Melissa L Anacker
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Dan Drecktrah
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Richard D LeCoultre
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Meghan Lybecker
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- Department of Biology, University of Colorado, Colorado Springs, Colorado, USA
| | - D Scott Samuels
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana, USA
| |
Collapse
|
55
|
Bontemps-Gallo S, Lawrence KA, Richards CL, Gherardini FC. Genomic and phenotypic characterization of Borrelia afzelii BO23 and Borrelia garinii CIP 103362. PLoS One 2018; 13:e0199641. [PMID: 29944685 PMCID: PMC6019248 DOI: 10.1371/journal.pone.0199641] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/11/2018] [Indexed: 12/17/2022] Open
Abstract
In recent years, the number of Lyme disease or borreliosis cases in Eurasia has been dramatically increasing. This tick-borne disease is caused by Borrelia burgdorferi sensu lato, which includes B. burgdorferi sensu stricto, the main species found in North America, and B. afzelii and B. garinii, which are primarily responsible for the disease in Eurasia. Currently, research on Lyme disease has focused mainly on B. burgdorferi while B. afzelii and B. garinii, which cause disease with distinctly different symptoms, are less studied. The purpose of this study is to evaluate B. afzelii BO23 and B. garinii CIP 103362 as model organisms to study Eurasian Lyme disease. To begin our analyses, we sequenced, annotated the chromosomes of both species and compared them to B. burgdorferi strain B31. We also assayed shuttle vector, pBSV2, for transformation efficacy and demonstrated that these strains can be cultured on solid media. In addition, we characterized how physicochemical parameters (e.g., oxygen, osmolarity, oxidative stress) affect both growth and motility of the bacteria. Finally, we describe each strain's antibiotic susceptibility and accessed their ability to infect mice. In conclusion, B. afzelii BO23 was more practical for in vitro and in vivo studies than B. garinii CIP 103362.
Collapse
Affiliation(s)
- Sébastien Bontemps-Gallo
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Kevin A. Lawrence
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Crystal L. Richards
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Frank C. Gherardini
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
- * E-mail:
| |
Collapse
|
56
|
Whole genome sequence and comparative analysis of Borrelia burgdorferi MM1. PLoS One 2018; 13:e0198135. [PMID: 29889842 PMCID: PMC5995427 DOI: 10.1371/journal.pone.0198135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/14/2018] [Indexed: 11/21/2022] Open
Abstract
Lyme disease is caused by spirochaetes of the Borrelia burgdorferi sensu lato genospecies. Complete genome assemblies are available for fewer than ten strains of Borrelia burgdorferi sensu stricto, the primary cause of Lyme disease in North America. MM1 is a sensu stricto strain originally isolated in the midwestern United States. Aside from a small number of genes, the complete genome sequence of this strain has not been reported. Here we present the complete genome sequence of MM1 in relation to other sensu stricto strains and in terms of its Multi Locus Sequence Typing. Our results indicate that MM1 is a new sequence type which contains a conserved main chromosome and 15 plasmids. Our results include the first contiguous 28.5 kb assembly of lp28-8, a linear plasmid carrying the vls antigenic variation system, from a Borrelia burgdorferi sensu stricto strain.
Collapse
|
57
|
Casjens SR, Di L, Akther S, Mongodin EF, Luft BJ, Schutzer SE, Fraser CM, Qiu WG. Primordial origin and diversification of plasmids in Lyme disease agent bacteria. BMC Genomics 2018; 19:218. [PMID: 29580205 PMCID: PMC5870499 DOI: 10.1186/s12864-018-4597-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 03/12/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND With approximately one-third of their genomes consisting of linear and circular plasmids, the Lyme disease agent cluster of species has the most complex genomes among known bacteria. We report here a comparative analysis of plasmids in eleven Borreliella (also known as Borrelia burgdorferi sensu lato) species. RESULTS We sequenced the complete genomes of two B. afzelii, two B. garinii, and individual B. spielmanii, B. bissettiae, B. valaisiana and B. finlandensis isolates. These individual isolates carry between seven and sixteen plasmids, and together harbor 99 plasmids. We report here a comparative analysis of these plasmids, along with 70 additional Borreliella plasmids available in the public sequence databases. We identify only one new putative plasmid compatibility type (the 30th) among these 169 plasmid sequences, suggesting that all or nearly all such types have now been discovered. We find that the linear plasmids in the non-B. burgdorferi species have undergone the same kinds of apparently random, chaotic rearrangements mediated by non-homologous recombination that we previously discovered in B. burgdorferi. These rearrangements occurred independently in the different species lineages, and they, along with an expanded chromosomal phylogeny reported here, allow the identification of several whole plasmid transfer events among these species. Phylogenetic analyses of the plasmid partition genes show that a majority of the plasmid compatibility types arose early, most likely before separation of the Lyme agent Borreliella and relapsing fever Borrelia clades, and this, with occasional cross species plasmid transfers, has resulted in few if any species-specific or geographic region-specific Borreliella plasmid types. CONCLUSIONS The primordial origin and persistent maintenance of the Borreliella plasmid types support their functional indispensability as well as evolutionary roles in facilitating genome diversity. The improved resolution of Borreliella plasmid phylogeny based on conserved partition-gene clusters will lead to better determination of gene orthology which is essential for prediction of biological function, and it will provide a basis for inferring detailed evolutionary mechanisms of Borreliella genomic variability including homologous gene and plasmid exchanges as well as non-homologous rearrangements.
Collapse
Affiliation(s)
- Sherwood R. Casjens
- Division of Microbiology and Immunology, Pathology Department and Biology Department, University of Utah School of Medicine, Salt Lake City, UT USA
- Biology Department, University of Utah, Salt Lake City, UT USA
- Pathology Department, University of Utah School of Medicine, Room 2200K Emma Eccles Jones Medical Research Building, 15 North Medical Drive East, Salt Lake City, UT 84112 USA
| | - Lia Di
- Department of Biological Sciences and Center for Translational and Basic Research, Hunter College of the City University of New York, New York, NY USA
| | - Saymon Akther
- Department of Biology, The Graduate Center, City University of New York, New York, NY USA
| | - Emmanuel F. Mongodin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD USA
| | - Benjamin J. Luft
- Department of Medicine, Health Science Center, Stony Brook University, Stony Brook, NY USA
| | - Steven E. Schutzer
- Department of Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ USA
| | - Claire M. Fraser
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD USA
| | - Wei-Gang Qiu
- Department of Biology, The Graduate Center, City University of New York, New York, NY USA
- Department of Biological Sciences and Center for Translational and Basic Research, Hunter College of the City University of New York, New York, NY USA
- Department of Physiology and Biophysics & Institute for Computational Biomedicine, Weil Cornell Medical College, New York, USA
| |
Collapse
|
58
|
Hernández Y, Bernstein R, Pagan P, Vargas L, McCaig W, Ramrattan G, Akther S, Larracuente A, Di L, Vieira FG, Qiu WG. BpWrapper: BioPerl-based sequence and tree utilities for rapid prototyping of bioinformatics pipelines. BMC Bioinformatics 2018; 19:76. [PMID: 29499649 PMCID: PMC5833151 DOI: 10.1186/s12859-018-2074-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 02/20/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Automated bioinformatics workflows are more robust, easier to maintain, and results more reproducible when built with command-line utilities than with custom-coded scripts. Command-line utilities further benefit by relieving bioinformatics developers to learn the use of, or to interact directly with, biological software libraries. There is however a lack of command-line utilities that leverage popular Open Source biological software toolkits such as BioPerl ( http://bioperl.org ) to make many of the well-designed, robust, and routinely used biological classes available for a wider base of end users. RESULTS Designed as standard utilities for UNIX-family operating systems, BpWrapper makes functionality of some of the most popular BioPerl modules readily accessible on the command line to novice as well as to experienced bioinformatics practitioners. The initial release of BpWrapper includes four utilities with concise command-line user interfaces, bioseq, bioaln, biotree, and biopop, specialized for manipulation of molecular sequences, sequence alignments, phylogenetic trees, and DNA polymorphisms, respectively. Over a hundred methods are currently available as command-line options and new methods are easily incorporated. Performance of BpWrapper utilities lags that of precompiled utilities while equivalent to that of other utilities based on BioPerl. BpWrapper has been tested on BioPerl Release 1.6, Perl versions 5.10.1 to 5.25.10, and operating systems including Apple macOS, Microsoft Windows, and GNU/Linux. Release code is available from the Comprehensive Perl Archive Network (CPAN) at https://metacpan.org/pod/Bio::BPWrapper . Source code is available on GitHub at https://github.com/bioperl/p5-bpwrapper . CONCLUSIONS BpWrapper improves on existing sequence utilities by following the design principles of Unix text utilities such including a concise user interface, extensive command-line options, and standard input/output for serialized operations. Further, dozens of novel methods for manipulation of sequences, alignments, and phylogenetic trees, unavailable in existing utilities (e.g., EMBOSS, Newick Utilities, and FAST), are provided. Bioinformaticians should find BpWrapper useful for rapid prototyping of workflows on the command-line without creating custom scripts for comparative genomics and other bioinformatics applications.
Collapse
Affiliation(s)
- Yözen Hernández
- Department of Biological Sciences, Hunter College, City University of New York, New York, 10065 USA
- Graduate Program in Bioinformatics, Boston University, Boston, MA 02215 USA
| | - Rocky Bernstein
- Department of Biological Sciences, Hunter College, City University of New York, New York, 10065 USA
| | - Pedro Pagan
- Department of Biological Sciences, Hunter College, City University of New York, New York, 10065 USA
| | - Levy Vargas
- Department of Biological Sciences, Hunter College, City University of New York, New York, 10065 USA
| | - William McCaig
- Department of Biological Sciences, Hunter College, City University of New York, New York, 10065 USA
| | - Girish Ramrattan
- Department of Biological Sciences, Hunter College, City University of New York, New York, 10065 USA
| | - Saymon Akther
- Graduate Center, City University of New York, New York, 10016 USA
| | - Amanda Larracuente
- Department of Biological Sciences, Hunter College, City University of New York, New York, 10065 USA
| | - Lia Di
- Department of Biological Sciences, Hunter College, City University of New York, New York, 10065 USA
| | - Filipe G. Vieira
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Wei-Gang Qiu
- Department of Biological Sciences, Hunter College, City University of New York, New York, 10065 USA
- Graduate Center, City University of New York, New York, 10016 USA
- Department of Physiology and Biophysics & Institute for Computational Biomedicine, Weil Cornell Medical College, New York, NY 10021 USA
| |
Collapse
|
59
|
Whole-Genome Sequencing of Six Borrelia miyamotoi Clinical Strains Isolated in Russia. GENOME ANNOUNCEMENTS 2018; 6:6/1/e01424-17. [PMID: 29301891 PMCID: PMC5754500 DOI: 10.1128/genomea.01424-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Here, we report the whole-genome sequence of six clinical Borrelia miyamotoi isolates from the Russian Federation. Using two independent next-generation sequencing platforms, we determined the complete sequence of the chromosome and several plasmids. All strains have an Asian genotype with 99.8% chromosome nucleotide similarity with B. miyamotoi strain FR64b.
Collapse
|
60
|
Walter KS, Carpi G, Caccone A, Diuk-Wasser MA. Genomic insights into the ancient spread of Lyme disease across North America. Nat Ecol Evol 2017; 1:1569-1576. [PMID: 29185509 PMCID: PMC6431794 DOI: 10.1038/s41559-017-0282-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 07/18/2017] [Indexed: 12/30/2022]
Abstract
Lyme disease is the most prevalent vector-borne disease in North America and continues to spread. The disease was first clinically described in the 1970s in Lyme, Connecticut, but the origins and history of spread of the Lyme disease bacteria, Borrelia burgdorferi sensu stricto (s.s.), are unknown. To explore the evolutionary history of B. burgdorferi in North America, we collected ticks from across the USA and southern Canada from 1984 to 2013 and sequenced the, to our knowledge, largest collection of 146 B. burgdorferi s.s. genomes. Here, we show that B. burgdorferi s.s. has a complex evolutionary history with previously undocumented levels of migration. Diversity is ancient and geographically widespread, well pre-dating the Lyme disease epidemic of the past ~40 years, as well as the Last Glacial Maximum ~20,000 years ago. This means the recent emergence of human Lyme disease probably reflects ecological change-climate change and land use changes over the past century-rather than evolutionary change of the bacterium.
Collapse
Affiliation(s)
- Katharine S Walter
- Department of Epidemiology of Microbial Disease, Yale University, New Haven, CT, 06511, USA.
| | - Giovanna Carpi
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Adalgisa Caccone
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06511, USA
| | - Maria A Diuk-Wasser
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York City, NY, 10027, USA
| |
Collapse
|