51
|
Du L, Huang GH, Mou KJ, Xiang Y, Tang JH, Xu W, Xia SL, Zhao JN, Lv SQ. MiR-206 is down-regulated and suppresses cell proliferation by targeting FOXP1 in brain gliomas. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:3405-3415. [PMID: 31949718 PMCID: PMC6962847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 04/09/2018] [Indexed: 06/10/2023]
Abstract
Aberrant expression of miR-206 has been repeatedly found and demonstrated to play crucial roles in cancers. However, the role of miR-206 in brain glioma remains unclear. To address this issue, we detected miR-206 expression of 60 gliomas and 18 normal peritumor tissues, and found that miR-206 is significantly down-regulated in gliomas. Further in silico analysis of 198 glioma samples from the Chinese Glioma Genome Atlas (CGGA) indicated that miR-206 is significantly down-regulated in high grade gliomas and that miR-206 predicts favorable patients' prognosis. Notably, we found that miR-206 expression is negatively correlated with Ki-67 staining, indicating a proliferative inhibition of miR-206 in gliomas. To explore the crucial role of miR-206 in gliomas, we constructed miR-206 stably overexpressed LN229 glioma cell lines and found that the proliferation is significantly inhibited. Through flow cytometry (FCM) analyses, we found that the apoptotic rate is increased and the cell cycle is arrested in LN229 cells after overexpression of miR-206. Bioinformatic analysis, qPCR, western blot and luciferase assay indicated that the Forkhead Box Protein 1 (FOXP1) is a direct target of miR-206 in gliomas. Overexpression of FOXP1 could partially rescue the proliferative inhibition in the miR-206 stably overexpressed LN229 cells. In summary, our results suggest that miR-206 might function as a tumor suppressor of gliomas by inhibition of proliferation and could serve as a promising candidate for therapeutic applications in glioma by targeting FOXP1.
Collapse
Affiliation(s)
- Lei Du
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical UniversityChongqing 400037, China
| | - Guo-Hao Huang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical UniversityChongqing 400037, China
| | - Ke-Jie Mou
- Department of Neurosurgery, Bishan Hospital, Chongqing Medical UniversityChongqing 402760, China
| | - Yan Xiang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical UniversityChongqing 400037, China
| | - Jun-Hai Tang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical UniversityChongqing 400037, China
| | - Wu Xu
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South UniversityChangsha 410078, China
| | - Shu-Li Xia
- Department of Neurology, Hugo W. Moser Research Institute at Kennedy Krieger, Johns Hopkins School of MedicineBaltimore, MD 21205, USA
| | - Jian-Nong Zhao
- Department of Neurosurgery, Hainan General HospitalHaikou 570311, China
| | - Sheng-Qing Lv
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical UniversityChongqing 400037, China
| |
Collapse
|
52
|
Ge Y, Zhang C, Xiao S, Liang L, Liao S, Xiang Y, Cao K, Chen H, Zhou Y. Identification of differentially expressed genes in cervical cancer by bioinformatics analysis. Oncol Lett 2018; 16:2549-2558. [PMID: 30013649 DOI: 10.3892/ol.2018.8953] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 04/24/2018] [Indexed: 12/17/2022] Open
Abstract
Cervical cancer is the most common gynecological malignancy. In recent years, the incidence of cervical cancer has had a younger trend. Cervical cancer morbidity and mortality rates have been significantly reduced due to recent decades of cervical cytology screening leading to the early detection and treatment of cervical cancer and precancerous lesions. There are a number of methods used to treat cervical cancer and improve the survival rate. However, the prevalence and recurrence rates of cervical cancer are increasing every year. There is an urgent requirement for a better understanding of the molecular mechanism cervical cancer development. The present study used scientific information retrieval from the Gene Expression Omnibus database to download the GSE26511 dataset, which contained 39 samples, including 19 cervical cancer lymph node-positive samples and 20 cervical cancer lymph node-negative samples. Using Gene Ontology analysis, Kyoto Encyclopedia of Genes and Genomes analysis, and weighted gene co-expression network analysis, 1,263 differentially expressed genes were found that affected the biological processes, including 'cell cycle process', 'signaling pathways', 'immune response', 'cell activation', 'regulation of immune system process' and 'inflammatory response'. These areas should be the focus of study for cervical cancer in the future.
Collapse
Affiliation(s)
- Yanshan Ge
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P.R. China.,Basic School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China.,Cancer Research Institute, Changsha, Hunan 410078, P.R. China.,Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Changsha, Hunan 410078, P.R. China
| | - Chaoyang Zhang
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P.R. China.,Basic School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China.,Cancer Research Institute, Changsha, Hunan 410078, P.R. China.,Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Changsha, Hunan 410078, P.R. China
| | - Songshu Xiao
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410078, P.R. China
| | - Lin Liang
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P.R. China.,Basic School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China.,Cancer Research Institute, Changsha, Hunan 410078, P.R. China.,Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Changsha, Hunan 410078, P.R. China
| | - Shan Liao
- Department of Pathology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410078, P.R. China
| | - Yanqi Xiang
- Department of Nursing, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410001, P.R. China
| | - Ke Cao
- Department of Oncology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Hongxiang Chen
- Department of Gynecology, People's Hospital of Xinjiang, Urumchi, Xinjiang 830001, P.R. China
| | - Yanhong Zhou
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P.R. China.,Basic School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China.,Cancer Research Institute, Changsha, Hunan 410078, P.R. China.,Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Changsha, Hunan 410078, P.R. China
| |
Collapse
|
53
|
Zheng P, Yin Z, Wu Y, Xu Y, Luo Y, Zhang TC. LncRNA HOTAIR promotes cell migration and invasion by regulating MKL1 via inhibition miR206 expression in HeLa cells. Cell Commun Signal 2018; 16:5. [PMID: 29391067 PMCID: PMC5796349 DOI: 10.1186/s12964-018-0216-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/16/2018] [Indexed: 12/11/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) have emerged as a new and crucial layer of gene regulation in recent years and regulate various biological processes such as carcinogenesis and metastasis. LncRNA HOTAIR, an oncogenic lncRNA, is involved in human tumorigenesis and dysregulated in cervical cancer. Megakaryoblastic leukemia 1 (MKL1), as a transcription coactivity factor, involved in cancer metastasis and cell differentiation. However, the precise mechanism of biological roles of HOTAIR and MKL1 in cancer cells remain unclear. Methods The expression levels of HOTAIR and MKL1 were measured by quantitative PCR (qPCR), immunoblotting, in situ hybridization (ISH) and immunohistochemistry (IHC). Wound-healing and transwell assays were used to examine the invasive abilities of HeLa cells. Luciferase reporter assays and CHIP were used to determine how MKL1 regulates HOTAIR. Tissue microarray and immunohistochemical staining were used to assess the correlation between HOTAIR and MKL1 in Cervical cancer tissues in vivo. Result In this study, we have identified that MKL1 had a role in the induction of migration and invasion in cervical cancer cells. Moreover, the expression level of MKL1, as the targeting gene of miR206, was decreased after HOTAIR inhibition in HeLa cells. Agreement with it, Highly level of MKL1 correlation with HOTAIR is validated in cervical cancer tissues. Importantly, HOTAIR is observed to participate in the silencing of miR206 expression. Interestingly, HOTAIR inhibition could also accelerate the expression of MKL1 in cytoplasm. What is more, MKL1 can activate the transcription of HOTAIR through binding the CArG box in the promoter of HOTAIR. Conclusion These elucidates that the phenotypic effects of migration and invasion observed after HOTAIR inhibition, at least in part, through the regulation of MKL1 via inhibition of miR206 expression in HeLa cells. These data indicate the existence of a positive feedback loop between HOTAIR and MKL1. Together, these findings suggest that MKL1 is an important player in the functions of HOTAIR in the migration and invasion of cancer cells. Electronic supplementary material The online version of this article (10.1186/s12964-018-0216-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Peng Zheng
- College of Life Science and Healthy, Wuhan University of Science and technology, Wuhan, 430065, China. .,Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China.
| | - Ze Yin
- College of Life Science and Healthy, Wuhan University of Science and technology, Wuhan, 430065, China
| | - Ying Wu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yao Xu
- College of Life Science and Healthy, Wuhan University of Science and technology, Wuhan, 430065, China.,Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Ying Luo
- College of Life Science and Healthy, Wuhan University of Science and technology, Wuhan, 430065, China
| | - Tong-Cun Zhang
- College of Life Science and Healthy, Wuhan University of Science and technology, Wuhan, 430065, China. .,Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
54
|
Zhang HF, Wang YC, Han YD. MicroRNA‑34a inhibits liver cancer cell growth by reprogramming glucose metabolism. Mol Med Rep 2018; 17:4483-4489. [PMID: 29328457 PMCID: PMC5802224 DOI: 10.3892/mmr.2018.8399] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 12/05/2017] [Indexed: 01/01/2023] Open
Abstract
MicroRNAs (miRs) have been proposed as minimally invasive prognostic markers for various types of cancer, including liver cancer, which is one of the most common cancers worldwide. In the present study, the expression of miR-34a in human liver cancer tissues and cell lines was evaluated and the effects of miR-34a on cell proliferation, invasion and glycolysis in hepatocellular carcinoma (HCC) cells were determined. The results indicated that miR-34a was downregulated in human liver cancer tissues. Overexpression of miR-34a significantly inhibited liver cancer cell proliferation and clone formation. In terms of the underlying mechanism, miR-34a was indicated to negatively regulate the expression of lactate dehydrogenase A (LDHA), which consequently inhibited LDHA-dependent glucose uptake in the cancer cells, as well as cell proliferation and invasion. Collectively, these data suggest that miR-34a functions as a negative regulator of glucose metabolism and may serve as a novel marker for liver cancer prognosis.
Collapse
Affiliation(s)
- Hai-Feng Zhang
- Department of Hepatology, Qingdao No. 6 People's Hospital, Qingdao, Shandong 266033, P.R. China
| | - Yi-Cheng Wang
- Department of Hepatology, Qingdao No. 6 People's Hospital, Qingdao, Shandong 266033, P.R. China
| | - Yi-Di Han
- Department of Hepatology, Qingdao No. 6 People's Hospital, Qingdao, Shandong 266033, P.R. China
| |
Collapse
|
55
|
MicroRNA-34a: A Versatile Regulator of Myriads of Targets in Different Cancers. Int J Mol Sci 2017; 18:ijms18102089. [PMID: 29036883 PMCID: PMC5666771 DOI: 10.3390/ijms18102089] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/24/2017] [Accepted: 09/25/2017] [Indexed: 12/22/2022] Open
Abstract
MicroRNA-34a (miR-34a) is a tumor suppressor that has attracted considerable attention in recent years. It modulates cancer cell invasion, metastasis, and drug resistance, and has also been evaluated as a diagnostic and/or prognostic biomarker. A number of targets of miR-34a have been identified, including some other non-coding RNAs, and it is believed that the modulation of these myriads of targets underlines the versatile role of miR-34a in cancer progression and pathogenesis. Seemingly appealing results from preclinical studies have advocated the testing of miR-34a in clinical trials. However, the results obtained are not very encouraging and there is a need to re-interpret how miR-34a behaves in a context dependent manner in different cancers. In this review, we have attempted to summarize the most recent evidence related to the regulation of different genes and non-coding RNAs by miR-34a and the advances in the field of nanotechnology for the targeted delivery of miR-34a-based therapeutics and mimics. With the emergence of data that contradicts miR-34a’s tumor suppressive function, it is important to understand miR-34a’s precise functioning, with the aim to establish its role in personalized medicine and to apply this knowledge for the identification of individual patients that are likely to benefit from miR-34a-based therapy.
Collapse
|