51
|
Finney M, McKenzie BA, Rabaovola B, Sutcliffe A, Dotson E, Zohdy S. Widespread zoophagy and detection of Plasmodium spp. in Anopheles mosquitoes in southeastern Madagascar. Malar J 2021; 20:25. [PMID: 33413398 PMCID: PMC7791646 DOI: 10.1186/s12936-020-03539-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/07/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria is a top cause of mortality on the island nation of Madagascar, where many rural communities rely on subsistence agriculture and livestock production. Understanding feeding behaviours of Anopheles in this landscape is crucial for optimizing malaria control and prevention strategies. Previous studies in southeastern Madagascar have shown that Anopheles mosquitoes are more frequently captured within 50 m of livestock. However, it remains unknown whether these mosquitoes preferentially feed on livestock. Here, mosquito blood meal sources and Plasmodium sporozoite rates were determined to evaluate patterns of feeding behaviour in Anopheles spp. and malaria transmission in southeastern Madagascar. METHODS Across a habitat gradient in southeastern Madagascar 7762 female Anopheles spp. mosquitoes were collected. Of the captured mosquitoes, 492 were visibly blood fed and morphologically identifiable, and a direct enzyme-linked immunosorbent assay (ELISA) was used to test for swine, cattle, chicken, human, and dog blood among these specimens. Host species identification was confirmed for multiple blood meals using PCR along with Sanger sequencing. Additionally, 1,607 Anopheles spp. were screened for the presence of Plasmodium falciparum, P. vivax-210, and P. vivax 247 circumsporozoites (cs) by ELISA. RESULTS Cattle and swine accounted, respectively, for 51% and 41% of all blood meals, with the remaining 8% split between domesticated animals and humans. Of the 1,607 Anopheles spp. screened for Plasmodium falciparum, Plasmodium vivax 210, and Plasmodium vivax 247 cs-protein, 45 tested positive, the most prevalent being P. vivax 247, followed by P. vivax 210 and P. falciparum. Both variants of P. vivax were observed in secondary vectors, including Anopheles squamosus/cydippis, Anopheles coustani, and unknown Anopheles spp. Furthermore, evidence of coinfection of P. falciparum and P. vivax 210 in Anopheles gambiae sensu lato (s.l.) was found. CONCLUSIONS Here, feeding behaviour of Anopheles spp. mosquitoes in southeastern Madagascar was evaluated, in a livestock rich landscape. These findings suggest largely zoophagic feeding behaviors of Anopheles spp., including An. gambiae s.l. and presence of both P. vivax and P. falciparum sporozoites in Anopheles spp. A discordance between P. vivax reports in mosquitoes and humans exists, suggesting high prevalence of P. vivax circulating in vectors in the ecosystem despite low reports of clinical vivax malaria in humans in Madagascar. Vector surveillance of P. vivax may be relevant to malaria control and elimination efforts in Madagascar. At present, the high proportion of livestock blood meals in Madagascar may play a role in buffering (zooprophylaxis) or amplifying (zoopotentiation) the impacts of malaria. With malaria vector control efforts focused on indoor feeding behaviours, complementary approaches, such as endectocide-aided vector control in livestock may be an effective strategy for malaria reduction in Madagascar.
Collapse
Affiliation(s)
- Micaela Finney
- College of Science and Mathematics, Auburn University, Auburn, AL, USA
| | - Benjamin A McKenzie
- School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL, USA
| | | | - Alice Sutcliffe
- Division of Parasitic Diseases and Malaria, Entomology Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ellen Dotson
- Division of Parasitic Diseases and Malaria, Entomology Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Sarah Zohdy
- School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL, USA. .,College of Veterinary Medicine, Auburn University, Auburn, AL, USA.
| |
Collapse
|
52
|
Mbuba E, Odufuwa OG, Tenywa FC, Philipo R, Tambwe MM, Swai JK, Moore JD, Moore SJ. Single blinded semi-field evaluation of MAÏA ® topical repellent ointment compared to unformulated 20% DEET against Anopheles gambiae, Anopheles arabiensis and Aedes aegypti in Tanzania. Malar J 2021; 20:12. [PMID: 33407496 PMCID: PMC7788821 DOI: 10.1186/s12936-020-03461-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/23/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND N,N-Diethyl-3-methylbenzamide (DEET) topical mosquito repellents are effective personal protection tools. However, DEET-based repellents tend to have low consumer acceptability because they are cosmetically unappealing. More attractive formulations are needed to encourage regular user compliance. This study evaluated the protective efficacy and protection duration of a new topical repellent ointment containing 15% DEET, MAÏA® compared to 20% DEET in ethanol using malaria and dengue mosquito vectors in Bagamoyo Tanzania. METHODS Fully balanced 3 × 3 Latin square design studies were conducted in large semi-field chambers using laboratory strains of Anopheles gambiae sensu stricto, Anopheles arabiensis and Aedes aegypti. Human volunteers applied either MAÏA® ointment, 20% DEET or ethanol to their lower limbs 6 h before the start of tests. Approximately 100 mosquitoes per strain per replicate were released inside each chamber, with 25 mosquitoes released at regular intervals during the collection period to maintain adequate biting pressure throughout the test. Volunteers recaptured mosquitoes landing on their lower limbs for 6 h over a period of 6 to 12-h post-application of repellents. Data analysis was conducted using mixed-effects logistic regression. RESULTS The protective efficacy of MAÏA® and 20% DEET was not statistically different for each of the mosquito strains: 95.9% vs. 97.4% against An. gambiae (OR = 1.53 [95% CI 0.93-2.51] p = 0.091); 96.8% vs 97.2% against An. arabiensis (OR = 1.08 [95% CI 0.66-1.77] p = 0.757); 93.1% vs 94.6% against Ae. aegypti (OR = 0.76 [95% CI 0.20-2.80] p = 0.675). Average complete protection time (CPT) in minutes of MAÏA® and that of DEET was similar for each of the mosquito strains: 571.6 min (95% CI 558.3-584.8) vs 575.0 min (95% CI 562.1-587.9) against An. gambiae; 585.6 min (95% CI 571.4-599.8) vs 580.9 min (95% CI 571.1-590.7) against An. arabiensis; 444.1 min (95% CI 401.8-486.5) vs 436.9 min (95% CI 405.2-468.5) against Ae. aegypti. CONCLUSIONS MAÏA® repellent ointment provides complete protection for 9 h against both An. gambiae and An. arabiensis, and 7 h against Ae. aegypti similar to 20% DEET (in ethanol). MAÏA® repellent ointment can be recommended as a tool for prevention against outdoor biting mosquitoes in tropical locations where the majority of the people spend an ample time outdoor before going to bed.
Collapse
Affiliation(s)
- Emmanuel Mbuba
- Vector Control Product Testing Unit, Department of Environmental Health and Ecological Science, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania.
- Swiss Tropical & Public Health Institute, Socinstrasse, 57, 4002, Basel, Switzerland.
- University of Basel, St. Petersplatz 1, 4002, Basel, Switzerland.
| | - Olukayode G Odufuwa
- Vector Control Product Testing Unit, Department of Environmental Health and Ecological Science, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
- Swiss Tropical & Public Health Institute, Socinstrasse, 57, 4002, Basel, Switzerland
- London School of Hygiene and Tropical Medicine, Keppel St, London, WC1E 7HT, UK
| | - Frank C Tenywa
- Vector Control Product Testing Unit, Department of Environmental Health and Ecological Science, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Rose Philipo
- Vector Control Product Testing Unit, Department of Environmental Health and Ecological Science, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Mgeni M Tambwe
- Vector Control Product Testing Unit, Department of Environmental Health and Ecological Science, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
- Swiss Tropical & Public Health Institute, Socinstrasse, 57, 4002, Basel, Switzerland
- University of Basel, St. Petersplatz 1, 4002, Basel, Switzerland
| | - Johnson K Swai
- Vector Control Product Testing Unit, Department of Environmental Health and Ecological Science, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Jason D Moore
- Vector Control Product Testing Unit, Department of Environmental Health and Ecological Science, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
- Swiss Tropical & Public Health Institute, Socinstrasse, 57, 4002, Basel, Switzerland
| | - Sarah J Moore
- Vector Control Product Testing Unit, Department of Environmental Health and Ecological Science, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
- Swiss Tropical & Public Health Institute, Socinstrasse, 57, 4002, Basel, Switzerland
- University of Basel, St. Petersplatz 1, 4002, Basel, Switzerland
| |
Collapse
|
53
|
A New Test of a Theory about Old Mosquitoes. Trends Parasitol 2020; 37:185-194. [PMID: 33250441 DOI: 10.1016/j.pt.2020.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 11/24/2022]
Abstract
In vector control, it is widely accepted that killing adult mosquitoes would sharply reduce the proportion of old mosquitoes and cause the greatest changes to malaria transmission. The principle is based on a mathematical model of the sporozoite rate (the proportion of infective mosquitoes) that emphasized changes in mosquito age. Killing adult mosquitoes also reduces mosquito population densities, which are directly proportional to human biting rates (the number of bites, per person, per day). Eect sizes of vector control can be compared using sporozoite rates and human biting rates, which are commonly measured. We argue that human biting rates convey more use- ful information for planning, monitoring and evaluating vector control, and operational research should focus on understanding mosquito ecology.
Collapse
|
54
|
Nankabirwa JI, Arinaitwe E, Rek J, Kilama M, Kizza T, Staedke SG, Rosenthal PJ, Rodriguez-Barraquer I, Briggs J, Greenhouse B, Bousema T, Drakeley C, Roos DS, Tomko SS, Smith DL, Kamya MR, Dorsey G. Malaria Transmission, Infection, and Disease following Sustained Indoor Residual Spraying of Insecticide in Tororo, Uganda. Am J Trop Med Hyg 2020; 103:1525-1533. [PMID: 32700666 DOI: 10.4269/ajtmh.20-0250] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Tororo, a district in Uganda with historically high malaria transmission intensity, has recently scaled up control interventions, including universal long-lasting insecticidal net distribution in 2013 and 2017, and sustained indoor residual spraying (IRS) of insecticide since December 2014. We describe the burden of malaria in Tororo 5 years following the initiation of IRS. We followed a cohort of 531 participants from 80 randomly selected households in Nagongera subcounty, Tororo district, from October 2017 to October 2019. Mosquitoes were collected every 2 weeks using CDC light traps in all rooms where participants slept, symptomatic malaria was identified by passive surveillance, and microscopic and submicroscopic parasitemia were measured every 4 weeks using active surveillance. Over the 2 years of follow-up, 15,780 female anopheline mosquitos were collected, the majority (98.0%) of which were Anopheles arabiensis. The daily human biting rate was 2.07, and the annual entomological inoculation rate was 0.43 infective bites/person/year. Only 38 episodes of malaria were diagnosed (incidence 0.04 episodes/person/year), and there were no cases of severe malaria or malarial deaths. The prevalence of microscopic parasitemia was 1.9%, and the combined prevalence of microscopic and submicroscopic parasitemia was 10.4%, each highest in children aged 5-15 years (3.3% and 14.0%, respectively). After 5 years of intensive vector control measures in Tororo, the burden of malaria was reduced to very low transmission levels. However, a significant proportion of the population remained parasitemic, primarily school-aged children with submicroscopic parasitemia, providing a potential reservoir for malaria transmission.
Collapse
Affiliation(s)
- Joaniter I Nankabirwa
- Infectious Diseases Research Collaboration, Kampala, Uganda.,Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Emmanuel Arinaitwe
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom.,Infectious Diseases Research Collaboration, Kampala, Uganda
| | - John Rek
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Maxwell Kilama
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Timothy Kizza
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Sarah G Staedke
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Phillip J Rosenthal
- Department of Medicine, University of California San Francisco, San Francisco, California
| | | | - Jessica Briggs
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Bryan Greenhouse
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Teun Bousema
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom.,Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Chris Drakeley
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - David S Roos
- On Behalf of ClinEpiDB, Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sheena S Tomko
- On Behalf of ClinEpiDB, Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David L Smith
- Institute for Health Metrics & Evaluation, University of Washington, Seattle, Washington
| | - Moses R Kamya
- Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda.,Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Grant Dorsey
- Department of Medicine, University of California San Francisco, San Francisco, California
| |
Collapse
|
55
|
Mpimbaza A, Sserwanga A, Rutazaana D, Kapisi J, Walemwa R, Suiyanka L, Kyalo D, Kamya M, Opigo J, Snow RW. Changing malaria fever test positivity among paediatric admissions to Tororo district hospital, Uganda 2012-2019. Malar J 2020; 19:416. [PMID: 33213469 PMCID: PMC7678291 DOI: 10.1186/s12936-020-03490-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The World Health Organization (WHO) promotes long-lasting insecticidal nets (LLIN) and indoor residual house-spraying (IRS) for malaria control in endemic countries. However, long-term impact data of vector control interventions is rarely measured empirically. METHODS Surveillance data was collected from paediatric admissions at Tororo district hospital for the period January 2012 to December 2019, during which LLIN and IRS campaigns were implemented in the district. Malaria test positivity rate (TPR) among febrile admissions aged 1 month to 14 years was aggregated at baseline and three intervention periods (first LLIN campaign; Bendiocarb IRS; and Actellic IRS + second LLIN campaign) and compared using before-and-after analysis. Interrupted time-series analysis (ITSA) was used to determine the effect of IRS (Bendiocarb + Actellic) with the second LLIN campaign on monthly TPR compared to the combined baseline and first LLIN campaign periods controlling for age, rainfall, type of malaria test performed. The mean and median ages were examined between intervention intervals and as trend since January 2012. RESULTS Among 28,049 febrile admissions between January 2012 and December 2019, TPR decreased from 60% at baseline (January 2012-October 2013) to 31% during the final period of Actellic IRS and LLIN (June 2016-December 2019). Comparing intervention intervals to the baseline TPR (60.3%), TPR was higher during the first LLIN period (67.3%, difference 7.0%; 95% CI 5.2%, 8.8%, p < 0.001), and lower during the Bendiocarb IRS (43.5%, difference - 16.8%; 95% CI - 18.7%, - 14.9%) and Actellic IRS (31.3%, difference - 29.0%; 95% CI - 30.3%, - 27.6%, p < 0.001) periods. ITSA confirmed a significant decrease in the level and trend of TPR during the IRS (Bendicarb + Actellic) with the second LLIN period compared to the pre-IRS (baseline + first LLIN) period. The age of children with positive test results significantly increased with time from a mean of 24 months at baseline to 39 months during the final IRS and LLIN period. CONCLUSION IRS can have a dramatic impact on hospital paediatric admissions harbouring malaria infection. The sustained expansion of effective vector control leads to an increase in the age of malaria positive febrile paediatric admissions. However, despite large reductions, malaria test-positive admissions continued to be concentrated in children aged under five years. Despite high coverage of IRS and LLIN, these vector control measures failed to interrupt transmission in Tororo district. Using simple, cost-effective hospital surveillance, it is possible to monitor the public health impacts of IRS in combination with LLIN.
Collapse
Affiliation(s)
- Arthur Mpimbaza
- Child Health and Development Centre, Makerere University, College of Health Sciences, Kampala, Uganda.
- Infectious Diseases Research Collaboration, Kampala, Uganda.
| | | | - Damian Rutazaana
- National Malaria Control Division, Ministry of Health, Kampala, Uganda
| | - James Kapisi
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Richard Walemwa
- Department of Prevention, Care and Treatment, Infectious Diseases Institute, Kampala, Uganda
| | - Laurissa Suiyanka
- Population Health Unit, Kenya Medical Research Institute/Wellcome Trust Research Programme, Nairobi, Kenya
| | - David Kyalo
- Population Health Unit, Kenya Medical Research Institute/Wellcome Trust Research Programme, Nairobi, Kenya
| | - Moses Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Jimmy Opigo
- National Malaria Control Division, Ministry of Health, Kampala, Uganda
| | - Robert W Snow
- Population Health Unit, Kenya Medical Research Institute/Wellcome Trust Research Programme, Nairobi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
56
|
Arinaitwe E, Nankabirwa JI, Krezanoski P, Rek J, Kamya V, Epstein A, Rosenthal PJ, Drakeley C, Kamya MR, Dorsey G, Staedke SG. Association between recent overnight travel and use of long-lasting insecticidal nets in rural Uganda: a prospective cohort study in Tororo. Malar J 2020; 19:405. [PMID: 33176793 PMCID: PMC7661187 DOI: 10.1186/s12936-020-03475-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/31/2020] [Indexed: 11/25/2022] Open
Abstract
Background The burden of malaria in Uganda remains high, but has become increasingly heterogenous following intensified malaria control. Travel within Uganda is recognized as a risk factor for malaria, but behaviours associated with travel are not well-understood. To address this knowledge gap, malaria-relevant behaviours of cohort participants were assessed during travel and at home in Uganda. Methods Residents from 80 randomly selected households in Nagongera sub-county, Tororo district were enrolled into a cohort to study malaria in rural Uganda. All participants were given long-lasting insecticidal nets (LLINs) at enrolment and were evaluated every 4 weeks at the study clinic. Participants were asked if they had travelled overnight from their home, and if so, a questionnaire was administered to capture information on travel details and behaviours. Behaviour while travelling was assessed within 4 weeks following travel during the study clinic visit. Behaviour while at home was assessed using a similar questionnaire during two-weekly home visits. Behaviours while travelling vs at home were compared using log binomial regression models with generalized estimating equations adjusting for repeated measures in the same individual. Analysis of factors associated with LLIN adherence, such as destination and duration of travel, time to bed during travel, gender and age at time of travel, were assessed using log binomial regression models with generalized estimating equations adjusting for repeated measures in the same individual. Results Between October 2017 and October 2019, 527 participants were enrolled and assessed for travel. Of these, 123 (23.2%) reported taking 211 overnight trips; 149 (70.6%) trips were within Tororo. Participants were less likely to use LLINs when travelling than when at home (41.0% vs. 56.2%, relative risk [RR] 0.73, 95% CI 0.60–0.89, p = 0.002); this difference was noted for women (38.8% vs 59.2%, RR 0.66, 95% CI 0.52–0.83, p = 0.001) but not men (48.3% vs 46.6%, RR 0.96, 95% CI 0.67–1.40, p = 0.85). In an adjusted analysis, factors associated with LLIN use when travelling included destination (travelling to districts not receiving indoor residual spraying [IRS] 65.8% vs Tororo district 32.2%, RR 1.80, 95% CI 1.31–2.46, p < 0.001) and duration of travel (> 7 nights 60.3% vs one night 24.4%, RR 1.97, 95% CI 1.07–3.64, p = 0.03). Conclusions Travellers, particularly women, were less likely to use LLINs when travelling than when at home. LLIN adherence was higher among those who travelled to non-IRS districts and for more than 1 week, suggesting that perceived malaria risk influences LLIN use. Strategies are needed to raise awareness of the importance of using LLINs while travelling.
Collapse
Affiliation(s)
- Emmanuel Arinaitwe
- London School of Hygiene and Tropical Medicine, London, UK. .,Infectious Diseases Research Collaboration, Kampala, Uganda.
| | - Joaniter I Nankabirwa
- Infectious Diseases Research Collaboration, Kampala, Uganda.,Department of Medicine, Makerere University, Kampala, Uganda
| | - Paul Krezanoski
- Department of Medicine, University of California, San Francisco, CA, USA
| | - John Rek
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Victor Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Adrienne Epstein
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Philip J Rosenthal
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Chris Drakeley
- London School of Hygiene and Tropical Medicine, London, UK
| | - Moses R Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda.,Department of Medicine, Makerere University, Kampala, Uganda
| | - Grant Dorsey
- Department of Medicine, University of California, San Francisco, CA, USA
| | | |
Collapse
|
57
|
The Impact of Insecticide Pre-Exposure on Longevity, Feeding Succession, and Egg Batch Size of Wild Anopheles gambiae s.l. J Trop Med 2020; 2020:8017187. [PMID: 33061994 PMCID: PMC7539113 DOI: 10.1155/2020/8017187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/11/2020] [Accepted: 09/19/2020] [Indexed: 11/18/2022] Open
Abstract
Background Insecticide resistance among the vector population is the main threat to existing control tools available. The current vector control management options rely on applications of recommended public health insecticides, mainly pyrethroids through long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS). Regular monitoring of insecticide resistance does not provide information on important factors that affect parasite transmission. Such factors include vector longevity, vector competence, feeding success, and fecundity. This study investigated the impacts of insecticide resistance on longevity, feeding behaviour, and egg batch size of Anopheles gambiae s.l. Method The larval sampling was conducted in rice fields using a standard dipper (350 ml) and reared to adults in field insectary. A WHO susceptibility test was conducted using standard treated permethrin (0.75%) and deltamethrin (0.05%) papers. The susceptible Kisumu strain was used for reference. Feeding succession and egg batch size were monitored for all survivors and control. Results The results revealed that mortality rates declined by 52.5 and 59.5% for permethrin and deltamethrin, respectively. The mortality rate for the Kisumu susceptible strain was 100%. The survival rates of wild An. gambiae s.l. was between 24 and 27 days. However, the Kisumu susceptible strain blood meal feeding was significantly higher than resistant colony (t = 2.789, df = 21, P=0.011). Additionally, the susceptible An. gambiae s.s. laid more eggs than the resistant An.gambiae s.l. colony (Χ2 = 1366, df = 1, P ≤ 0.05). Conclusion It can, therefore, be concluded that the wild An. gambiae s.l. had increased longevity, blood feeding, and small egg batch size compared to Kisumu susceptible colonies.
Collapse
|
58
|
Submicroscopic malaria infection is not associated with fever in cross-sectional studies in Malawi. Malar J 2020; 19:233. [PMID: 32600362 PMCID: PMC7322713 DOI: 10.1186/s12936-020-03296-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 06/17/2020] [Indexed: 11/10/2022] Open
Abstract
Background Submicroscopic Plasmodium falciparum infections are widespread in many areas. However, the contribution of these infections to symptomatic malaria is not well understood. This study evaluated whether participants with submicroscopic P. falciparum infections have higher prevalence of fever than uninfected participants in southern Malawi. Methods A total of 16,650 children and adults were enrolled in the course of six cross-sectional surveys during the dry season (October–November) and after the rainy season (April–May) between 2012 and 2014 in three districts in southern Malawi. Demographic and socioeconomic data were collected in conjunction with data on clinical histories, use of malaria preventive measures, and anti-malarial medication taken within 2 weeks of the survey. Axillary temperatures were measured, and blood samples were collected for P. falciparum detection by microscopy and PCR. Participants without malaria parasites detected on microscopy but with a positive PCR for P. falciparum were defined as having submicroscopic infection. Fever was defined as having any one of: reported fever in the past 2 weeks, reported fever in the past 48 h, or a temperature of ≥ 37.5 °C measured at the time of interview. Results Submicroscopic P. falciparum infections and fever were both detected in 9% of the study population. In the final analysis adjusted for clustering within household and enumeration area, having submicroscopic P. falciparum infection was associated with reduced odds of fever in the dry season (odds ratio = 0.52; 95% CI 0.33–0.82); the association in the rainy season did not achieve statistical significance (odds ratio = 1.20; 95% CI 0.91–1.59). The association between submicroscopic infection and fever was consistent across all age groups. When the definition of fever was limited to temperature of ≥ 37.5 °C measured at the time of interview, the association was not statistically significant in either the rainy or dry season. Conclusions In this series of cross-sectional studies in southern Malawi, submicroscopic P. falciparum infection was not associated with increased risk of fever. Submicroscopic detection of the malaria parasite is important in efforts to decrease transmission but is not essential for the clinical recognition of malaria disease.
Collapse
|
59
|
Musiime AK, Smith DL, Kilama M, Geoffrey O, Kyagamba P, Rek J, Conrad MD, Nankabirwa JI, Arinaitwe E, Akol AM, Kamya MR, Dorsey G, Staedke SG, Drakeley C, Lindsay SW. Identification and characterization of immature Anopheles and culicines (Diptera: Culicidae) at three sites of varying malaria transmission intensities in Uganda. Malar J 2020; 19:221. [PMID: 32576188 PMCID: PMC7313098 DOI: 10.1186/s12936-020-03304-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/18/2020] [Indexed: 11/20/2022] Open
Abstract
Background Over the last two decades, there has been remarkable progress in malaria control in sub-Saharan Africa, due mainly to the massive deployment of long-lasting insecticidal nets and indoor residual spraying. Despite these gains, it is clear that in many situations, additional interventions are needed to further reduce malaria transmission. The World Health Organization (WHO) has promoted the Integrated Vector Management (IVM) approach through its Global Vector Control Response 2017–2030. However, prior roll-out of larval source management (LSM) as part of IVM, knowledge on ecology of larval aquatic habitats is required. Methods Aquatic habitats colonized by immature Anopheles and culicines vectors were characterized at three sites of low, medium and high malaria transmission in Uganda from October 2011 to June 2015. Larval surveys were conducted along transects in each site and aquatic habitats described according to type and size. Immature Anopheles, culicines and pupae from the described habitats were sampled using standard dipping methods to determine larval and pupae densities. Larvae were identified as anopheline or culicine, and counted. Pupae were not identified further. Binary logistic regression analysis was used to identify factors associated with the presence of immature Anopheles and culicines in each site. Results A total of 1205 larval aquatic habitats were surveyed and yielded a total of 17,028 anopheline larvae, 26,958 culicine larvae and 1189 pupae. Peaks in larval abundance occurred in all sites in March–May and August-October coinciding with the rainy seasons. Anopheles larvae were found in 52.4% (n = 251) of aquatic habitats in Tororo, a site of high transmission, 41.9% (n = 536) of habitats in Kanungu, a site with moderate malaria transmission, and 15.8% (n = 418) in Jinja, a site with low malaria transmission. The odds of finding larvae was highest in rice fields compared to pools in both Tororo (odds ratio, OR = 4.21, 95% CI 1.22–14.56, p = 0.02) and Kanungu (OR = 2.14, 95% CI 1.12–4.07, p = 0.02), while in Jinja the odd were highest in containers (OR = 4.55, 95% CI = 1.09–19.14, p = 0.03). In Kanungu, larvae were less likely to be found in containers compared to pools (OR = 0.26, 95% CI 0.09–0.66, p = 0.008) and river fringe (OR = 0.19, 95% CI 0.07–0.52, p = 0.001). Medium sized habitats were associated with high odds of finding larvae compared to small habitats (OR = 3.59, 95% CI 1.18–14.19, p = 0.039). Conclusions These findings show that immature Anopheles and culicines were common in areas of high and moderate transmission but were rare in areas of low transmission. Although immature Anopheles and culicines were found in all types of water bodies, they were most common in rice fields and less common in open drains and in river fringes. Methods are needed to reduce the aquatic stages of anopheline mosquitoes in human-made habitats, particularly rice fields.
Collapse
Affiliation(s)
- Alex K Musiime
- Infectious Diseases Research Collaboration, Kampala, Uganda. .,Department of Zoology, Entomology and Fisheries Sciences, College of Natural Sciences, Makerere University, Kampala, Uganda.
| | - David L Smith
- Department of Health Metrics Sciences, University of Washington, Seattle, USA
| | - Maxwell Kilama
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Otto Geoffrey
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | - John Rek
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Melissa D Conrad
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, USA
| | - Joaniter I Nankabirwa
- Infectious Diseases Research Collaboration, Kampala, Uganda.,Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | | | - Anne M Akol
- Department of Zoology, Entomology and Fisheries Sciences, College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Moses R Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda.,Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Grant Dorsey
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, USA
| | - Sarah G Staedke
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Chris Drakeley
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | | |
Collapse
|
60
|
Kamya MR, Kakuru A, Muhindo M, Arinaitwe E, Nankabirwa JI, Rek J, Bigira V, Kapisi J, Wanzira H, Achan J, Natureeba P, Gasasira A, Havlir D, Jagannathan P, Rosenthal PJ, Rodriguez-Barraquer I, Dorsey G. The Impact of Control Interventions on Malaria Burden in Young Children in a Historically High-Transmission District of Uganda: A Pooled Analysis of Cohort Studies from 2007 to 2018. Am J Trop Med Hyg 2020; 103:785-792. [PMID: 32431280 PMCID: PMC7410449 DOI: 10.4269/ajtmh.20-0100] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
There is limited evidence on whether malaria elimination is feasible in high-transmission areas of Africa. Between 2007 and 2018, we measured the impact of malaria control interventions in young children enrolled in three clinical trials and two observational studies in Tororo, Uganda, a historically high-transmission area. Data were pooled from children aged 0.5–2 years. Interventions included individually assigned chemoprevention and repeated rounds of indoor residual spraying (IRS) of insecticide. All children received long-lasting insecticidal nets (LLINs) and treatment for symptomatic malaria with artemisinin-based combination therapy. Malaria incidence was measured using passive surveillance and parasite prevalence by microscopy and molecular methods at regular intervals. Poisson’s generalized linear mixed-effects models were used to estimate the impact of various control interventions. In total, 939 children were followed over 1,221.7 person years. In the absence of chemoprevention and IRS (reference group), malaria incidence was 4.94 episodes per person year and parasite prevalence 47.3%. Compared with the reference group, implementation of IRS was associated with a 97.6% decrease (95% CI: 93.3–99.1%, P = 0.001) in the incidence of malaria and a 96.0% decrease (95% CI: 91.3–98.2%, P < 0.001) in parasite prevalence (both measured after the fifth and sixth rounds of IRS). The addition of chemoprevention with monthly dihydroartemisinin–piperaquine to IRS was associated with a 99.5% decrease (95% CI: 98.6–99.9%, P < 0.001) in the incidence of malaria. In a historically high–malaria burden area of Uganda, a combination of LLINs, effective case management, IRS, and chemoprevention was associated with almost complete elimination of malaria in young children.
Collapse
Affiliation(s)
- Moses R Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda.,Department of Medicine, Makerere University, Kampala, Uganda
| | - Abel Kakuru
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Mary Muhindo
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | - Joaniter I Nankabirwa
- Infectious Diseases Research Collaboration, Kampala, Uganda.,Department of Medicine, Makerere University, Kampala, Uganda
| | - John Rek
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Victor Bigira
- Uganda National Health Laboratory Services, Kampala, Uganda
| | - James Kapisi
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | - Jane Achan
- Medical Research Council Unit, Banjul, The Gambia
| | - Paul Natureeba
- Makerere University-John Hopkins University Collaboration, Kampala, Uganda
| | - Anne Gasasira
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Diane Havlir
- Department of Medicine, University of California San Francisco, San Francisco, California
| | | | - Philip J Rosenthal
- Department of Medicine, University of California San Francisco, San Francisco, California
| | | | - Grant Dorsey
- Department of Medicine, University of California San Francisco, San Francisco, California
| |
Collapse
|