51
|
Chrishtop V, Nikonorova V, Gutsalova A, Rumyantseva T, Dukhinova M, Salmina А. Systematic comparison of basic animal models of cerebral hypoperfusion. Tissue Cell 2022; 75:101715. [DOI: 10.1016/j.tice.2021.101715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 02/07/2023]
|
52
|
Inoue K. Potential significance of CX3CR1 dynamics in stress resilience against neuronal disorders. Neural Regen Res 2022; 17:2153-2156. [PMID: 35259822 PMCID: PMC9083172 DOI: 10.4103/1673-5374.335831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Recent findings have implicated inflammatory responses in the central nervous system in a variety of neuropsychiatric and neurodegenerative diseases, and the understanding and control of immunological responses could be a major factor of future therapeutic strategies for neurological disorders. Microglia, derived from myelogenous cells, respond to a number of stimuli and make immune responses, resulting in a prominent role as cells that act on inflammation in the central nervous system. Fractalkine (FKN or CX3CL1) signaling is an important factor that influences the inflammatory response of microglia. The receptor for FKN, CX3CR1, is usually expressed in microglia in the brain, and therefore the inflammatory response of microglia is modified by FKN. Reportedly, FKN often suppresses inflammatory responses in microglia and activation of its receptor may be effective in the treatment of inflammatory neurological disorders. However, it has also been suggested that inflammatory responses facilitated by FKN signaling aggravate neurological disorders. Thus, further studies are still required to resolve the conflicting interpretation of the protective or deleterious contribution of microglial FKN signaling. Yet notably, regulation of FKN signaling has recently been shown to be beneficial in the treatment of human diseases, although not neurological diseases. In addition, a CX3CR1 inhibitor has been developed and successfully tested in animal models, and it is expected to be in human clinical trials in the future. In this review, I describe the potential therapeutic consideration of microglial CX3CR1 dynamics through altered FKN signaling.
Collapse
Affiliation(s)
- Koichi Inoue
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
53
|
Bokobza C, Joshi P, Schang AL, Csaba Z, Faivre V, Montané A, Galland A, Benmamar-Badel A, Bosher E, Lebon S, Schwendimann L, Mani S, Dournaud P, Besson V, Fleiss B, Gressens P, Van Steenwinckel J. miR-146b Protects the Perinatal Brain against Microglia-Induced Hypomyelination. Ann Neurol 2021; 91:48-65. [PMID: 34741343 PMCID: PMC9298799 DOI: 10.1002/ana.26263] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 12/20/2022]
Abstract
Objectives In the premature newborn, perinatal inflammation mediated by microglia contributes significantly to neurodevelopmental injuries including white matter injury (WMI). Brain inflammation alters development through neuroinflammatory processes mediated by activation of homeostatic microglia toward a pro‐inflammatory and neurotoxic phenotype. Investigating immune regulators of microglial activation is crucial to find effective strategies to prevent and treat WMI. Methods Ex vivo microglial cultures and a mouse model of WMI induced by perinatal inflammation (interleukin‐1‐beta [IL‐1β] and postnatal days 1–5) were used to uncover and elucidate the role of microRNA‐146b‐5p in microglial activation and WMI. Results A specific reduction in vivo in microglia of Dicer, a protein required for microRNAs maturation, reduces pro‐inflammatory activation of microglia and prevents hypomyelination in our model of WMI. Microglial miRNome analysis in the WMI model identified miRNA‐146b‐5p as a candidate modulator of microglial activation. Ex vivo microglial cell culture treated with the pro‐inflammatory stimulus lipopolysaccharide (LPS) led to overexpression of immunomodulatory miRNA‐146b‐5p but its drastic reduction in the microglial extracellular vesicles (EVs). To increase miRNA‐146b‐5p expression, we used a 3DNA nanocarrier to deliver synthetic miRNA‐146b‐5p specifically to microglia. Enhancing microglial miRNA‐146b‐5p overexpression significantly decreased LPS‐induced activation, downregulated IRAK1, and restored miRNA‐146b‐5p levels in EVs. In our WMI model, 3DNA miRNA‐146b‐5p treatment significantly prevented microglial activation, hypomyelination, and cognitive defect induced by perinatal inflammation. Interpretations These findings support that miRNA‐146b‐5p is a major regulator of microglia phenotype and could be targeted to reduce the incidence and the severity of perinatal brain injuries and their long‐term consequences. ANN NEUROL 2022;91:48–65
Collapse
Affiliation(s)
- Cindy Bokobza
- Université de Paris, NeuroDiderot, Inserm, Paris, France
| | - Pooja Joshi
- Université de Paris, NeuroDiderot, Inserm, Paris, France
| | - Anne-Laure Schang
- Université de Paris, Centre de recherche en Epidémiologie et Statistiques, Inserm, Paris, France
| | - Zsolt Csaba
- Université de Paris, NeuroDiderot, Inserm, Paris, France
| | - Valérie Faivre
- Université de Paris, NeuroDiderot, Inserm, Paris, France
| | - Amélie Montané
- Université de Paris, NeuroDiderot, Inserm, Paris, France
| | - Anne Galland
- Université de Paris, NeuroDiderot, Inserm, Paris, France
| | | | | | - Sophie Lebon
- Université de Paris, NeuroDiderot, Inserm, Paris, France
| | | | - Shyamala Mani
- Université de Paris, NeuroDiderot, Inserm, Paris, France.,Curadev Pharma, Pvt. Ltd, Noida, India
| | | | - Valerie Besson
- Université de Paris, Faculté de Pharmacie de Paris, UMR-S1144 Optimisation Thérapeutique en Neuropsychopharmacologie, Paris, France
| | - Bobbi Fleiss
- Université de Paris, NeuroDiderot, Inserm, Paris, France.,School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | | | | |
Collapse
|
54
|
Chen K, Li N, Fan F, Geng Z, Zhao K, Wang J, Zhang Y, Tang C, Wang X, Meng X. Tibetan Medicine Duoxuekang Capsule Ameliorates High-Altitude Polycythemia Accompanied by Brain Injury. Front Pharmacol 2021; 12:680636. [PMID: 34045970 PMCID: PMC8144525 DOI: 10.3389/fphar.2021.680636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/22/2021] [Indexed: 12/15/2022] Open
Abstract
Objective: Duoxuekang (DXK) capsule is an empirical prescription for Tibetan medicine in the treatment of hypobaric hypoxia (HH)-induced brain injury in the plateau. This study aimed to investigate the protective effects and underlying molecular mechanisms of DXK on HH-induced brain injury. Methods: UPLC–Q-TOF/MS was performed for chemical composition analysis of DXK. The anti-hypoxia and anti-fatigue effects of DXK were evaluated by the normobaric hypoxia test, sodium nitrite toxicosis test, and weight-loaded swimming test in mice. Simultaneously, SD rats were used for the chronic hypobaric hypoxia (CHH) test. RBC, HGB, HCT, and the whole blood viscosity were evaluated. The activities of SOD and MDA in the brain, and EPO and LDH levels in the kidney were detected using ELISA. H&E staining was employed to observe the pathological morphology in the hippocampus and cortex of rats. Furthermore, immunofluorescence and Western blot were carried out to detect the protein expressions of Mapk10, RASGRF1, RASA3, Ras, and IGF-IR in the brain of rats. Besides, BALB/c mice were used for acute hypobaric hypoxia (AHH) test, and Western blot was employed to detect the protein expression of p-ERK/ERK, p-JNK/JNK, and p-p38/p38 in the cerebral cortex of mice. Results: 23 different chemical compositions of DXK were identified by UPLC–Q-TOF/MS. The anti-hypoxia test verified that DXK can prolong the survival time of mice. The anti-fatigue test confirmed that DXK can prolong the swimming time of mice, decrease the level of LDH, and increase the hepatic glycogen level. Synchronously, DXK can decrease the levels of RBC, HGB, HCT, and the whole blood viscosity under the CHH condition. Besides, DXK can ameliorate CHH-induced brain injury, decrease the levels of EPO and LDH in the kidney, reduce MDA, and increase SOD in the hippocampus. Furthermore, DXK can converse HH-induced marked increase of Mapk10, RASGRF1, and RASA3, and decrease of Ras and IGF-IR. In addition, DXK can suppress the ratio of p-ERK/ERK, p-JNK/JNK, and p-p38/p38 under the HH condition. Conclusion: Together, the cerebral protection elicited by DXK was due to the decrease of hematological index, suppressing EPO, by affecting the MAPK signaling pathway in oxidative damage, and regulating the RAS signaling pathway.
Collapse
Affiliation(s)
- Ke Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ning Li
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fangfang Fan
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - ZangJia Geng
- School of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Kehui Zhao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Wang
- School of Management, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,NMPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ce Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaobo Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
55
|
Blood-brain barrier opening by intracarotid artery hyperosmolar mannitol induces sterile inflammatory and innate immune responses. Proc Natl Acad Sci U S A 2021; 118:2021915118. [PMID: 33906946 DOI: 10.1073/pnas.2021915118] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Intracarotid arterial hyperosmolar mannitol (ICAHM) blood-brain barrier disruption (BBBD) is effective and safe for delivery of therapeutics for central nervous system malignancies. ICAHM osmotically alters endothelial cells and tight junction integrity to achieve BBBD. However, occurrence of neuroinflammation following hemispheric BBBD by ICAHM remains unknown. Temporal proteomic changes in rat brains following ICAHM included increased damage-associated molecular patterns, cytokines, chemokines, trophic factors, and cell adhesion molecules, indicative of a sterile inflammatory response (SIR). Proteomic changes occurred within 5 min of ICAHM infusion and returned to baseline by 96 h. Transcriptomic analyses following ICAHM BBBD further supported an SIR. Immunohistochemistry revealed activated astrocytes, microglia, and macrophages. Moreover, proinflammatory proteins were elevated in serum, and proteomic and histological findings from the contralateral hemisphere demonstrated a less pronounced SIR, suggesting neuroinflammation beyond regions of ICAHM infusion. Collectively, these results demonstrate ICAHM induces a transient SIR that could potentially be harnessed for neuroimmunomodulation.
Collapse
|
56
|
Su D, Chai Y, Yang J, Wang X, Liu Y, Ma J, Tang X, Mishra C, Chandra SR, Yue W, Ai J. Lentivirus-Carried microRNA-195 Rescues Memory Deficits of Alzheimer's Disease Transgenic Mouse by Attenuating the Generation of Amyloid Plaques. Front Pharmacol 2021; 12:633805. [PMID: 33981225 PMCID: PMC8109030 DOI: 10.3389/fphar.2021.633805] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/04/2021] [Indexed: 11/13/2022] Open
Abstract
Although lots of new drugs are developed to treat Alzheimer's disease (AD), many clinical trials of monotherapy have failed to affect disease progression or symptoms compared with placebo. Recently, scientists believe that combination treatment is more promising than monotherapy. Previous studies found that microRNA-195 (miR-195) was down-regulated in the hippocampi and cortices of chronic brain hypoperfusion (CBH) rats and ApoE4(+/+) mice, and up-regulation of miR-195 can improve the declined cognitive function of ApoE4(+/+) mice and CBH rats by targeting multi-genes that are related to AD pathology, including amyloid precursor protein (APP) and β-site APP cleaving enzyme 1 (BACE1) genes. However, whether the gain-of-function of miR-195 could improve the impaired learning and memory ability of APP/PS1 transgenic mouse has not been reported. In this study, we stereotaxically injected lentiviral-carried miR-195 into the bilateral hippocampus of 4-month-old (4M) APP/PS1 mice. Morris water maze (MWM) was performed to detect the effect of miR-195 on the cognitive function of APP/PS1 mice after 1M, 2M, and 3M treatment. Western blot was used to detect the expression of APP, BACE1, and AT8. Aβ plagues were quantitatively assessed by immunofluorescence technique. We found that the declined cognitive phenotype of APP/PS1 mice occurred at the age of 6M, not at the age of 5M. And treatment of Lv-pre-miR-195 to APP/PS1 mice for 1M did not achieve any changes. Although Lv-pre-miR-195 treatment for 2M improved the declined learning ability of APP/PS1 mice, it did not affect the memory functions. However, Lv-pre-miR-195 treatment in APP/PS1 mice for 3M can effectively improve both the learning and memory ability of APP/PS1 mice at the age of 7M. Further studies demonstrated that gain-of-function of miR-195 by Lv-pre-miR-195 injection could inhibit the increased APP and AT8 expression of APP/PS1 mice but did not affect BACE1 level that was not changed in both hippocampus and cortex. By counting the number of Aβ plaques of different sizes, we found that Lv-pre-miR-195 treatment mainly reduced the number of Aβ plaques of less than 20 μm, but did not affect the number of Aβ plaques of greater than 50 μm. Taken together, the gain-of -function of miR-195 in the hippocampus can improve the cognition of APP/PS1 mice, probably by blocking the formation of Aβ plagues rather than clearing those that have already formed Aβ plagues.
Collapse
Affiliation(s)
- Dan Su
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, China
| | - Yani Chai
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, China
| | - Junkai Yang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, China
| | - Xuqiao Wang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, China
| | - Ying Liu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, China
| | - Jing Ma
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, China
| | - Xin Tang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, China
| | - Chandan Mishra
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, China
| | - Shah Ram Chandra
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, China
| | - Weidong Yue
- Department of the 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jing Ai
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, China
| |
Collapse
|
57
|
Zhang L, Wang T, Chen XF, Xu ZX, Cao JB, Sun H. TMEM59 protects against cerebral ischemic stroke by suppressing pyroptosis and microglial activation. Biochem Biophys Res Commun 2021; 543:72-79. [PMID: 33517129 DOI: 10.1016/j.bbrc.2020.09.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 09/07/2020] [Indexed: 10/22/2022]
Abstract
Ischemic stroke is a common disease worldwide with high mortality and disability rates. Nevertheless, pathogenesis of ischemic stroke is still vague, and finding novel therapeutic target is urgently necessary. TMEM59 (also known as dendritic cell-derived factor 1, DCF1), a type I transmembrane protein, contains a minimal 19-amino-acid peptide in its intracellular domain, and has been involved in neurological pathology. However, its biological impacts on ischemic stroke are still unknown. In this study, we provided new evidence that TMEM59 expression was significantly down-regulated upon ischemia/reperfusion (I/R). The effect of stroke insult on TMEM59 expression change was only detected in microglial cells by in vitro studies. We observed that TMEM59 knockout markedly accelerated cerebral I/R in mice induced by middle cerebral artery occlusion (MCAO), as evidenced by the elevated infarction volume, neurological deficit scores, brain water contents and neuronal death, further contributing to the abnormal behaviors for mice. We then found that microglial activation reflected by the enhanced expression of Iba-1 was dramatically potentiated by TMEM59 knockout in MCAO-treated mice. Pyroptosis was highly triggered in mice with cerebral I/R, while being further aggravated in mice with TMEM59 deletion, as proved by the considerably increased expression of NLRP3, ASC, cleaved Caspase-1, GSDMD-N, mature-IL-1β and mature-IL-18. Additionally, TMEM59 knockout mice exhibited accelerated activation of NF-κB signaling pathway compared with the wild type group of mice after MCAO operation, indicating the anabatic neuroinflammation. The effects of TMEM59 suppression on ischemic stroke were confirmed in microglial cells with exposure to oxygen-glucose deprivation/reoxygenation (OGD/R). In contrast, the in vitro studies verified that improving TMEM59 expression effectively hindered pyroptosis and inflammation in microglial cells upon OGD/R treatment. Taken together, these findings illustrated protective effects of TMEM59 against ischemic stroke through restraining pyroptosis and inflammatory response.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 511447, China
| | - Tao Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, China
| | - Xiao-Fang Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, China
| | - Zhi-Xin Xu
- Department of Anesthesiology, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, China
| | - Jiang-Bei Cao
- Anesthesia and Operation Center, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Hu Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, China.
| |
Collapse
|