51
|
Abstract
PURPOSE OF REVIEW In this review we highlight the most recent studies furthering the clinical development of selinexor, a novel exportin-1 inhibitor, for the treatment of multiple myeloma and non-Hodgkin lymphomas. RECENT FINDINGS Three pivotal trials, the SADAL trial for diffuse large B-cell lymphoma, and the BOSTON and selinexor treatment of refractory myeloma trials for multiple myeloma, have recently led to the regulatory approval of selinexor monotherapy or combination regimens. They are complemented by several earlier phase clinical trials with iterative combinations, adding selinexor to novel therapies and cytotoxic chemotherapy regimens at various stages in the disease courses. In some, selinexor appears synergistic, occasionally overcoming treatment refractoriness, whereas in other situations appears additive. Consistent issues with tolerability are seen across trials, although consensus guidelines on their preemption and management have recently been adopted which may improve treatment success. While comparative data are lacking, the efficacy of selinexor-based regimens does not approach that of contemporaneous cellular and immunotherapies. SUMMARY Selinexor is a novel and potentially synergistic therapy for lymphoid malignancies, although requires refined supportive measures and strategies to improve its efficacy. Likely, for continued success, it will need to identify niches that complement recent advances, such as bridging to cellular therapies or maintenance thereafter.
Collapse
|
52
|
Otte K, Zhao K, Braun M, Neubauer A, Raifer H, Helmprobst F, Barrera FO, Nimsky C, Bartsch JW, Rusch T. Eltanexor Effectively Reduces Viability of Glioblastoma and Glioblastoma Stem-Like Cells at Nano-Molar Concentrations and Sensitizes to Radiotherapy and Temozolomide. Biomedicines 2022; 10:biomedicines10092145. [PMID: 36140245 PMCID: PMC9496210 DOI: 10.3390/biomedicines10092145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 08/26/2022] [Indexed: 11/29/2022] Open
Abstract
Current standard adjuvant therapy of glioblastoma multiforme (GBM) using temozolomide (TMZ) frequently fails due to therapy resistance. Thus, novel therapeutic approaches are highly demanded. We tested the therapeutic efficacy of the second-generation XPO1 inhibitor Eltanexor using assays for cell viability and apoptosis in GBM cell lines and GBM stem-like cells. For most GBM-derived cells, IC50 concentrations for Eltanexor were below 100 nM. In correlation with reduced cell viability, apoptosis rates were significantly increased. GBM stem-like cells presented a combinatorial effect of Eltanexor with TMZ on cell viability. Furthermore, pretreatment of GBM cell lines with Eltanexor significantly enhanced radiosensitivity in vitro. To explore the mechanism of apoptosis induction by Eltanexor, TP53-dependent genes were analyzed at the mRNA and protein level. Eltanexor caused induction of TP53-related genes, TP53i3, PUMA, CDKN1A, and PML on both mRNA and protein level. Immunofluorescence of GBM cell lines treated with Eltanexor revealed a strong accumulation of CDKN1A, and, to a lesser extent, of p53 and Tp53i3 in cell nuclei as a plausible mechanism for Eltanexor-induced apoptosis. From these data, we conclude that monotherapy with Eltanexor effectively induces apoptosis in GBM cells and can be combined with current adjuvant therapies to provide a more effective therapy of GBM.
Collapse
Affiliation(s)
- Katharina Otte
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany
- Department of Hematology, Oncology & Immunology, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany
| | - Kai Zhao
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany
| | - Madita Braun
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany
- Department of Hematology, Oncology & Immunology, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany
| | - Andreas Neubauer
- Department of Hematology, Oncology & Immunology, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany
| | - Hartmann Raifer
- FACS Core Facility, Philipps University Marburg, Hans-Meerwein-Strasse 3, 35043 Marburg, Germany
| | - Frederik Helmprobst
- Department of Neuropathology, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany
| | - Felipe Ovalle Barrera
- Department of Neuropathology, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany
| | - Christopher Nimsky
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany
| | - Jörg W. Bartsch
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany
| | - Tillmann Rusch
- Department of Hematology, Oncology & Immunology, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany
- Correspondence: ; Tel.: +49-6421-58-65625
| |
Collapse
|
53
|
Prolonged XPO1 inhibition is essential for optimal antileukemic activity in NPM1-mutated AML. Blood Adv 2022; 6:5938-5949. [PMID: 36037515 PMCID: PMC9701620 DOI: 10.1182/bloodadvances.2022007563] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/10/2022] [Indexed: 12/15/2022] Open
Abstract
NPM1 is the most frequently mutated gene in adults with acute myeloid leukemia (AML). The interaction between mutant NPM1 (NPM1c) and exportin-1 (XPO1) causes aberrant cytoplasmic dislocation of NPM1c and promotes the high expression of homeobox (HOX) genes, which is critical for maintaining the leukemic state of NPM1-mutated cells. Although there is a rationale for using XPO1 inhibitors in NPM1-mutated AML, selinexor administered once or twice per week did not translate into clinical benefit in patients with NPM1 mutations. Here, we show that this dosing strategy results in only a temporary disruption of the XPO1-NPM1c interaction, limiting the efficacy of selinexor. Because the second-generation XPO1 inhibitor eltanexor can be administered more frequently, we tested the antileukemic activity of prolonged XPO1 inhibition in NPM1-mutated AML models. Eltanexor caused irreversible HOX downregulation, induced terminal AML differentiation, and prolonged the survival of leukemic mice. This study provides essential information for the appropriate design of clinical trials with XPO1 inhibitors in NPM1-mutated AML.
Collapse
|
54
|
Walker CJ, Chang H, Henegar L, Kashyap T, Shacham S, Sommer J, Wick MJ, Levy J, Landesman Y. Selinexor inhibits growth of patient derived chordomas in vivo as a single agent and in combination with abemaciclib through diverse mechanisms. Front Oncol 2022; 12:808021. [PMID: 36059685 PMCID: PMC9434827 DOI: 10.3389/fonc.2022.808021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 07/12/2022] [Indexed: 11/21/2022] Open
Abstract
Chordoma is a rare cancer that grows in the base of the skull and along the mobile spine from remnants of embryonic notochord tissue. The cornerstone of current treatments is surgical excision with adjuvant radiation therapy, although complete surgical removal is not always possible. Chordomas have high rates of metastasis and recurrence, with no approved targeted agents. Selinexor and eltanexor are selective inhibitors of nuclear export (SINE) that prevent the karyopherin protein exportin-1 (XPO1) from shuttling its cargo proteins through nuclear pore complexes out of the nucleus and into the cytoplasm. As cancer cells overexpress XPO1, and many of its cargos include tumor suppressor proteins and complexes bound to oncogene mRNAs, XPO1 inhibition can suppress oncogene translation and restore tumor suppressor protein activity in different cancer types. SINE compounds have exhibited anti-cancer activity in a wide range of hematological and solid tumor malignancies. Here we demonstrate the preclinical effectiveness of SINE compounds used as single agents or in combination with either the proteasome inhibitor, bortezomib, or the CDK4/6 inhibitor, abemaciclib, against various patient- derived xenograft (PDX) mouse models of chordoma, which included clival and sacral chordomas from adult or pediatric patients with either primary or metastatic disease, with either differentiated or poorly differentiated subtypes. SINE treatment significantly impaired tumor growth in all five tested chordoma models, with the selinexor and abemaciclib combination showing the strongest activity (tumor growth inhibition of 78-92%). Immunohistochemistry analysis of excised tumors revealed that selinexor treatment resulted in marked induction of apoptosis and reduced cell proliferation, as well as nuclear accumulation of SMAD4, and reduction of Brachyury and YAP1. RNA sequencing showed selinexor treatment resulted in differences in activated and repressed signaling pathways between the PDX models, including changes in WNT signaling, E2F pathways and glucocorticoid receptor signaling. This is consistent with SINE-compound mediated XPO1 inhibition exhibiting anti-cancer activity through a broad range of different mechanisms in different molecular chordoma subsets. Our findings validate the need for further investigation into selinexor as a targeted therapeutic for chordoma, especially in combination with abemaciclib.
Collapse
Affiliation(s)
- Christopher J. Walker
- Department of Translational Research, Karyopharm Therapeutics, Inc, Newton, MA, United States
| | - Hua Chang
- Department of Translational Research, Karyopharm Therapeutics, Inc, Newton, MA, United States
| | - Leah Henegar
- Department of Translational Research, Karyopharm Therapeutics, Inc, Newton, MA, United States
| | - Trinayan Kashyap
- Department of Translational Research, Karyopharm Therapeutics, Inc, Newton, MA, United States
| | - Sharon Shacham
- Department of Translational Research, Karyopharm Therapeutics, Inc, Newton, MA, United States
| | - Josh Sommer
- Department of Research, Chordoma Foundation, Durham, NC, United States
| | - Michael J. Wick
- Department of Research, XenoSTART, San Antonio, TX, United States
| | - Joan Levy
- Department of Research, Chordoma Foundation, Durham, NC, United States
| | - Yosef Landesman
- Department of Translational Research, Karyopharm Therapeutics, Inc, Newton, MA, United States
- *Correspondence: Yosef Landesman,
| |
Collapse
|
55
|
The efficacy of selinexor (KPT-330), an XPO1 inhibitor, on non-hematologic cancers: a comprehensive review. J Cancer Res Clin Oncol 2022; 149:2139-2155. [PMID: 35941226 DOI: 10.1007/s00432-022-04247-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/01/2022] [Indexed: 10/15/2022]
Abstract
PURPOSE Selinexor is a novel XPO1 inhibitor which inhibits the export of tumor suppressor proteins and oncoprotein mRNAs, leading to cell-cycle arrest and apoptosis in cancer cells. While selinexor is currently FDA approved to treat multiple myeloma, compelling preclinical and early clinical studies reveal selinexor's efficacy in treating hematologic and non-hematologic malignancies, including sarcoma, gastric, bladder, prostate, breast, ovarian, skin, lung, and brain cancers. Current reviews of selinexor primarily highlight its use in hematologic malignancies; however, this review seeks to summarize the recent evidence of selinexor treatment in solid tumors. METHODS Pertinent literature searches in PubMed and the Karyopharm Therapeutics website for selinexor and non-hematologic malignancies preclinical and clinical trials. RESULTS This review provides evidence that selinexor is a promising agent used alone or in combination with other anticancer medications in non-hematologic malignancies. CONCLUSION Further clinical investigation of selinexor treatment for solid malignancies is warranted.
Collapse
|
56
|
Mandic R, Marquardt A, Terhorst P, Ali U, Nowak-Rossmann A, Cai C, Rodepeter FR, Stiewe T, Wezorke B, Wanzel M, Neff A, Stuck BA, Bette M. The importin beta superfamily member RanBP17 exhibits a role in cell proliferation and is associated with improved survival of patients with HPV+ HNSCC. BMC Cancer 2022; 22:785. [PMID: 35850701 PMCID: PMC9290296 DOI: 10.1186/s12885-022-09854-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 06/29/2022] [Indexed: 11/10/2022] Open
Abstract
Background More than twenty years after its discovery, the role of the importin beta superfamily member Ran GTP-binding protein (RanBP) 17 is still ill defined. Previously, we observed notable RanBP17 RNA expression levels in head and neck squamous cell carcinoma (HNSCC) cell lines with disruptive TP53 mutations. Methods We deployed HNSCC cell lines as well as cell lines from other tumor entities such as HCT116, MDA-MB-231 and H460, which were derived from colon, breast and lung cancers respectively. RNAi was used to evaluate the effect of RanBP17 on cell proliferation. FACS analysis was used for cell sorting according to their respective cell cycle phase and for BrdU assays. Immunocytochemistry was deployed for colocalization studies of RanBP17 with Nucleolin and SC35 (nuclear speckles) domains. TCGA analysis was performed for prognostic assessment and correlation analysis of RanBP17 in HNSCC patients. Results RNAi knockdown of RanBP17, significantly reduced cell proliferation in HNSCC cell lines. This effect was also seen in the HNSCC unrelated cell lines HCT116 and MDA-MB-231. Similarly, inhibiting cell proliferation with cisplatin reduced RanBP17 in keratinocytes but lead to induction in tumor cell lines. A similar observation was made in tumor cell lines after treatment with the EGFR kinase inhibitor AG1478. In addition to previous reports, showing colocalization of RanBP17 with SC35 domains, we observed colocalization of RanBP17 to nuclear bodies that are distinct from nucleoli and SC35 domains. Interestingly, for HPV positive but not HPV negative HNSCC, TCGA data base analysis revealed a strong positive correlation of RanBP17 RNA with patient survival and CDKN2A. Conclusions Our data point to a role of RanBP17 in proliferation of HNSCC and other epithelial cells. Furthermore, RanBP17 could potentially serve as a novel prognostic marker for HNSCC patients. However, we noted a major discrepancy between RanBP17 RNA and protein expression levels with the used antibodies. These observations could be explained by the presence of additional RanBP17 splice isoforms and more so of non-coding circular RanBP17 RNA species. These aspects need to be addressed in more detail by future studies. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09854-0.
Collapse
Affiliation(s)
- Robert Mandic
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Giessen and Marburg, Campus Marburg, Philipps-Universität Marburg, 3. BA, +3/08070, Marburg, Germany.
| | - André Marquardt
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Würzburg, Germany.,Institute of Pathology, University of Würzburg, Würzburg, Germany.,Bavarian Cancer Research Center (BZKF), Würzburg, Germany
| | - Philip Terhorst
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Giessen and Marburg, Campus Marburg, Philipps-Universität Marburg, 3. BA, +3/08070, Marburg, Germany
| | - Uzma Ali
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Giessen and Marburg, Campus Marburg, Philipps-Universität Marburg, 3. BA, +3/08070, Marburg, Germany.,Institute for Pharmaceutical Technology & Biopharmacy, Philipps-Universität Marburg, Marburg, Germany
| | - Annette Nowak-Rossmann
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Giessen and Marburg, Campus Marburg, Philipps-Universität Marburg, 3. BA, +3/08070, Marburg, Germany.,Department of Molecular Neuroscience, Institute of Anatomy and Cell Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Chengzhong Cai
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Giessen and Marburg, Campus Marburg, Philipps-Universität Marburg, 3. BA, +3/08070, Marburg, Germany
| | - Fiona R Rodepeter
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Giessen and Marburg, Campus Marburg, Philipps-Universität Marburg, 3. BA, +3/08070, Marburg, Germany.,Institute of Pathology, University Hospital Giessen and Marburg, Campus Marburg, Marburg, Germany
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-Universität Marburg, Marburg, Germany
| | - Bernadette Wezorke
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-Universität Marburg, Marburg, Germany
| | - Michael Wanzel
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-Universität Marburg, Marburg, Germany
| | - Andreas Neff
- Department of Oro- and Maxillofacial Surgery, University Hospital Giessen and Marburg, Campus Marburg, Philipps-Universität Marburg, Marburg, Germany
| | - Boris A Stuck
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Giessen and Marburg, Campus Marburg, Philipps-Universität Marburg, 3. BA, +3/08070, Marburg, Germany
| | - Michael Bette
- Department of Molecular Neuroscience, Institute of Anatomy and Cell Biology, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
57
|
Nie D, Xiao X, Chen J, Xie S, Xiao J, Yang W, Liu H, Wang J, Ma L, Du Y, Huang K, Li Y. Prognostic and therapeutic significance of XPO1 in T-cell lymphoma. Exp Cell Res 2022; 416:113180. [PMID: 35489384 DOI: 10.1016/j.yexcr.2022.113180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 11/19/2022]
Abstract
T-cell lymphoma (TCL) is a highly heterogeneous group of invasive non-Hodgkin lymphoma with adverse prognosis and limited treatment options. The relationship between TCL and Exportin-1 (XPO1), a major nuclear export receptor, has not been established yet. We here investigated the prognostic role and therapeutic implication of XPO1 in TCL. We analyzed XPO1 expression in a cohort of 69 TCL tumors and found that XPO1 was over-expressed in 76.8% of TCL and correlated with decreased progression-free survival (PFS) and overall survival (OS). In vitro treatment of TCL cell lines with KPT-8602, the second-generation selective inhibitor of nuclear export (SINE), inhibited XPO1 expression and showed significant anti-proliferative, cell-cycle arrest and pro-apoptotic efficacy. In mechanism, KPT-8602 restored the localization of cytoplasmic FOXO3A, p27, p21, IκBα and PP2A into the nucleus, leading to AKT and NF-κB deactivation. Our data demonstrate for the first time that XPO1 could be an unfavorable prognostic factor for TCL, and provide a rationale for further investigation of the efficacy of KPT-8602 in TCL patients.
Collapse
Affiliation(s)
- Danian Nie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Xiaohui Xiao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jiaoting Chen
- Department of Hematology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China
| | - Shuangfeng Xie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Wenjuan Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Hongyun Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jieyu Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Liping Ma
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yumo Du
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Respirology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Kezhi Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Yiqing Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| |
Collapse
|
58
|
Ben Barouch S, Bhella S, Kridel R, Kukreti V, Prica A, Crump M, Kuruvilla J. Long-term follow up of relapsed/refractory non-Hodgkin lymphoma patients treated with single-agent selinexor – a retrospective, single center study. Leuk Lymphoma 2022; 63:1879-1886. [DOI: 10.1080/10428194.2022.2047674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Sharon Ben Barouch
- Department of Medicine, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
- Division of Hematology, Assuta Ashdod University Hospital, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Sita Bhella
- Department of Medicine, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| | - Robert Kridel
- Department of Medicine, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| | - Vishel Kukreti
- Department of Medicine, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| | - Anca Prica
- Department of Medicine, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| | - Michel Crump
- Department of Medicine, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| | - John Kuruvilla
- Department of Medicine, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| |
Collapse
|
59
|
Liu S, Wang S, Gu R, Che N, Wang J, Cheng J, Yuan Z, Cheng Y, Liao Y. The XPO1 Inhibitor KPT-8602 Ameliorates Parkinson's Disease by Inhibiting the NF-κB/NLRP3 Pathway. Front Pharmacol 2022; 13:847605. [PMID: 35721113 PMCID: PMC9200340 DOI: 10.3389/fphar.2022.847605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/13/2022] [Indexed: 01/16/2023] Open
Abstract
Exportin 1 (XPO1) is an important transport receptor that mediates the nuclear export of various proteins and RNA. KPT-8602 is a second-generation inhibitor of XPO1, demonstrating the lowest level of side effects, and is currently in clinical trials for the treatment of cancers. Previous studies suggest that several first-generation inhibitors of XPO1 demonstrate anti-inflammation activities, indicating the application of this drug in inflammation-related diseases. In this study, our results suggested the potent anti-inflammatory effect of KPT-8602 in vitro and in vivo. KPT-8602 inhibited the activation of the NF-κB pathway by blocking the phosphorylation and degradation of IκBα, and the priming of NLRP3. Importantly, the administration of KPT-8602 attenuated both lipopolysaccharide (LPS)-induced peripheral inflammation and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neuroinflammation in vivo. In addition, the tissue damage was also ameliorated by KPT-8602, indicating that KPT-8602 could be used as a novel potential therapeutic agent for the treatment of inflammasome-related diseases such as Parkinson’s disease, through the regulation of the NF-κB signaling pathway and the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Shuhan Liu
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China.,Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
| | - Shengxiang Wang
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Runze Gu
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Na Che
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Jing Wang
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Jinbo Cheng
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Zengqiang Yuan
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China.,The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yong Cheng
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China.,Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
| | - Yajin Liao
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China.,Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China.,The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| |
Collapse
|
60
|
Zhang C, Li H. Molecular targeted therapies for pediatric atypical teratoid/rhabdoid tumors. Pediatr Investig 2022; 6:111-122. [PMID: 35774526 PMCID: PMC9218972 DOI: 10.1002/ped4.12325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 04/26/2022] [Indexed: 01/01/2023] Open
Abstract
Atypical teratoid/rhabdoid tumors (AT/RTs) are lethal central nervous system tumors, which are primarily diagnosed in infants. Current treatments for AT/RTs include surgery, radiotherapy, and chemotherapy; these treatments have poor prognoses and challenging side effects. The pivotal genetic event in AT/RT pathogenesis comprises the inactivation of SMARCB1 or SMARCA4. Recent epigenetic studies have demonstrated mutual and subtype-specific epigenetic derangements that drive tumorigenesis; the exploitation of these potential targets might improve the dismal treatment outcomes of AT/RTs. This review aims to summarize the literature concerning targeted molecular therapies for pediatric AT/RTs.
Collapse
Affiliation(s)
- Chang Zhang
- Department of NeurosurgeryChildren's Hospital of Fudan UniversityShanghaiChina
| | - Hao Li
- Department of NeurosurgeryChildren's Hospital of Fudan UniversityShanghaiChina
| |
Collapse
|
61
|
Enhancement of MDM2 Inhibitory Effects through Blocking Nuclear Export Mechanisms in Ovarian Cancer Cells. Cancer Genet 2022; 266-267:57-68. [DOI: 10.1016/j.cancergen.2022.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/09/2022] [Indexed: 11/19/2022]
|
62
|
Offidani M, Corvatta L, Morè S, Manieri MV, Olivieri A. An update on novel multiple myeloma targets. Expert Rev Hematol 2022; 15:519-537. [PMID: 35640130 DOI: 10.1080/17474086.2022.2085088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Introduction: despite therapeutic progress, leading to a significant improvement of outcome, multiple myeloma (MM) remains a difficult to treat hematologic disease due to its biological heterogeneity and clinical complexity. Areas covered: Treatment of patients refractory and resistant to all classes of agents used in newly diagnosed MM, is becoming a relevant problem for every hematologist. New generation immunotherapies, such as conjugated mAb, bispecific mAbs and CAR-T cells, targeting novel molecules as BCMA, have showed relevant results in very advanced MM. In the same setting, small molecules, such as selinexor and melflufen, also proved to be effective. We are currently waiting for the results of under evaluation personalized therapy, directed against specific gene mutations or signaling pathways, responsible for disease progression. Expert Opinion: In the near future, many therapeutic strategies will become available for MM and the challenge will be to position each approach in order to cure, maintaining a good quality of life in these patients.
Collapse
Affiliation(s)
- Massimo Offidani
- Clinica di Ematologia Azienda Ospedaliero-Universitaria Ospedali Riuniti di Ancona
| | | | - Sonia Morè
- Clinica di Ematologia Azienda Ospedaliero-Universitaria Ospedali Riuniti di Ancona
| | | | - Attilio Olivieri
- Clinica di Ematologia Azienda Ospedaliero-Universitaria Ospedali Riuniti di Ancona
| |
Collapse
|
63
|
Yu X, Li D, Xue L, Li R. Power-enhanced simultaneous test of high-dimensional mean vectors and covariance matrices with application to gene-set testing. J Am Stat Assoc 2022. [DOI: 10.1080/01621459.2022.2061354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | | | | | - Runze Li
- The Pennsylvania State University
| |
Collapse
|
64
|
Ho J, Heong V, Peng Yong W, Soo R, Ean Chee C, Wong A, Sundar R, Liang Thian Y, Gopinathan A, Yan Pang M, Koe P, Nathan Jeraj S, Pyar Soe P, Yar Soe M, Tang T, Ng MC, Tai DW, Tan TJ, Xu H, Chang H, Landesman Y, Shah J, Shacham S, Chin Lee S, Tan DS, Cher Goh B, Tan DS. A phase 1 study of the safety, pharmacokinetics and pharmacodynamics of escalating doses followed by dose expansion of the selective inhibitor of nuclear export (SINE) selinexor in Asian patients with advanced or metastatic malignancies. Ther Adv Med Oncol 2022; 14:17588359221087555. [PMID: 35432603 PMCID: PMC9008867 DOI: 10.1177/17588359221087555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 02/23/2022] [Indexed: 02/06/2023] Open
Abstract
Purpose: This phase 1 study aims to evaluate the tolerability and the recommended
phase 2 dose of selinexor in Asian patients with advanced or metastatic
malignancies. Experimental Design: A total of 105 patients with advanced malignancies were enrolled from two
sites in Singapore (National University Hospital and the National Cancer
Centre, Singapore) from 24 February 2014 to 14 January 2019. We investigated
four dosing schedules of selinexor in a 3 + 3 dose escalation design with an
additional Phase 1b expansion cohort. Adverse events were graded with the
NCI Common Terminology Criteria for Adverse Events v 4.03. Pharmacodynamic
assessments included nuclear cytoplasmic localization of p27, XPO1 cargo
proteins pre and post selinexor dosing and pharmacokinetic assessments were
conducted at doses between 40 and 60 mg/m2. Results: In our Asian patient cohort, dosing at 40 mg/m2 given 2 out of
3 weeks, was the most tolerable for our patients. At this dose level, grade
3 adverse events included fatigue (8%), hyponatremia (23%), vomiting (5%),
thrombocytopenia (5%), and anaemia (2%). Selinexor had a rapid oral
absorption with median Tmax of 2 h and no PK accumulation after
multiple doses of tested regimens. Complete responses were seen in two
lymphoma patients. Partial responses were noted in three diffuse large B
cell lymphomas, one Hodgkin’s lymphoma and thymic carcinoma patient,
respectively. Conclusion: Selinexor is tolerated by Asian patients at 40 mg/m2 twice a week
given 2 out of 3 weeks. A 1-week drug holiday was needed as our patients
could not tolerate the current approved continuous dosing regimens because
of persistent grade 3 fatigue, anorexia and hyponatremia.
Collapse
Affiliation(s)
- Jingshan Ho
- Department of Haematology and Oncology, National University Cancer Institute Singapore, Singapore
| | - Valerie Heong
- Department of Medical Oncology, Tan Tock Seng Hospital, Singapore
| | - Wei Peng Yong
- Department of Haematology and Oncology, National University Cancer Institute Singapore, Singapore
| | - Ross Soo
- Department of Haematology and Oncology, National University Cancer Institute Singapore, Singapore
| | - Cheng Ean Chee
- Department of Haematology and Oncology, National University Cancer Institute Singapore, Singapore
| | - Andrea Wong
- Department of Haematology and Oncology, National University Cancer Institute Singapore, Singapore
| | - Raghav Sundar
- Department of Haematology and Oncology, National University Cancer Institute Singapore, Singapore
| | - Yee Liang Thian
- Department of Radiology, National University Hospital, Singapore
| | - Anil Gopinathan
- Department of Radiology, National University Hospital, Singapore
| | - Mei Yan Pang
- Department of Haematology and Oncology, National University Cancer Institute Singapore, Singapore
| | - Priscillia Koe
- Department of Haematology and Oncology, National University Cancer Institute Singapore, Singapore
| | - Santhiay Nathan Jeraj
- Department of Haematology and Oncology, National University Cancer Institute Singapore, Singapore
| | - Phyu Pyar Soe
- Department of Haematology and Oncology, National University Cancer Institute Singapore, Singapore
| | - Mu Yar Soe
- Department of Haematology and Oncology, National University Cancer Institute Singapore, Singapore
| | - Tiffany Tang
- Department of Haematology-Oncology, National Cancer Centre, Singapore
| | - Matthew C.H. Ng
- Department of Haematology-Oncology, National Cancer Centre, Singapore
| | - David W.M. Tai
- Department of Haematology-Oncology, National Cancer Centre, Singapore
| | - Tira J.Y. Tan
- Department of Haematology-Oncology, National Cancer Centre, Singapore
| | - Hongmei Xu
- Karyopharm Therapeutics, Newton, MA, USA
| | - Hua Chang
- Karyopharm Therapeutics, Newton, MA, USA
| | | | - Jatin Shah
- Karyopharm Therapeutics, Newton, MA, USA
| | | | - Soo Chin Lee
- Department of Haematology and Oncology, National University Cancer Institute Singapore, Singapore Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Daniel S.W. Tan
- Department of Haematology-Oncology, National Cancer Centre, Singapore
| | - Boon Cher Goh
- Department of Haematology and Oncology, National University Cancer Institute Singapore, Singapore Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - David S.P. Tan
- Department of Haematology and Oncology, National University Cancer Institute, NUHS Tower Block, Level 7, 1E Kent Ridge Road, Singapore 119228
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore Cancer Science Institute of Singapore, National University of Singapore, Singapore
| |
Collapse
|
65
|
Moore DC, Oxencis CJ, Shank BR. New and emerging pharmacotherapies for management of multiple myeloma. Am J Health Syst Pharm 2022; 79:1137-1145. [PMID: 35333922 DOI: 10.1093/ajhp/zxac091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
DISCLAIMER In an effort to expedite the publication of articles related to the COVID-19 pandemic, AJHP is posting these manuscripts online as soon as possible after acceptance. Accepted manuscripts have been peer-reviewed and copyedited, but are posted online before technical formatting and author proofing. These manuscripts are not the final version of record and will be replaced with the final article (formatted per AJHP style and proofed by the authors) at a later time. PURPOSE The pharmacology, efficacy, safety, and dosing/administration of new and emerging therapies for the treatment of multiple myeloma are summarized. SUMMARY There have been significant advancements in the treatment of multiple myeloma in recent years, with an expansion of available drug therapies. Newer therapies for multiple myeloma include the anti-CD38 monoclonal antibodies daratumumab and isatuximab, the exportin 1 inhibitor selinexor, the anti-B-cell maturation antigen (BCMA) antibody-drug conjugate belantamab mafodotin, and the chimeric antigen receptor (CAR) T-cell therapy idecabtagene vicleucel. These agents have unique toxicity profiles, specific monitoring parameters, and operational considerations that clinicians treating multiple myeloma should be aware of. There is likely to be continued rapid expansion of new agents for patients with multiple myeloma, as there are many novel investigational agents in the drug development pipeline, such as bispecific antibodies and additional CAR T-cell therapies. CONCLUSION Several therapeutic agents have been recently approved by the Food and Drug Administration for the treatment of multiple myeloma. There are many novel agents in the pipeline, including bispecific antibodies and CAR T-cell therapies that have the potential to continue to change the treatment landscape of multiple myeloma.
Collapse
Affiliation(s)
- Donald C Moore
- Department of Pharmacy, Levine Cancer Institute, Atrium Health, Concord, NC, USA
| | | | - Brandon R Shank
- Division of Pharmacy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
66
|
Delforge M, Raddoux J, Antonis C, Clement C, Kint N, Vanhellemont A, Bravetti J, Vandenberghe P. Selinexor, Bortezomib and Dexamethasone: An Effective Salvage Regimen for Heavily Pretreated Myeloma Patients. Onco Targets Ther 2022; 15:243-250. [PMID: 35310960 PMCID: PMC8932935 DOI: 10.2147/ott.s341120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/24/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Multiple myeloma (MM) patients with triple- and penta-refractory disease have a poor survival and limited treatment options. Selinexor, in combination with bortezomib and dexamethasone, demonstrated clinical activity in the STOMP study as well as in the BOSTON study in previously treated patients with disease refractory to a proteasome inhibitor (PI). Patients and Methods Here, we report a real-world case series of 7 heavily pretreated MM patients who had been extensively pretreated with bortezomib and had disease refractory to PIs, including carfilzomib; who were administered a starting dose of 100 mg of selinexor, 20-40 mg dexamethasone and 1.3 mg/m2 of bortezomib, each once weekly. The majority of these patients (6 patients, 86.0%) had penta-refractory disease, with 5 patients (71.4%) having disease refractory to bortezomib and carfilzomib, and all 7 patients having pomalidomide refractory disease. The median number of prior lines of therapy was 8 (range 4-12). Results The seven patients in this case series received selinexor for a median of 5 cycles (range 1-10). Four patients (57.1%) had a dose reduction of selinexor. Five patients (71.4%) had a response, of which 2 (29.0%) had a very good partial response (VGPR) and 3 (43.0%) had a partial response (PR). One patient (14.3%) had stable disease (SD) and 1 (14.3%) had progressive disease (PD). There were no new safety signals. Conclusion The selinexor, bortezomib, and dexamethasone triplet combination demonstrates activity in PI-resistant MM and patients with heavily pretreated MM with refractory disease and after multiple lines of therapy.
Collapse
Affiliation(s)
- Michel Delforge
- Department of Hematology, University Hospital Leuven, Leuven, Belgium
| | - Jolien Raddoux
- Department of Hematology, University Hospital Leuven, Leuven, Belgium
| | - Corine Antonis
- Department of Hematology, University Hospital Leuven, Leuven, Belgium
| | - Céline Clement
- Department of Hematology, University Hospital Leuven, Leuven, Belgium
| | - Nicolas Kint
- Department of Hematology, University Hospital Leuven, Leuven, Belgium
| | | | | | | |
Collapse
|
67
|
Qu B, Xu Y, Lu Y, Zhuang W, Jin X, Shi Q, Yan S, Guo Y, Shen Z, Che J, Wu Y, Tong L, Dong X, Yang H. Design, synthesis and biological evaluation of sulfonamides inhibitors of XPO1 displaying activity against multiple myeloma cells. Eur J Med Chem 2022; 235:114257. [DOI: 10.1016/j.ejmech.2022.114257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/04/2022]
|
68
|
Gasparetto C, Schiller GJ, Tuchman SA, Callander NS, Baljevic M, Lentzsch S, Rossi AC, Kotb R, White D, Bahlis NJ, Chen CI, Sutherland HJ, Madan S, LeBlanc R, Sebag M, Venner CP, Bensinger WI, Biran N, Ammu S, Ben-Shahar O, DeCastro A, Van Domelen D, Zhou T, Zhang C, Bentur OS, Shah J, Shacham S, Kauffman M, Lipe B. Once weekly selinexor, carfilzomib and dexamethasone in carfilzomib non-refractory multiple myeloma patients. Br J Cancer 2022; 126:718-725. [PMID: 34802051 PMCID: PMC8605887 DOI: 10.1038/s41416-021-01608-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/20/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Proteasome inhibitors (PIs), including carfilzomib, potentiate the activity of selinexor, a novel, first-in-class, oral selective inhibitor of nuclear export (SINE) compound, in preclinical models of multiple myeloma (MM). METHODS The safety, efficacy, maximum-tolerated dose (MTD) and recommended phase 2 dose (RP2D) of selinexor (80 or 100 mg) + carfilzomib (56 or 70 mg/m2) + dexamethasone (40 mg) (XKd) once weekly (QW) was evaluated in patients with relapsed refractory MM (RRMM) not refractory to carfilzomib. RESULTS Thirty-two patients, median prior therapies 4 (range, 1-8), were enrolled. MM was triple-class refractory in 38% of patients and 53% of patients had high-risk cytogenetics del(17p), t(4;14), t(14;16) and/or gain 1q. Common treatment-related adverse events (all/Grade 3) were thrombocytopenia 72%/47% (G3 and G4), nausea 72%/6%, anaemia 53%/19% and fatigue 53%/9%, all expected and manageable with supportive care and dose modifications. MTD and RP2D were identified as selinexor 80 mg, carfilzomib 56 mg/m2, and dexamethasone 40 mg, all QW. The overall response rate was 78% including 14 (44%) ≥ very good partial responses. Median progression-free survival was 15 months. CONCLUSIONS Weekly XKd is highly effective and well-tolerated. These data support further investigation of XKd in patients with MM.
Collapse
Affiliation(s)
| | - Gary J Schiller
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | | | | | | | | | - Rami Kotb
- Cancer Care Manitoba, Winnipeg, MB, Canada
| | - Darrell White
- Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS, Canada
| | - Nizar J Bahlis
- Charbonneau Cancer Research Institute, Calgary, AB, Canada
| | - Christine I Chen
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | | | - Sumit Madan
- Banner MD Anderson Cancer Center, Gilbert, AZ, USA
| | - Richard LeBlanc
- Maisonneuve-Rosemont Hospital, University of Montreal, Montreal, QC, Canada
| | | | | | | | - Noa Biran
- Hackensack Meridian Health, Hackensack University Medical Center, Teaneck, USA
| | - Sonia Ammu
- Karyopharm Therapeutics Inc., Newton, MA, USA
| | | | | | | | | | - Chris Zhang
- Karyopharm Therapeutics Inc., Newton, MA, USA
| | | | - Jatin Shah
- Karyopharm Therapeutics Inc., Newton, MA, USA
| | | | | | - Brea Lipe
- University of Rochester Medical College, Rochester, NY, USA
| |
Collapse
|
69
|
Gousias K, Theocharous T, Simon M. Mechanisms of Cell Cycle Arrest and Apoptosis in Glioblastoma. Biomedicines 2022; 10:biomedicines10030564. [PMID: 35327366 PMCID: PMC8945784 DOI: 10.3390/biomedicines10030564] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/10/2022] [Accepted: 02/26/2022] [Indexed: 12/13/2022] Open
Abstract
Cells of glioblastoma, the most frequent primary malignant brain tumor, are characterized by their rapid growth and infiltration of adjacent healthy brain parenchyma, which reflects their aggressive biological behavior. In order to maintain their excessive proliferation and invasion, glioblastomas exploit the innate biological capacities of the patients suffering from this tumor. The pathways involved in cell cycle regulation and apoptosis are the mechanisms most commonly affected. The following work reviews the regulatory pathways of cell growth in general as well as the dysregulated cell cycle and apoptosis relevant mechanisms observed in glioblastomas. We then describe the molecular targeting of the current established adjuvant therapy and present ongoing trials or completed studies on specific promising therapeutic agents that induce cell cycle arrest and apoptosis of glioblastoma cells.
Collapse
Affiliation(s)
- Konstantinos Gousias
- Department of Neurosurgery, St. Marien Academic Hospital Lünen, KLW St. Paulus Corporation, 44534 Luenen, Germany;
- Medical School, Westfälische Wilhelms University of Muenster, 48149 Muenster, Germany
- Medical School, University of Nicosia, Nicosia 2414, Cyprus
- Correspondence: ; Tel.: +49-2306-773151
| | - Theocharis Theocharous
- Department of Neurosurgery, St. Marien Academic Hospital Lünen, KLW St. Paulus Corporation, 44534 Luenen, Germany;
| | - Matthias Simon
- Department of Neurosurgery, Bethel Clinic, University of Bielefeld Medical School, 33617 Bielefeld, Germany;
| |
Collapse
|
70
|
Zhao L, Luo B, Wang L, Chen W, Jiang M, Zhang N. Pan-cancer analysis reveals the roles of XPO1 in predicting prognosis and tumorigenesis. Transl Cancer Res 2022; 10:4664-4679. [PMID: 35116322 PMCID: PMC8797940 DOI: 10.21037/tcr-21-1646] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/14/2021] [Indexed: 12/13/2022]
Abstract
Background Exportin 1 (XPO1), a nuclear export protein, participates in many biological processes, including mRNA transport, nucleocytoplasmic transport, nuclear protein export, regulation of mRNA stability, and drug response. XPO1 plays key roles in many cancer types and may serve as a potential biomarker. It is significant to systematically elucidate the roles of XPO1 in various cancer types in terms of function, molecular biology, immunology, and clinical relevance. Methods Data from UCSC Xena, CCLE, and CBioPortal were analyzed for the investigation of the differential expression of XPO1 across multiple cancer types. Clinical data were acquired to analyze the influence of XPO1 on the clinical characteristics of patients, such as survival outcome and clinical stage. The roles of XPO1 in the onset and progression of multiple cancers were expounded in terms of genetic changes at the molecular level [including tumor mutational burden (TMB), microsatellite instability (MSI), copy number variation (CNV), methylation, and gene co-expression], biological pathway changes, and the immune microenvironment. Results XPO1 was overexpressed in various tumor types, which may be related to CNV. Clinical data analysis revealed that XPO1 may serve as a risk factor in tumors, such as adrenocortical carcinoma, liver hepatocellular carcinoma, and low-grade glioma, thereby affecting patient prognosis. XPO1 in multiple tumor types was also substantially correlated with clinical stage, patient gender, and patient age. In certain tumors, the expression level of XPO1 exerted a greater influence on TMB and MSI. It was also found that XPO1 inhibited the activity of immune cells in the tumor immune microenvironment, such as CD8+ T cells, and affected biological pathways, such as the cell cycle and oxidative phosphorylation, and drove the expression of cancer driver genes, immune checkpoint genes, and highly mutated genes. Conclusions XPO1 is a potential pan-cancer risk factor as it may jointly promote tumor onset and progression by inhibiting the immune response, influencing relevant biological pathways, and promoting mutations in other genes.
Collapse
Affiliation(s)
- Lei Zhao
- Department of Critical Care Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Baiwei Luo
- The First Clinical Medical School of Guangdong Medical University, Zhanjiang, China
| | - Liang Wang
- Department of Hematology, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Wei Chen
- Department of Critical Care Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Manyu Jiang
- The First Clinical Medical School of Guangdong Medical University, Zhanjiang, China
| | - Nengwei Zhang
- Surgery Centre of Diabetes Mellitus, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
71
|
Richard S, Jagannath S. Targeting Nuclear Export Proteins in Multiple Myeloma Therapy. BioDrugs 2022; 36:13-25. [PMID: 35113384 DOI: 10.1007/s40259-021-00514-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2021] [Indexed: 12/23/2022]
Abstract
Nuclear export proteins such as exportin-1 (XPO1) transport tumor-suppressor proteins and other growth-regulatory proteins from the nucleus to the cytoplasm. Overexpression of XPO1 has been observed in several cancers and correlates with shorter event-free and overall survival in multiple myeloma. Selinexor was developed as an oral first-in-class selective inhibitor of nuclear export (SINE) that inhibits XPO1. Preclinical studies in tumor cell lines and mouse models have demonstrated the efficacy of selinexor both as a single agent and in various combinations with known active antimyeloma agents. Results from the pivotal phase II STORM trial led to the US FDA approval of selinexor with dexamethasone in penta-refractory myeloma. Because of the feasibility of combining selinexor with other active antimyeloma agents, the multiarm STOMP trial was initiated and is ongoing, with impressive response rates reported in some of the combination arms thus far. The registrational phase III BOSTON trial demonstrated the superiority of selinexor in combination with bortezomib and dexamethasone as compared with bortezomib and dexamethasone in patients with relapsed refractory multiple myeloma (RRMM) who have received one to three prior anti-MM regimens. The toxicity profile of selinexor is well established and predictable and may be significant unless managed aggressively and preemptively. The most common side effects are thrombocytopenia, anemia, neutropenia, fatigue, nausea, anorexia, and weight loss. Hyponatremia and cataracts seem to be class effects. Other SINE compounds are now being studied in efforts to discover agents that will potentially be better tolerated. Eltanexor is an investigational SINE compound that has shown a more positive toxicity profile in preclinical studies, with reduced central nervous system penetration and gastrointestinal side effects, and is now undergoing clinical investigation. These and other trials will further clarify the role of these innovative agents in the therapeutic advancement of RRMM.
Collapse
Affiliation(s)
- Shambavi Richard
- Mount Sinai Medical Center, One Gustave L. Levy Place, Box 1185, New York, NY, 10029, USA
| | - Sundar Jagannath
- Mount Sinai Medical Center, One Gustave L. Levy Place, Box 1185, New York, NY, 10029, USA.
| |
Collapse
|
72
|
Zhou Q, Lin J, Yan Y, Meng S, Liao H, Chen R, He G, Zhu Y, He C, Mao K, Wang J, Zhang J, Zhou Z, Xiao Z. INPP5F translocates into cytoplasm and interacts with ASPH to promote tumor growth in hepatocellular carcinoma. J Exp Clin Cancer Res 2022; 41:13. [PMID: 34996491 PMCID: PMC8740451 DOI: 10.1186/s13046-021-02216-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/07/2021] [Indexed: 11/10/2022] Open
Abstract
Background Increasing evidence has suggested inositol polyphosphate 5-phosphatase family contributes to tumorigenesis and tumor progression. However, the role of INPP5F in hepatocellular carcinoma (HCC) and its underlying mechanisms is unclear. Methods The expression of INPP5F in HCC was analyzed in public databases and our clinical specimens. The biological functions of INPP5F were investigated in vitro and vivo. The molecular mechanism of INPP5F in regulating tumor growth were studied by transcriptome-sequencing analysis, mass spectrometry analysis, immunoprecipitation assay and immunofluorescence assay. Results High expression of INPP5F was found in HCC tissues and was associated with poor prognosis in HCC patients. Overexpression of INPP5F promoted HCC cell proliferation, and vice versa. Knockdown of INPP5F suppressed tumor growth in vivo. Results from transcriptome-sequencing analysis showed INPP5F not only regulated a series of cell cycle related genes expression (c-MYC and cyclin E1), but also promoted many aerobic glycolysis related genes expression. Further studies confirmed that INPP5F could enhance lactate production and glucose consumption in HCC cell. Mechanistically, INPP5F activated Notch signaling pathway and upregulated c-MYC and cyclin E1 in HCC via interacting with ASPH. Interestingly, INPP5F was commonly nuclear-located in cells of adjacent non-tumor tissues, while in HCC, cytoplasm-located was more common. LMB (nuclear export inhibitor) treatment restricted INPP5F in nucleus and was associated with inhibition of Notch signaling and cell proliferation. Sequence of nuclear localization signals (NLSs) and nuclear export signals (NESs) in INPP5F aminoacidic sequence were then identified. Alteration of the NLSs or NESs influenced the localization of INPP5F and the expression of its downstream molecules. Furthermore, we found INPP5F interacted with both exportin and importin through NESs and NLSs, respectively, but the interaction with exportin was stronger, leading to cytoplasmic localization of INPP5F in HCC. Conclusion These findings indicate that INPP5F functions as an oncogene in HCC via a translocation mechanism and activating ASPH-mediated Notch signaling pathway. INPP5F may serve as a potential therapeutic target for HCC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02216-x.
Collapse
Affiliation(s)
- Qianlei Zhou
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Guangdong Province Key laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Thyroid Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jianhong Lin
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Guangdong Province Key laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yongcong Yan
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Guangdong Province Key laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Shiyu Meng
- Guangdong Province Key laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Hao Liao
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Guangdong Province Key laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Ruibin Chen
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Guangdong Province Key laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Gui He
- Cellular & Molecular Diagnostics Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yue Zhu
- Guangdong Province Key laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Thyroid Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Chuanchao He
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Guangdong Province Key laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Kai Mao
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Guangdong Province Key laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jie Wang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Guangdong Province Key laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jianlong Zhang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China. .,Guangdong Province Key laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Zhenyu Zhou
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China. .,Guangdong Province Key laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Zhiyu Xiao
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China. .,Guangdong Province Key laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| |
Collapse
|
73
|
Han F, Zhang L, Liao S, Zhang Y, Qian L, Hou F, Gong J, Lai M, Zhang H. The interaction between S100A2 and KPNA2 mediates NFYA nuclear import and is a novel therapeutic target for colorectal cancer metastasis. Oncogene 2022; 41:657-670. [PMID: 34802034 DOI: 10.1038/s41388-021-02116-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/31/2021] [Accepted: 11/08/2021] [Indexed: 11/09/2022]
Abstract
Nucleocytoplasmic transport of proteins is disrupted and dysregulated in cancer cells. Nuclear pore complexes and cargo proteins are two main transportation regulators. However, the mechanism regulating nucleocytoplasmic transport in cancer remains elusive. Here, we identified a S100A2/KPNA2 cotransport complex that transports the tumor-associated transcription factor NFYA in colorectal cancer (CRC). Through the S100A2/KNPA2 complex, depending on its interaction with S100A2, NFYA is transported to the nucleus and inhibits the transcriptional activity of E-cadherin, which in turn promotes CRC metastasis. Targeting the S100A2/KPNA2 binding sites with the specific inhibitor delanzomib is a potential therapeutic approach for CRC.
Collapse
Affiliation(s)
- Fengyan Han
- Department of Pathology and Women's Hospital, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou, 310058, Zhejiang, China
| | - Lei Zhang
- Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, 310058, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Department of Pharmacology, China Pharmaceutical University, Nanjing, 210009, China
| | - Shaoxia Liao
- Department of Pathology and Women's Hospital, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou, 310058, Zhejiang, China
| | - Yanmin Zhang
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Lili Qian
- Department of Pathology and Women's Hospital, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou, 310058, Zhejiang, China
| | - Feijun Hou
- Department of Pathology and Women's Hospital, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou, 310058, Zhejiang, China
| | - Jingwen Gong
- Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, 310058, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Maode Lai
- Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, 310058, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
- Department of Pharmacology, China Pharmaceutical University, Nanjing, 210009, China.
| | - Honghe Zhang
- Department of Pathology and Women's Hospital, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou, 310058, Zhejiang, China.
- Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, 310058, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
74
|
Olazagoitia-Garmendia A, Zhang L, Mera P, Godbout JK, Sebastian-DelaCruz M, Garcia-Santisteban I, Mendoza LM, Huerta A, Irastorza I, Bhagat G, Green PH, Herrero L, Serra D, Rodriguez JA, Verdu EF, He C, Bilbao JR, Castellanos-Rubio A. Gluten-induced RNA methylation changes regulate intestinal inflammation via allele-specific XPO1 translation in epithelial cells. Gut 2022; 71:68-76. [PMID: 33526437 PMCID: PMC8666699 DOI: 10.1136/gutjnl-2020-322566] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/23/2020] [Accepted: 01/17/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Coeliac disease (CD) is a complex autoimmune disorder that develops in genetically susceptible individuals. Dietary gluten triggers an immune response for which the only available treatment so far is a strict, lifelong gluten free diet. Human leucocyte antigen (HLA) genes and several non-HLA regions have been associated with the genetic susceptibility to CD, but their role in the pathogenesis of the disease is still essentially unknown, making it complicated to develop much needed non-dietary treatments. Here, we describe the functional involvement of a CD-associated single-nucleotide polymorphism (SNP) located in the 5'UTR of XPO1 in the inflammatory environment characteristic of the coeliac intestinal epithelium. DESIGN The function of the CD-associated SNP was investigated using an intestinal cell line heterozygous for the SNP, N6-methyladenosine (m6A)-related knock-out and HLA-DQ2 mice, and human samples from patients with CD. RESULTS Individuals harbouring the risk allele had higher m6A methylation in the 5'UTR of XPO1 RNA, rendering greater XPO1 protein amounts that led to downstream nuclear factor kappa B (NFkB) activity and subsequent inflammation. Furthermore, gluten exposure increased overall m6A methylation in humans as well as in in vitro and in vivo models. CONCLUSION We identify a novel m6A-XPO1-NFkB pathway that is activated in CD patients. The findings will prompt the development of new therapeutic approaches directed at m6A proteins and XPO1, a target under evaluation for the treatment of intestinal disorders.
Collapse
Affiliation(s)
- Ane Olazagoitia-Garmendia
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV-EHU), Leioa, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Linda Zhang
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, University of Chicago, Chicago, Illinois, USA
| | - Paula Mera
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Julie K Godbout
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Maialen Sebastian-DelaCruz
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV-EHU), Leioa, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Iraia Garcia-Santisteban
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV-EHU), Leioa, Spain
| | - Luis Manuel Mendoza
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV-EHU), Leioa, Spain
| | - Alain Huerta
- Enfermedades Digestivas, Hospital de Galdakao-Usansolo, Galdacano, Spain
| | - Iñaki Irastorza
- Department of Pediatrics, University of the Basque Country (UPV-EHU), Leioa, Spain
| | - Govind Bhagat
- Celiac Disease Center, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Peter H Green
- Celiac Disease Center, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Laura Herrero
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Dolors Serra
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Jose Antonio Rodriguez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV-EHU), Leioa, Spain
| | - Elena F Verdu
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, University of Chicago, Chicago, Illinois, USA
| | - Jose Ramon Bilbao
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV-EHU), Leioa, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Ainara Castellanos-Rubio
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV-EHU), Leioa, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
75
|
Kim E, Mordovkina DA, Sorokin A. Targeting XPO1-Dependent Nuclear Export in Cancer. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:S178-S70. [PMID: 35501995 DOI: 10.1134/s0006297922140140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 09/29/2021] [Accepted: 10/08/2021] [Indexed: 06/14/2023]
Abstract
Nucleocytoplasmic transport of macromolecules is tightly regulated in eukaryotic cells. XPO1 is a transport factor responsible for the nuclear export of several hundred protein and RNA substrates. Elevated levels of XPO1 and recurrent mutations have been reported in multiple cancers and linked to advanced disease stage and poor survival. In recent years, several novel small-molecule inhibitors of XPO1 were developed and extensively tested in preclinical cancer models and eventually in clinical trials. In this brief review, we summarize the functions of XPO1, its role in cancer, and the latest results of clinical trials of XPO1 inhibitors.
Collapse
Affiliation(s)
- Ekaterina Kim
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Daria A Mordovkina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Alexey Sorokin
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
76
|
Ou L, Wang X, Cheng S, Zhang M, Cui R, Hu C, Liu S, Tang Q, Peng Y, Chai R, Xie S, Wang S, Huang W, Wang X. Verdinexor, a Selective Inhibitor of Nuclear Exportin 1, Inhibits the Proliferation and Migration of Esophageal Cancer via XPO1/c-Myc/FOSL1 Axis. Int J Biol Sci 2022; 18:276-291. [PMID: 34975332 PMCID: PMC8692140 DOI: 10.7150/ijbs.66612] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/29/2021] [Indexed: 12/30/2022] Open
Abstract
Esophageal carcinoma (EC) ranks sixth among cancers in mortality worldwide and effective drugs to reduce EC incidence and mortality are lacking. To explore potential anti-esophageal cancer drugs, we conducted drug screening and discovered that verdinexor, a selective inhibitor of nuclear exportin 1 (XPO1/CRM1), has anti-esophageal cancer effects both in vivo and in vitro. However, the mechanism and role of verdinexor in esophageal cancer remain unknown. In the present study, we observed that verdinexor inhibited the proliferation and migration of EC cells in vitro and suppressed tumor growth in vivo. Additionally, we found that verdinexor induced cleavage of PARP and downregulated XPO1, c-Myc, and FOSL1 expression. RNA-sequence analysis and protein-protein interaction (PPI) analysis revealed that verdinexor regulated the XPO1/c-Myc/FOSL1 axis. The results of immunoprecipitation and proximity ligation assays confirmed that verdinexor disrupted the interaction between XPO1 and c-Myc. Overexpression of c-Myc rescued the inhibition of cell proliferation and cell migration caused by verdinexor. Overexpressed FOSL1 restored the inhibited migration by verdinexor. Taken together, verdinexor inhibited cell proliferation and migration of esophageal cancer via XPO1/c-Myc/FOSL1 axis. Our findings provide a new option for the development of anti-esophageal cancer drugs.
Collapse
Affiliation(s)
- Ling Ou
- Bacteriology & Antibacterial Resistance Surveillance Laboratory, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, Guangdong, China
| | - Xinyou Wang
- The First District of Gastrointestinal Surgery, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shumin Cheng
- Bacteriology & Antibacterial Resistance Surveillance Laboratory, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Min Zhang
- Bacteriology & Antibacterial Resistance Surveillance Laboratory, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Ruiqin Cui
- Bacteriology & Antibacterial Resistance Surveillance Laboratory, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Chunxia Hu
- Bacteriology & Antibacterial Resistance Surveillance Laboratory, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Shiyi Liu
- Bacteriology & Antibacterial Resistance Surveillance Laboratory, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Qian Tang
- Department of Pharmacy, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
- School of Pharmacy, Jinan University, Guangzhou 510630, Guangdong, China
| | - Yuying Peng
- Department of Pharmacy, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
- School of Pharmacy, Jinan University, Guangzhou 510630, Guangdong, China
| | - Ruihuan Chai
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen University, Shenzhen 518000, Guangdong, China
| | - Shouxia Xie
- Department of Pharmacy, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Shaoxiang Wang
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen University, Shenzhen 518000, Guangdong, China
| | - Wei Huang
- Bacteriology & Antibacterial Resistance Surveillance Laboratory, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Xiao Wang
- Department of Pharmacy, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
- School of Pharmacy, Jinan University, Guangzhou 510630, Guangdong, China
| |
Collapse
|
77
|
Özdaş S, Canatar İ. Targeting of nucleo‑cytoplasmic transport factor exportin 1 in malignancy (Review). MEDICINE INTERNATIONAL 2022; 2:2. [PMID: 38938904 PMCID: PMC11208992 DOI: 10.3892/mi.2021.27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/03/2021] [Indexed: 06/29/2024]
Abstract
Nuclear pore complexes (NPCs) regulate the entry and exit of molecules from the cell nucleus. Small molecules pass through NPCs by diffusion while large molecules enter and exit the nucleus by karyopherins, which serve as transport factors. Exportin-1 (XPO1) is a protein that is an important member of the karyopherin family and carries macromolecules from the nucleus to the cytoplasm. XPO1 is responsible for nuclear-cytoplasmic transport of protein, ribosomal RNA and certain required mRNAs for ribosomal biogenesis. Furthermore, XPO1-mediated nuclear export is associated with various types of disease, such as cancer, inflammation and viral infection. The key role of XPO1 in carcinogenesis and its potential as a therapeutic target has been demonstrated by previous studies. Clinical use of novel developed generation-specific XPO1 inhibitors and their combination with other agents to block XPO1-mediated nuclear export are a promising new treatment strategy. The aim of the present study was to explain the working mechanism of XPO1 and inhibitors that block XPO1-mediated nuclear export.
Collapse
Affiliation(s)
- Sibel Özdaş
- Department of Bioengineering, Faculty of Engineering Sciences, Adana Alparslan Türkeş Science and Technology University, Adana 01250, Turkey
| | - İpek Canatar
- Department of Bioengineering, Faculty of Engineering Sciences, Adana Alparslan Türkeş Science and Technology University, Adana 01250, Turkey
| |
Collapse
|
78
|
Tao Y, Zhou H, Niu T. Safety and Efficacy Analysis of Selinexor-Based Treatment in Multiple Myeloma, a Meta-Analysis Based on Prospective Clinical Trials. Front Pharmacol 2021; 12:758992. [PMID: 34925019 PMCID: PMC8678413 DOI: 10.3389/fphar.2021.758992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/22/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Selinexor (SEL) is an orally bioavailable, highly-selective, and slowly-reversible small molecule that inhibits Exportin 1. Preclinical studies showed that SEL had synergistic antimyeloma activity with glucocorticoids, proteasome inhibitors (PIs) and immunomodulators. The combination of selinexor and dexamethasone (DEX) has been approved in the United States for patients with penta-refractory multiple myeloma in July 2019. This meta-analysis aimed to investigate the safety and efficacy of selinexor based treatment in Multiple myeloma. Methods: We systematically searched the Medline (PubMed), Embase, Web of Science, Cochrane Central Register of Controlled Trials Library databases and ClinicalTrials.gov. Outcome measures of efficacy included overall response rate (ORR), clinical benefit rate (CBR), stringent complete response rate (sCR), complete response rate (CR), very good partial response (VGPR), partial response rate (PR), minimal response (MR), rate of stable disease (SDR), rate of progressive disease (PDR) and median progression-free survival (mPFS). Safety was evaluated by the incidences of all grade adverse events and Grade≥3 adverse events. The subgroup analysis was conducted to analyze the difference in different combination treatment regimens (SEL + DEX + PIs vs SEL + DEX). Results: We included six studies with 477 patients. The pooled ORR, CBR, sCR, CR, VGPR, PR, MR, SDR, and PDR were 43% (18-67%), 55% (32-78%), 5% (-2-13%), 7% (4-11%), 14% (5-24%), 23% (15-31%), 11% (8-14%), 26% (14-38%) and 14% (4-23%), respectively. SEL + DEX + PIs treatment had higher ORR (54 vs 24%, p = 0.01), CBR (66 vs 37%, p = 0.01), sCR (10 vs 2%, p = 0.0008), and VGPR (23 vs 5%, p < 0.00001) compared to SEL + DEX treatment, and lower PDR (4 vs 23%, p < 0.00001) and SDR (17 vs 37%, p = 0.0006). The pooled incidences of any grade and grade≥3 were 45 and 30% in hematological AEs, and in non-hematological AEs were 40 and 30%, respectively. The most common all grade (68%) and grade≥3 (54%) hematological AE were both thrombocytopenia. Fatigue was the most common all grade (62%) and grade≥3 (16%) non-hematological AE. Compared to SEL + DEX treatment, SEL + DEX + PIs treatment had lower incidences of hyponatremia (39 vs 12%, p < 0.00001), nausea (72 vs 52%, p < 0.00001), vomiting (41 vs 23%, p < 0.0001), and weight loss (42 vs 17%, p = 0.03) in all grade AEs. Meanwhile, SEL + DEX + PIs treatment had lower incidences of anemia (36 vs 16%, p = 0.02), fatigue (20 vs 13%, p = 0.04), hyponatremia (22 vs 5%, p < 0.0001) than SEL + DEX treatment in grade≥3 AEs. Conclusion: Our meta-analysis revealed that selinexor-based regimens could offer reasonable efficacy and tolerable adverse events in patients with multiple myeloma. SEL + DEX + PIs treatments had higher efficacy and lower toxicities than SEL + DEX.
Collapse
Affiliation(s)
- Yali Tao
- Department of Hematology and Research Laboratory of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Hui Zhou
- Department of Hematology and Research Laboratory of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Niu
- Department of Hematology and Research Laboratory of Hematology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
79
|
Mammadova A, Mermer A, Kocabaş F. Screening of the small molecule library of Meinox enables the identification of anticancer compounds in pathologically distinct cancers. Turk J Biol 2021; 45:633-643. [PMID: 34803460 PMCID: PMC8574190 DOI: 10.3906/biy-2104-14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/04/2021] [Indexed: 11/12/2022] Open
Abstract
Small molecules are widely used for the modulation of the molecular basis of diseases. This makes them the perfect tool for discovering and developing new therapeutics. In this work, we have established a library of small molecules in house and characterized its molecular and druglike properties. We have shown that most small molecules have molecular weights less than 450. They have pharmaceutically relevant cLogP, cLogS, and druglikeness value distributions. In addition, Meinox’s small molecule library contained small molecules with polar surface areas that are less than 60 square angstroms, suggesting their potent ability to cross the blood-brain barrier. Meinox’s small molecule library was also tested in vitro for pathologically distinct forms of cancer, including pancreatic adenocarcinoma PANC1, breast carcinoma MCF7, and lymphoblastic carcinoma RS4-11 cell lines. Analysis of this library at a dose of 1 μM allowed the discovery of potent, specific or broadly active anticancer compounds against pathologically distinct cancers. This study shows that in vitro analysis of different cancers or other phenotypic assays with Meinox small molecule library may generate novel and potent bioassay-specific compounds.
Collapse
Affiliation(s)
- Aynura Mammadova
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, İstanbul Turkey.,University of Strasbourg CNRS France
| | - Arif Mermer
- Biotechnology Department, Hamidiye Health Sciences Institute, Health Sciences University, İstanbul Turkey
| | - Fatih Kocabaş
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, İstanbul Turkey.,Meinox Pharma Technologies, İstanbul Turkey
| |
Collapse
|
80
|
Kang BW, Chau I. Emerging agents for metastatic pancreatic cancer: spotlight on early phase clinical trials. Expert Opin Investig Drugs 2021; 30:1089-1107. [PMID: 34727804 DOI: 10.1080/13543784.2021.1995354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Despite the recent development of new chemotherapeutic regimens and combination strategies, metastatic pancreatic cancer (mPC) still shows only a modest response to conventional cytotoxic agents. However, several novel therapeutic agents targeting the unique features of mPC are showing promise in clinical trials. AREA COVERED This article reviews the current state of development of new agents targeting various systems and molecular pathways. We searched PubMed and clinicaltrials.gov in September 2021 with a special focus on ongoing early phase clinical trials to identify the promising therapeutic strategies for mPC. EXPERT OPINION Extensive tumor heterogeneity, complex tumor microenvironment, genetic alterations of the oncogenic signaling pathways, metabolic dysregulation, and a low immunogenicity are hurdles for current treatment approaches. Ongoing research efforts strive to overcome these hurdles and are showing some promising early results.
Collapse
Affiliation(s)
- Byung Woog Kang
- Department of Oncology/Hematology, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Kyungpook National University, Daegu, Republic of Korea
| | - Ian Chau
- Department of Medicine, Royal Marsden Hospital, London, Surrey, UK
| |
Collapse
|
81
|
Baskaran AB, Kumthekar P, Heimberger AB, Lukas RV. American Society of Clinical Oncology 2021 Annual Meeting updates on primary brain tumors and CNS metastatic tumors. Future Oncol 2021; 17:4425-4429. [PMID: 34672682 DOI: 10.2217/fon-2021-0955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this report, select key studies presented at the American Society of Clinical Oncology (ASCO) 2021 annual meeting are reviewed. Two major phase III randomized controlled trials were presented at the meeting: GEINO 1401 and EORTC 1709/CCTG CE.8. Both are reviewed in this report. Moreover, important phase II trials, including Alliance A0716701, and key phase I trials are included. All trials presented cover important advances in the understanding of primary brain tumor management. In addition, case series papers, trials in progress and select work on exploratory CSF biomarkers are reviewed. Altogether, research presented at ASCO 2021 highlights important advances in neuro-oncologic topics that may inform future research and practice.
Collapse
Affiliation(s)
- Archit B Baskaran
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Priya Kumthekar
- Department of Neurology, Northwestern University, Chicago, IL, USA.,Lou & Jean Malnati Brain Tumor Institute, Northwestern University, Chicago, IL, USA
| | - Amy B Heimberger
- Lou & Jean Malnati Brain Tumor Institute, Northwestern University, Chicago, IL, USA.,Department of Neurosurgery, Northwestern University, Chicago, IL, USA
| | - Rimas V Lukas
- Department of Neurology, Northwestern University, Chicago, IL, USA.,Lou & Jean Malnati Brain Tumor Institute, Northwestern University, Chicago, IL, USA
| |
Collapse
|
82
|
Karki R, Sundaram B, Sharma BR, Lee S, Malireddi RKS, Nguyen LN, Christgen S, Zheng M, Wang Y, Samir P, Neale G, Vogel P, Kanneganti TD. ADAR1 restricts ZBP1-mediated immune response and PANoptosis to promote tumorigenesis. Cell Rep 2021; 37:109858. [PMID: 34686350 PMCID: PMC8853634 DOI: 10.1016/j.celrep.2021.109858] [Citation(s) in RCA: 206] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/12/2021] [Accepted: 09/28/2021] [Indexed: 01/04/2023] Open
Abstract
Cell death provides host defense and maintains homeostasis. Zα-containing molecules are essential for these processes. Z-DNA binding protein 1 (ZBP1) activates inflammatory cell death, PANoptosis, whereas adenosine deaminase acting on RNA 1 (ADAR1) serves as an RNA editor to maintain homeostasis. Here, we identify and characterize ADAR1's interaction with ZBP1, defining its role in cell death regulation and tumorigenesis. Combining interferons (IFNs) and nuclear export inhibitors (NEIs) activates ZBP1-dependent PANoptosis. ADAR1 suppresses this PANoptosis by interacting with the Zα2 domain of ZBP1 to limit ZBP1 and RIPK3 interactions. Adar1fl/flLysMcre mice are resistant to development of colorectal cancer and melanoma, but deletion of the ZBP1 Zα2 domain restores tumorigenesis in these mice. In addition, treating wild-type mice with IFN-γ and the NEI KPT-330 regresses melanoma in a ZBP1-dependent manner. Our findings suggest that ADAR1 suppresses ZBP1-mediated PANoptosis, promoting tumorigenesis. Defining the functions of ADAR1 and ZBP1 in cell death is fundamental to informing therapeutic strategies for cancer and other diseases.
Collapse
MESH Headings
- Adenosine Deaminase/genetics
- Adenosine Deaminase/metabolism
- Animals
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Cell Death
- Cell Transformation, Neoplastic/immunology
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Colorectal Neoplasms/drug therapy
- Colorectal Neoplasms/enzymology
- Colorectal Neoplasms/immunology
- Colorectal Neoplasms/pathology
- Female
- Gene Expression Regulation, Neoplastic
- HEK293 Cells
- Humans
- Hydrazines/pharmacology
- Interferon-gamma/pharmacology
- Male
- Melanoma, Experimental/drug therapy
- Melanoma, Experimental/enzymology
- Melanoma, Experimental/immunology
- Melanoma, Experimental/pathology
- Mice, Inbred C57BL
- Mice, Knockout
- Necroptosis
- Pyroptosis
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Receptor-Interacting Protein Serine-Threonine Kinases/genetics
- Receptor-Interacting Protein Serine-Threonine Kinases/metabolism
- Signal Transduction
- Skin Neoplasms/drug therapy
- Skin Neoplasms/enzymology
- Skin Neoplasms/immunology
- Skin Neoplasms/pathology
- Triazoles/pharmacology
- Mice
Collapse
Affiliation(s)
- Rajendra Karki
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Balamurugan Sundaram
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Bhesh Raj Sharma
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - SangJoon Lee
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | - Lam Nhat Nguyen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shelbi Christgen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Min Zheng
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yaqiu Wang
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Parimal Samir
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Geoffrey Neale
- Hartwell Center for Bioinformatics & Biotechnology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Peter Vogel
- Animal Resources Center and Veterinary Pathology Core, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|
83
|
Xiong F, Groot EP, Zhang Y, Li S. Functions of plant importin β proteins beyond nucleocytoplasmic transport. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6140-6149. [PMID: 34089597 DOI: 10.1093/jxb/erab263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/04/2021] [Indexed: 06/12/2023]
Abstract
In eukaryotic cells, nuclear activities are isolated from other cellular functions by the nuclear envelope. Because the nuclear envelope provides a diffusion barrier for macromolecules, a complex nuclear transport machinery has evolved that is highly conserved from yeast to plants and mammals. Among those components, the importin β family is the most important one. In this review, we summarize recent findings on the biological function of importin β family members, including development, reproduction, abiotic stress responses, and plant immunity. In addition to the traditional nuclear transport function, we highlight the new molecular functions of importin β, including protein turnover, miRNA regulation, and signaling. Taken together, our review will provide a systematic view of this versatile protein family in plants.
Collapse
Affiliation(s)
- Feng Xiong
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Edwin P Groot
- Sino-German Joint Research Center for Agricultural Biology, State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Yan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Sha Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
84
|
Handley KF, Rodriguez-Aguayo C, Ma S, Stur E, Joseph R, Bayraktar E, Dasari SK, Nguyen N, Powell RT, Sobieski M, Ivan C, Kim M, Umamaheswaran S, Glassman D, Wen Y, Amero P, Stephan C, Coleman RL, Landesman Y, Westin SN, Ram PT, Sood AK. Rational Combination of CRM1 Inhibitor Selinexor and Olaparib Shows Synergy in Ovarian Cancer Cell Lines and Mouse Models. Mol Cancer Ther 2021; 20:2352-2361. [PMID: 34583979 DOI: 10.1158/1535-7163.mct-21-0370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/06/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022]
Abstract
CRM1 inhibitors have demonstrated antitumor effects in ovarian and other cancers; however, rational combinations are largely unexplored. We performed a high-throughput drug library screen to identify drugs that might combine well with selinexor in ovarian cancer. Next, we tested the combination of selinexor with the top hit from the drug screen in vitro and in vivo Finally, we assessed for mechanisms underlying the identified synergy using reverse phase protein arrays (RPPA). The drug library screen assessing 688 drugs identified olaparib (a PARP inhibitor) as the most synergistic combination with selinexor. Synergy was further demonstrated by MTT assays. In the A2780luc ip1 mouse model, the combination of selinexor and olaparib yielded significantly lower tumor weight and fewer tumor nodules compared with the control group (P < 0.04 and P < 0.03). In the OVCAR5 mouse model, the combination yielded significantly fewer nodules (P = 0.006) and markedly lower tumor weight compared with the control group (P = 0.059). RPPA analysis indicated decreased expression of DNA damage repair proteins and increased expression of tumor suppressor proteins in the combination treatment group. Collectively, our preclinical findings indicate that combination with selinexor to expand the utility and efficacy of PARP inhibitors in ovarian cancer warrants further exploration.
Collapse
Affiliation(s)
- Katelyn F Handley
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Division of Gynecologic Oncology, Department of Obstetrics & Gynecology, Morsani College of Medicine, University of South Florida, Tampa, Florida.,H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shaolin Ma
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elaine Stur
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robiya Joseph
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Emine Bayraktar
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Santosh K Dasari
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nghi Nguyen
- HTS Screening Core, Center for Translational Cancer Research, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas
| | - Reid T Powell
- HTS Screening Core, Center for Translational Cancer Research, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas
| | - Mary Sobieski
- HTS Screening Core, Center for Translational Cancer Research, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mark Kim
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sujanitha Umamaheswaran
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Deanna Glassman
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yunfei Wen
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Clifford Stephan
- HTS Screening Core, Center for Translational Cancer Research, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas
| | | | | | - Shannon N Westin
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Prahlad T Ram
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
85
|
Richard S, Chari A, Delimpasi S, Simonova M, Spicka I, Pour L, Kriachok I, Dimopoulos MA, Pylypenko H, Auner HW, Leleu X, Usenko G, Hajek R, Benjamin R, Dolai TK, Sinha DK, Venner CP, Garg M, Stevens DA, Quach H, Jagannath S, Moreau P, Levy M, Badros A, Anderson LD, Bahlis NJ, Facon T, Mateos MV, Cavo M, Chang H, Landesman Y, Chai Y, Arazy M, Shah J, Shacham S, Kauffman MG, Grosicki S, Richardson PG. Selinexor, bortezomib, and dexamethasone versus bortezomib and dexamethasone in previously treated multiple myeloma: Outcomes by cytogenetic risk. Am J Hematol 2021; 96:1120-1130. [PMID: 34062004 PMCID: PMC8457116 DOI: 10.1002/ajh.26261] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/20/2021] [Accepted: 05/27/2021] [Indexed: 11/06/2022]
Abstract
In the phase 3 BOSTON study, patients with multiple myeloma (MM) after 1-3 prior regimens were randomized to once-weekly selinexor (an oral inhibitor of exportin 1 [XPO1]) plus bortezomib-dexamethasone (XVd) or twice-weekly bortezomib-dexamethasone (Vd). Compared with Vd, XVd was associated with significant improvements in median progression-free survival (PFS), overall response rate (ORR), and lower rates of peripheral neuropathy, with trends in overall survival (OS) favoring XVd. In BOSTON, 141 (35.1%) patients had MM with high-risk (presence of del[17p], t[4;14], t[14;16], or ≥4 copies of amp1q21) cytogenetics (XVd, n = 70; Vd, n = 71), and 261 (64.9%) exhibited standard-risk cytogenetics (XVd, n = 125; Vd, n = 136). Among patients with high-risk MM, median PFS was 12.91 months for XVd and 8.61 months for Vd (HR, 0.73 [95% CI, (0.4673, 1.1406)], p = 0.082), and ORRs were 78.6% and 57.7%, respectively (OR 2.68; p = 0.004). In the standard-risk subgroup, median PFS was 16.62 months for XVd and 9.46 months for Vd (HR 0.61; p = 0.004), and ORRs were 75.2% and 64.7%, respectively (OR 1.65; p = 0.033). The safety profiles of XVd and Vd in both subgroups were consistent with the overall population. These data suggest that selinexor can confer benefits to patients with MM regardless of cytogenetic risk. ClinicalTrials.gov identifier: NCT03110562.
Collapse
Affiliation(s)
- Shambavi Richard
- Icahn School of Medicine at Mount Sinai Tisch Cancer Institute New York New York USA
| | - Ajai Chari
- Icahn School of Medicine at Mount Sinai Tisch Cancer Institute New York New York USA
| | | | - Maryana Simonova
- Institute of Blood Pathology & Transfusion Medicine of National Academy of Medical Sciences of Ukraine Lviv Ukraine
| | - Ivan Spicka
- Charles University and General Hospital Prague Czech Republic
| | - Ludek Pour
- Clinic of Internal Medicine —Hematology and Oncology University Hospital Brno Brno Czech Republic
| | | | - Meletios A. Dimopoulos
- School of Medicine National and Kapodistrian University of Athens School of Medicine Athens Greece
| | - Halyna Pylypenko
- Department of Hematology Cherkassy Regional Oncological Center Cherkassy Ukraine
| | | | - Xavier Leleu
- Department of Hematology CHU la Miletrie and Inserm CIC 1402 Poitiers France
| | - Ganna Usenko
- City Clinical Hospital No. 4 of Dnipro City Council Dnipro Ukraine
| | - Roman Hajek
- Department of Hemato‐oncology, University Hospital Ostrava University of Ostrava Ostrava Czech Republic
| | | | | | - Dinesh Kumar Sinha
- State Cancer Institute Indira Gandhi Institute of Medical Sciences Patna India
| | | | - Mamta Garg
- University Hospitals of Leicester NHS Trust Leicester UK
| | | | - Hang Quach
- University of Melbourne, St. Vincent's Hospital Melbourne Victoria Australia
| | - Sundar Jagannath
- Icahn School of Medicine at Mount Sinai Tisch Cancer Institute New York New York USA
| | | | - Moshe Levy
- Baylor University Medical Center Dallas Texas USA
| | - Ashraf Badros
- University of Maryland, Greenebaum Comprehensive Cancer Center Baltimore Maryland USA
| | - Larry D. Anderson
- Simmons Comprehensive Cancer Center UT Southwestern Medical Center Dallas Texas USA
| | - Nizar J. Bahlis
- University of Calgary Charbonneau Cancer Research Institute Calgary Alberta Canada
| | - Thierry Facon
- CHU Lille Service des Maladies du Sang F‐59000 Lille France
| | | | - Michele Cavo
- Seràgnoli Institute of Hematology Bologna University School of Medicine Bologna Italy
| | - Hua Chang
- Karyopharm Therapeutics Inc. Newton Massachusetts USA
| | | | - Yi Chai
- Karyopharm Therapeutics Inc. Newton Massachusetts USA
| | - Melina Arazy
- Karyopharm Therapeutics Inc. Newton Massachusetts USA
| | - Jatin Shah
- Karyopharm Therapeutics Inc. Newton Massachusetts USA
| | | | | | | | | |
Collapse
|
86
|
Castellon C, Onkarappa Mangala Y, Perez Rodriguez A, Chaquette R, Meleveedu KS. First case report of tumor lysis syndrome and acute renal failure after selinexor use in multiple myeloma. Leuk Lymphoma 2021; 62:3536-3539. [PMID: 34369242 DOI: 10.1080/10428194.2021.1961230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Chrystina Castellon
- Department of Medicine, Division of Hematology/Oncology, Roger Williams Medical Center, Providence, RI, USA
| | - Yashvin Onkarappa Mangala
- Department of Medicine, Division of Hematology/Oncology, Roger Williams Medical Center, Providence, RI, USA
| | - Audrik Perez Rodriguez
- Department of Medicine, Division of Hematology/Oncology, Roger Williams Medical Center, Providence, RI, USA
| | - Raymond Chaquette
- Department of Medicine, Division of Hematology/Oncology, Roger Williams Medical Center, Providence, RI, USA
| | - Kapil S Meleveedu
- Department of Medicine, Division of Hematology/Oncology, Roger Williams Medical Center, Providence, RI, USA
| |
Collapse
|
87
|
Fares B, Berger L, Bangiev-Girsh E, Kakun RR, Ghannam-Shahbari D, Tabach Y, Zohar Y, Gottlieb E, Perets R. PAX8 plays an essential antiapoptotic role in uterine serous papillary cancer. Oncogene 2021; 40:5275-5285. [PMID: 34244607 DOI: 10.1038/s41388-021-01925-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/31/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023]
Abstract
Endometrial carcinoma (EC) is the fourth-most common cancer in women in the United States, and generally carries a favorable prognosis. However, about 10% of EC patients have a rare and aggressive form, uterine serous papillary carcinoma (USPC), which carries a much higher mortality rate. The developmental transcription factor PAX8 is expressed in nearly 100% of USPCs. We show that PAX8 plays a critical antiapoptotic role in USPC and this role is established via transcriptional activation of two aberrant signaling pathways. First, PAX8 positively regulates mutated p53, and missense p53 mutations have an oncogenic gain of function effect. Second, PAX8 directly transcriptionally regulates p21, in a p53-independent manner, and p21 acquires a growth promoting role that is mediated via cytoplasmic localization of the protein. We propose that mutated p53 and cytoplasmic p21 can independently mediate the pro-proliferative role of PAX8 in USPC. In addition, we performed a genome-wide transcriptome analysis to detect pathways that are regulated by PAX8, and propose that metabolism and HIF-1alpha -related pathways are potential candidates for mediating the role of PAX8 in USPC. Taken together our findings demonstrate for the first time that PAX8 is an essential lineage marker in USPC, and suggest its mechanism of action.
Collapse
MESH Headings
- PAX8 Transcription Factor/genetics
- PAX8 Transcription Factor/metabolism
- Humans
- Female
- Uterine Neoplasms/genetics
- Uterine Neoplasms/pathology
- Uterine Neoplasms/metabolism
- Apoptosis/genetics
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- Cell Line, Tumor
- Cyclin-Dependent Kinase Inhibitor p21/genetics
- Cyclin-Dependent Kinase Inhibitor p21/metabolism
- Gene Expression Regulation, Neoplastic
- Paired Box Transcription Factors/genetics
- Paired Box Transcription Factors/metabolism
- Signal Transduction/genetics
- Cystadenocarcinoma, Serous/genetics
- Cystadenocarcinoma, Serous/pathology
- Cystadenocarcinoma, Serous/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Carcinoma, Papillary/genetics
- Carcinoma, Papillary/pathology
- Carcinoma, Papillary/metabolism
Collapse
Affiliation(s)
- Basem Fares
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Division of Oncology, The Clinical Research Institute at Rambam (CRIR), Rambam Health Care Campus, Haifa, Israel
| | - Liron Berger
- Division of Oncology, The Clinical Research Institute at Rambam (CRIR), Rambam Health Care Campus, Haifa, Israel
| | - Einav Bangiev-Girsh
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Division of Oncology, The Clinical Research Institute at Rambam (CRIR), Rambam Health Care Campus, Haifa, Israel
| | - Reli Rachel Kakun
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Division of Oncology, The Clinical Research Institute at Rambam (CRIR), Rambam Health Care Campus, Haifa, Israel
| | - Dima Ghannam-Shahbari
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Division of Oncology, The Clinical Research Institute at Rambam (CRIR), Rambam Health Care Campus, Haifa, Israel
| | - Yuval Tabach
- Department of Developmental Biology & Cancer Research, The Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yaniv Zohar
- Department of Pathology, Rambam Health Care Campus, Technion-Israel Institute of Technology, Haifa, Israel
| | - Eyal Gottlieb
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ruth Perets
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
- Division of Oncology, The Clinical Research Institute at Rambam (CRIR), Rambam Health Care Campus, Haifa, Israel.
| |
Collapse
|
88
|
Wang S, Sellner L, Wang L, Sauer T, Neuber B, Gong W, Stock S, Ni M, Yao H, Kleist C, Schmitt A, Müller-Tidow C, Schmitt M, Schubert ML. Combining selective inhibitors of nuclear export (SINEs) with chimeric antigen receptor (CAR) T cells for CD19‑positive malignancies. Oncol Rep 2021; 46:170. [PMID: 34165175 PMCID: PMC8250584 DOI: 10.3892/or.2021.8121] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/08/2021] [Indexed: 11/06/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cells directed against CD19 (CD19.CAR T cells) have yielded impressive clinical responses in the treatment of patients with lymphoid malignancies. However, resistance and/or relapse can limit treatment outcome. Risk of tumor escape can be reduced by combining treatment strategies. Selective inhibitors of nuclear export (SINEs) directed against nuclear exportin‑1 (XPO1) have demonstrated anti‑tumor efficacy in several hematological malignancies. The aim of the present study was to evaluate the combination of CAR T cells with the SINE compounds eltanexor and selinexor. As expected, eltanexor and selinexor were toxic to CD19‑positive malignant cells and the sensitivity of cells towards SINEs correlated with the levels of XPO1‑expression in ALL cell lines. When SINEs and CAR T cells were simultaneously combined, SINEs exerted toxicity towards CAR T cells and impaired their function affecting cytotoxicity and cytokine release ability. Flow cytometry and western blot analysis revealed that eltanexor decreased the cytoplasmic concentration of the transcription factor phosphorylated‑STAT3 in CAR T cells. Due to CAR T‑cell toxicity, sequential use of SINEs and CAR T cells was evaluated: Cytotoxicity of CAR T cells increased significantly when target cells were pre‑treated with the SINE compound eltanexor. In addition, exhaustion of CAR T cells decreased when target cells were pre‑treated with eltanexor. In summary, whereas the concomitant use of SINEs and CAR T cells does not seem advisable, sequential use of SINEs and CAR T cells might improve the anti‑tumor efficacy of CAR T cells.
Collapse
Affiliation(s)
- Sanmei Wang
- Department of Internal Medicine V, Heidelberg University Hospital, D-69120 Heidelberg, Germany
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Leopold Sellner
- Department of Internal Medicine V, Heidelberg University Hospital, D-69120 Heidelberg, Germany
| | - Lei Wang
- Department of Internal Medicine V, Heidelberg University Hospital, D-69120 Heidelberg, Germany
| | - Tim Sauer
- Department of Internal Medicine V, Heidelberg University Hospital, D-69120 Heidelberg, Germany
| | - Brigitte Neuber
- Department of Internal Medicine V, Heidelberg University Hospital, D-69120 Heidelberg, Germany
| | - Wenjie Gong
- Department of Internal Medicine V, Heidelberg University Hospital, D-69120 Heidelberg, Germany
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Sophia Stock
- Department of Internal Medicine V, Heidelberg University Hospital, D-69120 Heidelberg, Germany
| | - Ming Ni
- Department of Internal Medicine V, Heidelberg University Hospital, D-69120 Heidelberg, Germany
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Hao Yao
- Department of Internal Medicine V, Heidelberg University Hospital, D-69120 Heidelberg, Germany
| | - Christian Kleist
- Department of Nuclear Medicine, Heidelberg University Hospital, D-69120 Heidelberg, Germany
| | - Anita Schmitt
- Department of Internal Medicine V, Heidelberg University Hospital, D-69120 Heidelberg, Germany
| | - Carsten Müller-Tidow
- Department of Internal Medicine V, Heidelberg University Hospital, D-69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT)/German Cancer Consortium (DKTK), D-69120 Heidelberg, Germany
| | - Michael Schmitt
- Department of Internal Medicine V, Heidelberg University Hospital, D-69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT)/German Cancer Consortium (DKTK), D-69120 Heidelberg, Germany
| | - Maria-Luisa Schubert
- Department of Internal Medicine V, Heidelberg University Hospital, D-69120 Heidelberg, Germany
| |
Collapse
|
89
|
Inhibition of nuclear export restores nuclear localization and residual tumor suppressor function of truncated SMARCB1/INI1 protein in a molecular subset of atypical teratoid/rhabdoid tumors. Acta Neuropathol 2021; 142:361-374. [PMID: 34003336 PMCID: PMC8270878 DOI: 10.1007/s00401-021-02328-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 02/08/2023]
Abstract
Loss of nuclear SMARCB1 (INI1/hSNF5/BAF47) protein expression due to biallelic mutations of the SMARCB1 tumor suppressor gene is a hallmark of atypical teratoid/rhabdoid tumors (ATRT), but the presence of cytoplasmic SMARCB1 protein in these tumors has not yet been described. In a series of 102 primary ATRT, distinct cytoplasmic SMARCB1 staining on immunohistochemistry was encountered in 19 cases (19%) and was highly over-represented in cases showing pathogenic sequence variants leading to truncation or mutation of the C-terminal part of SMARCB1 (15/19 vs. 4/83; Chi-square: 56.04, p = 1.0E−10) and, related to this, in tumors of the molecular subgroup ATRT-TYR (16/36 vs. 3/66; Chi-square: 24.47, p = 7.6E−7). Previous reports have indicated that while SMARCB1 lacks a bona fide nuclear localization signal, it harbors a masked nuclear export signal (NES) and that truncation of the C-terminal region results in unmasking of this NES leading to cytoplasmic localization. To determine if cytoplasmic localization found in ATRT is due to unmasking of NES, we generated GFP fusions of one of the SMARCB1 truncating mutations (p.Q318X) found in the tumors along with a p.L266A mutation, which was shown to disrupt the interaction of SMARCB1-NES with exportin-1. We found that while the GFP-SMARCB1(Q318X) mutant localized to the cytoplasm, the double mutant GFP-SMARCB1(Q318X;L266A) localized to the nucleus, confirming NES requirement for cytoplasmic localization. Furthermore, cytoplasmic SMARCB1(Q318X) was unable to cause senescence as determined by morphological observations and by senescence-associated β-galactosidase assay, while nuclear SMARCB1(Q318X;L266A) mutant regained this function. Selinexor, a selective exportin-1 inhibitor, was effective in inhibiting the nuclear export of SMARCB1(Q318X) and caused rapid cell death in rhabdoid tumor cells. In conclusion, inhibition of nuclear export restores nuclear localization and residual tumor suppressor function of truncated SMARCB1. Therapies aimed at preventing nuclear export of mutant SMARCB1 protein may represent a promising targeted therapy in ATRT harboring truncating C-terminal SMARCB1 mutations.
Collapse
|
90
|
Sweet K, Bhatnagar B, Döhner H, Donnellan W, Frankfurt O, Heuser M, Kota V, Liu H, Raffoux E, Roboz GJ, Röllig C, Showel MM, Strickland SA, Vives S, Tang S, Unger TJ, Joshi A, Shen Y, Alvarez MJ, Califano A, Crochiere M, Landesman Y, Kauffman M, Shah J, Shacham S, Savona MR, Montesinos P. A 2:1 randomized, open-label, phase II study of selinexor vs. physician's choice in older patients with relapsed or refractory acute myeloid leukemia. Leuk Lymphoma 2021; 62:3192-3203. [PMID: 34323164 DOI: 10.1080/10428194.2021.1950706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Selinexor, a selective inhibitor of nuclear export, has demonstrated promising activity in patients with acute myeloid leukemia (AML). This randomized, phase II study evaluated selinexor 60 mg twice weekly (n = 118) vs. physician's choice (PC) treatment (n = 57) in patients aged ≥60 years with relapsed/refractory (R/R) AML. The primary outcome was overall survival (OS). Median OS did not differ significantly for selinexor vs. PC (3.2 vs. 5.6 months; HR = 1.18 [95% CI: 0.79-1.75]; p = 0.422). Complete remission (CR) plus CR with incomplete hematologic recovery trending in favor of selinexor occurred in a minority of patients. Selinexor treated patients had an increased incidence of adverse events. The most common grade ≥3 adverse events were thrombocytopenia, febrile neutropenia, anemia, hyponatremia. Despite well-balanced baseline characteristics, there were numerically higher rates of TP53 mutations, prior myelodysplastic syndrome, and lower absolute neutrophil counts in the selinexor group; warranting further investigation of selinexor in more carefully stratified R/R AML patients.Registered trial: NCT02088541.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Susana Vives
- ICO Badalona-Hospital Germans Trias i Pujol, Badalona, Spain
| | | | | | | | - Yao Shen
- DarwinHealth Inc, New York, NY, USA
| | - Mariano J Alvarez
- DarwinHealth Inc, New York, NY, USA.,Columbia University, New York, NY, USA
| | | | | | | | | | - Jatin Shah
- Karyopharm Therapeutics, Newton, MA, USA
| | | | | | - Pau Montesinos
- Departamento de Hematologia, Hospital Universitario y Politécnico La Fe, Valencia, Spain.,CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
91
|
Mo CC, Jagannath S, Chari A, Nooka AK, Lonial S, Siegel D, Biran N, Gasparetto C, Bahlis NJ, Richardson P. Selinexor for the treatment of patients with previously treated multiple myeloma. Expert Rev Hematol 2021; 14:697-706. [PMID: 33985401 DOI: 10.1080/17474086.2021.1923473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Multiple myeloma (MM) is an increasingly treatable but still incurable hematologic malignancy. Prognosis has improved significantly over recent years, although further advances remain urgently needed, especially for patients with heavily pre-treated and resistant disease for whom there are limited options. Selinexor is a first-in-class, oral, selective inhibitor of nuclear export (SINE) compound that triggers apoptosis in malignant cells by inducing nuclear retention of oncogene messenger RNAs (mRNAs) and reactivation of tumor suppressor proteins (TSPs). In clinical studies of patients with relapsed and/or refractory MM, selinexor has demonstrated both manageable toxicity and encouraging efficacy. AREAS COVERED This review will provide an overview of the mechanism of action of selinexor as well as the efficacy and safety data from clinical studies using selinexor for the treatment of multiple myeloma. EXPERT OPINION Long-term outcomes for patients with MM will continue to improve due to numerous recent and imminent therapeutic advances, although critical areas of unmet need remain. Oral selinexor is likely to contribute to the meeting of these needs and the further advancement of MM therapy in a meaningful way.
Collapse
Affiliation(s)
- Clifton C Mo
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Sundar Jagannath
- Department of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ajai Chari
- Department of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ajay K Nooka
- Department of Hematology and Medical Oncology and the Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Sagar Lonial
- Department of Hematology and Medical Oncology and the Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - David Siegel
- John Theurer Cancer Center, Hackensack University, Hackensack, NJ, USA
| | - Noa Biran
- John Theurer Cancer Center, Hackensack University, Hackensack, NJ, USA
| | | | - Nizar J Bahlis
- Charbonneau Cancer Research Institute, Calgary, AB, Canada
| | - Paul Richardson
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
92
|
Holoubek A, Strachotová D, Otevřelová P, Röselová P, Heřman P, Brodská B. AML-Related NPM Mutations Drive p53 Delocalization into the Cytoplasm with Possible Impact on p53-Dependent Stress Response. Cancers (Basel) 2021; 13:cancers13133266. [PMID: 34209894 PMCID: PMC8269334 DOI: 10.3390/cancers13133266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Nucleophosmin (NPM) is one of the most abundant nucleolar proteins and its mutations frequently occur in acute myeloid leukemia (AML). The mutations cause aberrant cytoplasmic localization of mutated protein (NPMmut) and often mediate dislocation of NPM interaction partners. Tumor suppressor p53 is known to interact with NPM in response to genotoxic stress and its cytoplasmic localization is an unfavorable prognostic factor in cancers. This study aims to characterize the NPM-p53 interaction and to elucidate the effect of the NPM mutations on p53 localization and expression in live cells. In addition, the cellular dynamics of NPMmut and p53 after treatment with nuclear export inhibitor Selinexor is described and the mechanism of the Selinexor action proposed. Our results contribute to a better understanding of the oncogenic potential of NPM mutations. Abstract Nucleophosmin (NPM) interaction with tumor suppressor p53 is a part of a complex interaction network and considerably affects cellular stress response. The impact of NPM1 mutations on its interaction with p53 has not been investigated yet, although consequences of NPMmut-induced p53 export to the cytoplasm are important for understanding the oncogenic potential of these mutations. We investigated p53-NPM interaction in live HEK-293T cells by FLIM-FRET and in cell lysates by immunoprecipitation. eGFP lifetime-photoconversion was used to follow redistribution dynamics of NPMmut and p53 in Selinexor-treated cells. We confirmed the p53-NPMwt interaction in intact cells and newly documented that this interaction is not compromised by the NPM mutation causing displacement of p53 to the cytoplasm. Moreover, the interaction was not abolished for non-oligomerizing NPM variants with truncated oligomerization domain, suggesting that oligomerization is not essential for interaction of NPM forms with p53. Inhibition of the nuclear exporter XPO1 by Selinexor caused expected nuclear relocalization of both NPMmut and p53. However, significantly different return rates of these proteins indicate nontrivial mechanism of p53 and NPMmut cellular trafficking. The altered p53 regulation in cells expressing NPMmut offers improved understanding to help investigational strategies targeting these mutations.
Collapse
Affiliation(s)
- Aleš Holoubek
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague, Czech Republic; (A.H.); (P.O.); (P.R.)
| | - Dita Strachotová
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague, Czech Republic;
| | - Petra Otevřelová
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague, Czech Republic; (A.H.); (P.O.); (P.R.)
| | - Pavla Röselová
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague, Czech Republic; (A.H.); (P.O.); (P.R.)
| | - Petr Heřman
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague, Czech Republic;
- Correspondence: (P.H.); (B.B.); Tel.: +420-951-551-461 (P.H.); +420-221-977-354 (B.B.)
| | - Barbora Brodská
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague, Czech Republic; (A.H.); (P.O.); (P.R.)
- Correspondence: (P.H.); (B.B.); Tel.: +420-951-551-461 (P.H.); +420-221-977-354 (B.B.)
| |
Collapse
|
93
|
Liu W, Patouret R, Barluenga S, Plank M, Loewith R, Winssinger N. Identification of a Covalent Importin-5 Inhibitor, Goyazensolide, from a Collective Synthesis of Furanoheliangolides. ACS CENTRAL SCIENCE 2021; 7:954-962. [PMID: 34235256 PMCID: PMC8227592 DOI: 10.1021/acscentsci.1c00056] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Indexed: 06/13/2023]
Abstract
Sesquiterpenes are a rich source of covalent inhibitors with a long history in traditional medicine and include several important therapeutics and tool compounds. Herein, we report the total synthesis of 16 sesquiterpene lactones via a build/couple/pair strategy, including goyasensolide. Using an alkyne-tagged cellular probe and proteomics analysis, we discovered that goyazensolide selectively targets the oncoprotein importin-5 (IPO5) for covalent engagement. We further demonstrate that goyazensolide inhibits the translocation of RASAL-2, a cargo of IPO5, into the nucleus and perturbs the binding between IPO5 and two specific viral nuclear localization sequences.
Collapse
Affiliation(s)
- Weilong Liu
- Department
of Organic Chemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, 30 quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Rémi Patouret
- Department
of Organic Chemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, 30 quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Sofia Barluenga
- Department
of Organic Chemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, 30 quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Michael Plank
- Department
of Molecular Biology, NCCR Chemical Biology, Faculty of Science, University of Geneva, 1205 Geneva, Switzerland
| | - Robbie Loewith
- Department
of Molecular Biology, NCCR Chemical Biology, Faculty of Science, University of Geneva, 1205 Geneva, Switzerland
| | - Nicolas Winssinger
- Department
of Organic Chemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, 30 quai Ernest-Ansermet, 1211 Geneva, Switzerland
| |
Collapse
|
94
|
Offidani M, Corvatta L, Morè S, Olivieri A. Belantamab Mafodotin for the Treatment of Multiple Myeloma: An Overview of the Clinical Efficacy and Safety. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:2401-2415. [PMID: 34103900 PMCID: PMC8180291 DOI: 10.2147/dddt.s267404] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/10/2021] [Indexed: 12/20/2022]
Abstract
Despite the introduction of immunomodulatory drugs (IMiDs), proteasome inhibitors (PIs), and, more recently, monoclonal antibodies (mAbs), in the chemotherapy regimens for newly diagnosed (NDMM) and relapsed/refractory MM (RRMM), the occurrence of drug resistance remains a challenge in MM patients. This is mainly in the advanced stage of the disease when treatments are limited, and the prognosis is abysmal. Nevertheless, novel molecules and therapeutic approaches are rapidly moving through the several phases of drug development and could address the need for new treatment options. The recent innovative B-cell maturation antigen (BCMA) targeted immunotherapies, such as belantamab mafodotin, the first-in-class monoclonal antibody-drug conjugate (ADC), induce an effective and durable response in triple-class refractory disease and to be approved in MM. In contrast with the other BCMA-targeted therapies as CAR T cells with a complex manufacturing process, and bispecific antibodies, both requiring inpatient hospitalization to monitor the occurrence of severe adverse events, belantamab mafodotin is an “off-the-shelf” drug that can be administered in an outpatient setting. Many belantamab mafodotin-based combinations are under evaluation in Phase I, II, and III clinical trials either late or in early RRMM patients. Ocular toxicity represents a peculiar side effect of belantamab mafodotin. This toxicity is generally manageable with adequate dose reductions or delays since most patients who developed keratopathy recovered on treatment and discontinued ADC are rare. Here, we described the most recent clinical data of belantamab mafodotin and discussed the possible leading role of this intriguing agent in the near future of MM treatment.
Collapse
Affiliation(s)
- Massimo Offidani
- Clinica di Ematologia Azienda Ospedaliero-Universitaria, Ospedali Riuniti di Ancona, Ancona, Italy
| | | | - Sonia Morè
- Clinica di Ematologia Azienda Ospedaliero-Universitaria, Ospedali Riuniti di Ancona, Ancona, Italy
| | - Attilio Olivieri
- Clinica di Ematologia Azienda Ospedaliero-Universitaria, Ospedali Riuniti di Ancona, Ancona, Italy
| |
Collapse
|
95
|
miR-34a-Mediated Survivin Inhibition Improves the Antitumor Activity of Selinexor in Triple-Negative Breast Cancer. Pharmaceuticals (Basel) 2021; 14:ph14060523. [PMID: 34072442 PMCID: PMC8227962 DOI: 10.3390/ph14060523] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive disease with limited therapeutic options. Here, we pursued a combinatorial therapeutic approach to enhance the activity of selinexor, the first-in-class XPO1 inhibitor, by miR-34a ectopic expression in human TNBC experimental models. Anti-proliferative activity induced by selinexor and miR-34a expression, singly and in combination, was evaluated by MTS assay and cell counting. The effect of treatments on survivin and apoptosis-related proteins was assessed by western blotting and ELISA. The antitumor and toxic effects of individual and combined treatments were evaluated on TNBC orthotopic xenografts in SCID mice. Selinexor consistently showed anti-proliferative activity, although to a variable extent, in the different TNBC cell lines and caused the impairment of survivin expression and intracellular distribution, accompanied by apoptosis induction. Consistent with in vitro data, the XPO1 inhibitor variably affected the growth of TNBC orthotopic xenografts. miR-34a cooperated with selinexor to reduce survivin expression and improved its anti-proliferative activity in TNBC cells. Most importantly, miR-34a expression markedly enhanced selinexor antitumor activity in the less sensitive TNBC xenograft model, in absence of toxicity. Our data form a solid foundation for promoting the use of a miR-34a-based approach to improve the therapeutic efficacy of selinexor in TNBC patients.
Collapse
|
96
|
Lei Y, An Q, Shen XF, Sui M, Li C, Jia D, Luo Y, Sun Q. Structure-Guided Design of the First Noncovalent Small-Molecule Inhibitor of CRM1. J Med Chem 2021; 64:6596-6607. [PMID: 33974430 DOI: 10.1021/acs.jmedchem.0c01675] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nuclear export factor chromosome region maintenance 1 (CRM1) is an attractive anticancer and antiviral drug target that spurred several research efforts to develop its inhibitor. Noncovalent CRM1 inhibitors are desirable, but none is reported to date. Here, we present the crystal structure of yeast CRM1 in complex with S109, a substructure of CBS9106 (under clinical test). Superimposition with the LFS-829 (another covalent CRM1 inhibitor) complex inspired the design of a noncovalent CRM1 inhibitor. Among nine synthesized compounds, noncovalent CRM1 inhibitor 1 (NCI-1) showed a high affinity to human and yeast CRM1 in the absence or presence of GST-bound Ras-related nuclear protein (RanGTP). Unlike covalent inhibitors, the crystal structure showed that NCI-1 is bound in the "open" nuclear export signal (NES) groove of CRM1, simultaneously occupying two hydrophobic pockets. NCI-1 additionally inhibited the nuclear export and proliferation of cells harboring the human CRM1-C528S mutant. Our work opens up the avenue of noncovalent CRM1 inhibitor development toward a more potent, less toxic, and broad-spectrum anticancer/antiviral therapy.
Collapse
Affiliation(s)
- Yuqin Lei
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University and Collaborative Innovation Centre of Biotherapy, Chengdu 610041, China
| | - Qi An
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University and Collaborative Innovation Centre of Biotherapy, Chengdu 610041, China
| | - Xiao-Fei Shen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, Division of Neurology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Min Sui
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University and Collaborative Innovation Centre of Biotherapy, Chengdu 610041, China
| | - Chungen Li
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University and Collaborative Innovation Centre of Biotherapy, Chengdu 610041, China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, Division of Neurology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Youfu Luo
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University and Collaborative Innovation Centre of Biotherapy, Chengdu 610041, China
| | - Qingxiang Sun
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University and Collaborative Innovation Centre of Biotherapy, Chengdu 610041, China
| |
Collapse
|
97
|
Ajayi-Smith A, van der Watt P, Mkwanazi N, Carden S, Trent JO, Leaner VD. Novel small molecule inhibitor of Kpnβ1 induces cell cycle arrest and apoptosis in cancer cells. Exp Cell Res 2021; 404:112637. [PMID: 34019908 DOI: 10.1016/j.yexcr.2021.112637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 04/02/2021] [Accepted: 05/02/2021] [Indexed: 12/11/2022]
Abstract
Karyopherin beta 1 (Kpnβ1) is a major nuclear import receptor that mediates the import of cellular cargoes into the nucleus. Recently it has been shown that Kpnβ1 is highly expressed in several cancers, and its inhibition by siRNA induces apoptotic cancer cell death, while having little effect on non-cancer cells. This study investigated the effect of a novel small molecule, Inhibitor of Nuclear Import-60 (INI-60), on cancer cell biology, as well as nuclear import activities associated with Kpnβ1, and cancer progression in vivo using cervical and oesophageal cancer cell lines. INI-60 treatment resulted in the inhibition of cancer cell proliferation, colony formation, migration and invasion, and induced a G1/S cell cycle arrest, followed by cancer cell death via apoptosis. Non-cancer cells were minimally affected by INI-60 at concentrations that inhibited cancer cells. INI-60 treatment altered the localisation of Kpnβ1 and its cargoes, NFκB/p65, NFAT and AP-1, and the overexpression of Kpnβ1 reduced INI-60 cytotoxicity. INI-60 also inhibited KYSE 30 oesophageal cancer cell line growth in vivo. Taken together, these results show that INI-60 inhibits the nuclear import of Kpnβ1 cargoes and interferes with cancer cell biology. INI-60 presents as a potential therapeutic approach for cancers of different tissue origins and warrants further investigation as a novel anti-cancer agent.
Collapse
Affiliation(s)
- Aderonke Ajayi-Smith
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, #SAMRC Gynaecology Cancer Research Centre, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, South Africa
| | - Pauline van der Watt
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, #SAMRC Gynaecology Cancer Research Centre, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, South Africa
| | - Nonkululeko Mkwanazi
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, #SAMRC Gynaecology Cancer Research Centre, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, South Africa
| | - Sarah Carden
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, #SAMRC Gynaecology Cancer Research Centre, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, South Africa
| | - John O Trent
- Department of Medicine, J.G. Brown Cancer Center, University of Louisville, Kentucky, USA
| | - Virna D Leaner
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, #SAMRC Gynaecology Cancer Research Centre, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, South Africa.
| |
Collapse
|
98
|
Venetoclax response is enhanced by selective inhibitor of nuclear export compounds in hematologic malignancies. Blood Adv 2021; 4:586-598. [PMID: 32045477 DOI: 10.1182/bloodadvances.2019000359] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 01/17/2020] [Indexed: 12/18/2022] Open
Abstract
The selective inhibitor of nuclear export (SINE) compounds selinexor (KPT-330) and eltanexor (KPT-8602) are from a novel class of small molecules that target exportin-1 (XPO1 [CRM1]), an essential nucleo-cytoplasmic transport protein responsible for the nuclear export of major tumor suppressor proteins and growth regulators such as p53, p21, and p27. XPO1 also affects the translation of messenger RNAs for critical oncogenes, including MYC, BCL2, MCL1, and BCL6, by blocking the export of the translation initiation factor eIF4E. Early trials with venetoclax (ABT-199), a potent, selective inhibitor of BCL2, have revealed responses across a variety of hematologic malignancies. However, many tumors are not responsive to venetoclax. We used models of acute myeloid leukemia (AML) and diffuse large B-cell lymphoma (DLBCL) to determine in vitro and in vivo responses to treatment with venetoclax and SINE compounds combined. Cotreatment with venetoclax and SINE compounds demonstrated loss of viability in multiple cell lines. Further in vitro analyses showed that this enhanced cell death was the result of an increase in apoptosis that led to a loss of clonogenicity in methylcellulose assays, coinciding with activation of p53 and loss of MCL1. Treatment with SINE compounds and venetoclax combined led to a reduction in tumor growth in both AML and DLBCL xenografts. Immunohistochemical analysis of tissue sections revealed that the reduction in tumor cells was partly the result of an induction of apoptosis. The enhanced effects of this combination were validated in primary AML and DLBCL patient cells. Our studies reveal synergy with SINE compounds and venetoclax in aggressive hematologic malignancies and provide a rationale for pursuing this approach in a clinical trial.
Collapse
|
99
|
Galinski B, Luxemburg M, Landesman Y, Pawel B, Johnson KJ, Master SR, Freeman KW, Loeb DM, Hébert JM, Weiser DA. XPO1 inhibition with selinexor synergizes with proteasome inhibition in neuroblastoma by targeting nuclear export of IkB. Transl Oncol 2021; 14:101114. [PMID: 33975179 PMCID: PMC8131731 DOI: 10.1016/j.tranon.2021.101114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/12/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
XPO1 is overabundant in high-risk neuroblastoma and correlates with poor survival. Neuroblastoma cells are sensitive to XPO1 inhibition with selinexor. Use of selinexor results in nuclear retention of IkB, diminishing NF-kB activity. Selinexor and bortezomib act synergistically through promotion of apoptosis. Synergy is mediated in part, through IkB regulation of NF-kB activity.
Across many cancer types in adults, upregulation of the nuclear-to-cytoplasmic transport protein Exportin-1 (XPO1) correlates with poor outcome and responsiveness to selinexor, an FDA-approved XPO1 inhibitor. Similar data are emerging in childhood cancers, for which selinexor is being evaluated in early phase clinical studies. Using proteomic profiling of primary tumor material from patients with high-risk neuroblastoma, as well as gene expression profiling from independent cohorts, we have demonstrated that XPO1 overexpression correlates with poor patient prognosis. Neuroblastoma cell lines are also sensitive to selinexor in the low nanomolar range. Based on these findings and knowledge that bortezomib, a proteasome inhibitor, blocks degradation of XPO1 cargo proteins, we hypothesized that combination treatment with selinexor and bortezomib would synergistically inhibit neuroblastoma cellular proliferation. We observed that selinexor promoted nuclear retention of IkB and that bortezomib augmented the ability of selinexor to induce cell-cycle arrest and cell death by apoptosis. This synergy was abrogated through siRNA knockdown of IkB. The synergistic effect of combining selinexor and bortezomib in vitro provides rationale for further investigation of this combination treatment for patients with high-risk neuroblastoma.
Collapse
Affiliation(s)
- Basia Galinski
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue Ullmann 813 Bronx, NY 10461, United States.
| | - Marcus Luxemburg
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue Ullmann 813 Bronx, NY 10461, United States
| | | | - Bruce Pawel
- Clinical Pathology, Children's Hospital Los Angeles, United States
| | - Katherine J Johnson
- Pathology and Laboratory Medicine, University of Pennsylvania, United States
| | - Stephen R Master
- Pathology and Laboratory Medicine, University of Pennsylvania, United States
| | - Kevin W Freeman
- Genetics, Genomics and Informatics, University of Tennessee Health Science Center, United States
| | - David M Loeb
- Department of Pediatrics, Albert Einstein College of Medicine, United States
| | - Jean M Hébert
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue Ullmann 813 Bronx, NY 10461, United States; Department of Neuroscience, Albert Einstein College of Medicine, United States
| | - Daniel A Weiser
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue Ullmann 813 Bronx, NY 10461, United States; Department of Pediatrics, Albert Einstein College of Medicine, United States
| |
Collapse
|
100
|
Liang X, Wu P, Yang Q, Xie Y, He C, Yin L, Yin Z, Yue G, Zou Y, Li L, Song X, Lv C, Zhang W, Jing B. An update of new small-molecule anticancer drugs approved from 2015 to 2020. Eur J Med Chem 2021; 220:113473. [PMID: 33906047 DOI: 10.1016/j.ejmech.2021.113473] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/02/2021] [Accepted: 04/09/2021] [Indexed: 01/09/2023]
Abstract
A high incidence of cancer has given rise to the development of more anti-tumor drugs. From 2015 to 2020, fifty-six new small-molecule anticancer drugs, divided into ten categories according to their anti-tumor target activities, have been approved. These include TKIs (30 drugs), MAPK inhibitors (3 drugs), CDK inhibitors (3 drugs), PARP inhibitors (3 drugs), PI3K inhibitors (3 drugs), SMO receptor antagonists (2 drugs), AR antagonists (2 drugs), SSTR inhibitors (2 drugs), IDH inhibitors (2 drugs) and others (6 drugs). Among them, PTK inhibitors (30/56) have led to a paradigm shift in cancer treatment with less toxicity and more potency. Each of their structures, approval statuses, applications, SAR analyses, and original research synthesis routes have been summarized, giving us a more comprehensive map for further efforts to design more specific targeted agents for reducing cancer in the future. We believe this review will help further research of potential antitumor agents in clinical usage.
Collapse
Affiliation(s)
- Xiaoxia Liang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China.
| | - Pan Wu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Qian Yang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yunyu Xie
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Changliang He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Lizi Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Guizhou Yue
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yuanfeng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Lixia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Cheng Lv
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Wei Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Bo Jing
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| |
Collapse
|