51
|
Wu X, Liu D, Wang S, Liu J. Circ_0007444 Inhibits the Progression of Ovarian Cancer via Mediating the miR-570-3p/PTEN Axis. Onco Targets Ther 2021; 14:97-110. [PMID: 33442269 PMCID: PMC7800700 DOI: 10.2147/ott.s266186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/11/2020] [Indexed: 12/27/2022] Open
Abstract
Purpose Some circular RNAs have been found to be effective therapeutic targets for OC. However, the biological function of circ_0007444 in OC is still unknown. Thus, this study investigated the role of circ_0007444 in OC progression. Methods circ_0007444 expression was monitored in 87 OC patients and OC cells by quantitative real-time polymerase chain reaction. An in vitro study was performed to research the biological function of circ_0007444, including cell counting kit-8 assay, flow cytometry, wound healing assay, and transwell experiment. Luciferase reporter gene assay and RNA immunoprecipitation assay were used to reveal the interaction between circ_0007444, miR-570-3p, and PTEN. PTEN protein expression was determined by Western blot. In vivo study was performed using nude mice. Ki67, PTEN expression, and apoptosis in xenograft tumors was respectively researched by immunohistochemistry and Tunel assay. Results circ_0007444 was down-regulated in 87 OC patients, which was related to advanced tumor stage and grade, large tumor size, and low 60-month percent survival (P<0.05 or P<0.01). circ_0007444 inhibited proliferation, migration, and invasion, and promoted apoptosis of OC cells (P<0.01). circ_0007444 promoted PTEN expression via sponging miR-570-3p. miR-570-3p up-regulation and PTEN down-regulation reversed the inhibitory effect of circ_0007444 on OC cells malignant phenotype (P<0.01). circ_0007444 inhibited OC growth in vivo. In xenograft tumor, circ_0007444 decreased Ki67 expression but increased PTEN expression and apoptosis. Conclusion circ_0007444 is a tumor suppressor in OC, which inhibits OC progression by mediating the miR-570-3p/PTEN. circ_0007444 can be a potential candidate for targeted therapy of OC.
Collapse
Affiliation(s)
- Xinyu Wu
- Department of Laboratory Medicine, The Affiliated Maternity and Child Health Care Hospital, Xuzhou Medical University, Xuzhou 221009, People's Republic of China
| | - Daoyan Liu
- Department of Laboratory Medicine, The Affiliated Maternity and Child Health Care Hospital, Xuzhou Medical University, Xuzhou 221009, People's Republic of China
| | - Shuzhen Wang
- Department of Laboratory Medicine, The Affiliated Maternity and Child Health Care Hospital, Xuzhou Medical University, Xuzhou 221009, People's Republic of China
| | - Jie Liu
- Department of Laboratory Medicine, The Affiliated Maternity and Child Health Care Hospital, Xuzhou Medical University, Xuzhou 221009, People's Republic of China
| |
Collapse
|
52
|
Ghafouri-Fard S, Abak A, Shoorei H, Mohaqiq M, Majidpoor J, Sayad A, Taheri M. Regulatory role of microRNAs on PTEN signaling. Biomed Pharmacother 2020; 133:110986. [PMID: 33166764 DOI: 10.1016/j.biopha.2020.110986] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Phosphatase and tensin homolog (PTEN) gene encodes a tumor suppressor protein which is altered in several malignancies. This protein is a negative regulator of the PI3K/AKT signaling. Several transcription factors regulate the expression of PTEN in positive or negative directions. Moreover, numerous microRNAs (miRNAs) have functional interactions with PTEN and inhibit its expression. Suppression of PTEN can attenuate the response of cancer cells to chemotherapeutic agents. Based on the critical role of this tumor suppressor gene, the identification of negative regulators of its expression has practical significance particularly in the prevention and management of cancer. Meanwhile, the interaction between miRNAs and PTEN has functional consequences in non-malignant disorders including myocardial infarction, osteoporosis, cerebral ischemic stroke, and recurrent abortion. In the present review, we describe the role of miRNAs in the regulation of expression and activity of PTEN.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahdi Mohaqiq
- Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University, Winston-Salem, NC, USA
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Arezou Sayad
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
53
|
Lin L, Chou H, Chang S, Liao E, Tsai Y, Wei Y, Chen H, Lin M, Wang Y, Chien Y, Yu X, Chan H. Targeting UDP-glucose dehydrogenase inhibits ovarian cancer growth and metastasis. J Cell Mol Med 2020; 24:11883-11902. [PMID: 32893977 PMCID: PMC7578908 DOI: 10.1111/jcmm.15808] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Abstract
More than 70% of patients with ovarian cancer are diagnosed in advanced stages. Therefore, it is urgent to identify a promising prognostic marker and understand the mechanism of ovarian cancer metastasis development. By using proteomics approaches, we found that UDP-glucose dehydrogenase (UGDH) was up-regulated in highly metastatic ovarian cancer TOV21G cells, characterized by high invasiveness (TOV21GHI ), in comparison to its parental control. Previous reports demonstrated that UGDH is involved in cell migration, but its specific role in cancer metastasis remains unclear. By performing immunohistochemical staining with tissue microarray, we found overexpression of UGDH in ovarian cancer tissue, but not in normal adjacent tissue. Silencing using RNA interference (RNAi) was utilized to knockdown UGDH, which resulted in a significant decrease in metastatic ability in transwell migration, transwell invasion and wound healing assays. The knockdown of UGDH caused cell cycle arrest in the G0 /G1 phase and induced a massive decrease of tumour formation rate in vivo. Our data showed that UGDH-depletion led to the down-regulation of epithelial-mesenchymal transition (EMT)-related markers as well as MMP2, and inactivation of the ERK/MAPK pathway. In conclusion, we found that the up-regulation of UGDH is related to ovarian cancer metastasis and the deficiency of UGDH leads to the decrease of cell migration, cell invasion, wound healing and cell proliferation ability. Our findings reveal that UGDH can serve as a prognostic marker and that the inhibition of UGDH is a promising strategy for ovarian cancer treatment.
Collapse
Affiliation(s)
- Li‐Hsun Lin
- Institute of Bioinformatics and Structural BiologyNational Tsing Hua UniversityHsinchuTaiwan
| | - Hsiu‐Chuan Chou
- Institute of Analytical and Environmental SciencesNational Tsing Hua UniversityHsinchuTaiwan
| | - Shing‐Jyh Chang
- Department of Obstetrics and GynecologyHsinchu MacKay Memorial HospitalHsinchuTaiwan
| | - En‐Chi Liao
- Institute of Bioinformatics and Structural BiologyNational Tsing Hua UniversityHsinchuTaiwan
| | - Yi‐Ting Tsai
- Institute of Bioinformatics and Structural BiologyNational Tsing Hua UniversityHsinchuTaiwan
| | - Yu‐Shan Wei
- Institute of Bioinformatics and Structural BiologyNational Tsing Hua UniversityHsinchuTaiwan
| | - Hsin‐Yi Chen
- Institute of Bioinformatics and Structural BiologyNational Tsing Hua UniversityHsinchuTaiwan
| | - Meng‐Wei Lin
- Institute of Bioinformatics and Structural BiologyNational Tsing Hua UniversityHsinchuTaiwan
| | - Yi‐Shiuan Wang
- Institute of Bioinformatics and Structural BiologyNational Tsing Hua UniversityHsinchuTaiwan
| | - Yu‐An Chien
- Institute of Bioinformatics and Structural BiologyNational Tsing Hua UniversityHsinchuTaiwan
| | - Xin‐Ru Yu
- Institute of Analytical and Environmental SciencesNational Tsing Hua UniversityHsinchuTaiwan
| | - Hong‐Lin Chan
- Institute of Bioinformatics and Structural BiologyNational Tsing Hua UniversityHsinchuTaiwan
- Department of Medical SciencesNational Tsing Hua UniversityHsinchuTaiwan
| |
Collapse
|
54
|
Nguyen VHL, Yue C, Du KY, Salem M, O’Brien J, Peng C. The Role of microRNAs in Epithelial Ovarian Cancer Metastasis. Int J Mol Sci 2020; 21:ijms21197093. [PMID: 32993038 PMCID: PMC7583982 DOI: 10.3390/ijms21197093] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/11/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the deadliest gynecological cancer, and the major cause of death is mainly attributed to metastasis. MicroRNAs (miRNAs) are a group of small non-coding RNAs that exert important regulatory functions in many biological processes through their effects on regulating gene expression. In most cases, miRNAs interact with the 3′ UTRs of target mRNAs to induce their degradation and suppress their translation. Aberrant expression of miRNAs has been detected in EOC tumors and/or the biological fluids of EOC patients. Such dysregulation occurs as the result of alterations in DNA copy numbers, epigenetic regulation, and miRNA biogenesis. Many studies have demonstrated that miRNAs can promote or suppress events related to EOC metastasis, such as cell migration, invasion, epithelial-to-mesenchymal transition, and interaction with the tumor microenvironment. In this review, we provide a brief overview of miRNA biogenesis and highlight some key events and regulations related to EOC metastasis. We summarize current knowledge on how miRNAs are dysregulated, focusing on those that have been reported to regulate metastasis. Furthermore, we discuss the role of miRNAs in promoting and inhibiting EOC metastasis. Finally, we point out some limitations of current findings and suggest future research directions in the field.
Collapse
Affiliation(s)
- Vu Hong Loan Nguyen
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (V.H.L.N.); (C.Y.); (K.Y.D.); (M.S.); (J.O.)
| | - Chenyang Yue
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (V.H.L.N.); (C.Y.); (K.Y.D.); (M.S.); (J.O.)
| | - Kevin Y. Du
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (V.H.L.N.); (C.Y.); (K.Y.D.); (M.S.); (J.O.)
| | - Mohamed Salem
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (V.H.L.N.); (C.Y.); (K.Y.D.); (M.S.); (J.O.)
| | - Jacob O’Brien
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (V.H.L.N.); (C.Y.); (K.Y.D.); (M.S.); (J.O.)
| | - Chun Peng
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (V.H.L.N.); (C.Y.); (K.Y.D.); (M.S.); (J.O.)
- Centre for Research in Biomolecular Interactions, York University, Toronto, ON M3J 1P3, Canada
- Correspondence:
| |
Collapse
|
55
|
Bi X, Lv X, Liu D, Guo H, Yao G, Wang L, Liang X, Yang Y. METTL3-mediated maturation of miR-126-5p promotes ovarian cancer progression via PTEN-mediated PI3K/Akt/mTOR pathway. Cancer Gene Ther 2020; 28:335-349. [PMID: 32939058 DOI: 10.1038/s41417-020-00222-3] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/05/2020] [Accepted: 08/21/2020] [Indexed: 02/03/2023]
Abstract
Methyltransferase-like 3 (METTL3) functions as an RNA methyltransferase that controls the modification of N(6)-methyladenosine (m6A) to influence the biosynthesis, decay, and translation of mRNAs. This study aims to investigate the regulation of METTL3-mediated promotion of microRNA-126-5p (miR-126-5p) in the progression of ovarian cancer and to identify the mechanisms in relation to phosphatase and tensin homolog (PTEN) and the PI3K/Akt/mTOR pathway. We found high expression of miR-126-5p in ovarian cancer samples compared to paired adjacent samples, and also in ovarian cancer cell lines. Gain-of-function experiments demonstrated that overexpression of miR-126-5p promoted ovarian cancer cell proliferation, migration, and invasion, and inhibited their apoptosis. Luciferase reporter assay identified that miR-126-5p could directly bind to PTEN. By targeting PTEN, miR-126-5p could activate the PI3K/Akt/mTOR pathway. Furthermore, the RNA methyltransferase METTL3 promoted the maturation of miR-126-5p via the m6A modification of pri-miR-126-5p. Finally, in vitro and in vivo experiments substantiated that silencing of METTL3 impeded the progression and tumorigenesis of ovarian cancer by impairing the miR-126-5p-targeted inhibition of PTEN and thus blocking the PI3K/Akt/mTOR pathway. Coherently, knockdown of METTL3 inhibited the effect of miR-126-5p to upregulate PTEN, and thus prevents PI3K/Akt/mTOR pathway activation, thereby suppressing the development of ovarian cancer. These findings highlight potential targets for the future ovarian cancer treatment as well as tumorigenic mechanisms mediated by m6A modification.
Collapse
Affiliation(s)
- Xuehan Bi
- Department of Obstetrics and Gynecology, the First Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China.,Department of Obstetrics and Gynecology, the First Hospital of Lanzhou University, Key Laboratory of Gynecologic Oncology Gansu Province, Lanzhou, 730000, People's Republic of China
| | - Xiao Lv
- Department of Obstetrics and Gynecology, the First Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China.,Department of Obstetrics and Gynecology, the First Hospital of Lanzhou University, Key Laboratory of Gynecologic Oncology Gansu Province, Lanzhou, 730000, People's Republic of China
| | - Dajiang Liu
- Department of Obstetrics and Gynecology, the First Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China.,Department of Obstetrics and Gynecology, the First Hospital of Lanzhou University, Key Laboratory of Gynecologic Oncology Gansu Province, Lanzhou, 730000, People's Republic of China
| | - Hongtao Guo
- Department of Obstetrics and Gynecology, the First Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China.,Department of Obstetrics and Gynecology, the First Hospital of Lanzhou University, Key Laboratory of Gynecologic Oncology Gansu Province, Lanzhou, 730000, People's Republic of China
| | - Guang Yao
- Department of Obstetrics and Gynecology, the First Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China.,Department of Obstetrics and Gynecology, the First Hospital of Lanzhou University, Key Laboratory of Gynecologic Oncology Gansu Province, Lanzhou, 730000, People's Republic of China
| | - Lijuan Wang
- Department of Obstetrics and Gynecology, the First Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China.,Department of Obstetrics and Gynecology, the First Hospital of Lanzhou University, Key Laboratory of Gynecologic Oncology Gansu Province, Lanzhou, 730000, People's Republic of China
| | - Xiaolei Liang
- Department of Obstetrics and Gynecology, the First Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China.,Department of Obstetrics and Gynecology, the First Hospital of Lanzhou University, Key Laboratory of Gynecologic Oncology Gansu Province, Lanzhou, 730000, People's Republic of China
| | - Yongxiu Yang
- Department of Obstetrics and Gynecology, the First Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China. .,Department of Obstetrics and Gynecology, the First Hospital of Lanzhou University, Key Laboratory of Gynecologic Oncology Gansu Province, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
56
|
Dong L, Cao X, Luo Y, Zhang G, Zhang D. A Positive Feedback Loop of lncRNA DSCR8/miR-98-5p/STAT3/HIF-1α Plays a Role in the Progression of Ovarian Cancer. Front Oncol 2020; 10:1713. [PMID: 32984052 PMCID: PMC7492662 DOI: 10.3389/fonc.2020.01713] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/31/2020] [Indexed: 12/28/2022] Open
Abstract
Background Accumulating studies have revealed that long non-coding RNA (lncRNA) and microRNA (miRNA) contribute to ovarian cancer (OC). DSCR8 has been found to mediate hepatocellular carcinoma development, while its role in OC remains to be explored. Methods In this study, lncRNA DSCR8 and miR-98-5p expressions in OC tissues and adjacent non-cancer tissues were determined by reverse transcriptase polymerase chain reaction (RT-PCR). Besides, gain-of-function or loss-of-function assays of DSCR8 and miR-98-5p were conducted on OC cell lines SKOV-3 and A2780. Cell proliferation was detected with Cell Counting Kit (CCK)8 and colony formation assay, and western blot was used to test the apoptotic levels of OC cells. Transwell assay was conducted to examine cell invasion, and the epithelial–mesenchymal transition (EMT) of OC cells was tested by western blot. Moreover, luciferase activity assay and RNA immunoprecipitation (RIP) assay were conducted to verify the relationships between DSCR8 and miR-98-5p, miR-98-5p, and signal transducer and activator of transcription 3 (STAT3). Results DSCR8 was remarkedly increased in OC tissues and associated with poorer survival of OC patients. Overexpressing DSCR8 promoted cell proliferation, invasion, and EMT but inhibited apoptosis. On the other hand, miR-98-5p was downregulated in OC tissues and relieved the progression of OC. Moreover, overexpressed DSCR8 increased the levels of STAT3 and hypoxia inducible factor 1 alpha (HIF-1α) and dampened the functions of miR-98-5p on OC. Pharmaceutical intervention of STAT3 and HIF-1α significantly altered the expressions of DSCR8 and miR-98-5p. Conclusion The present results suggested a positive feedback loop of lncRNA DSCR8/miR-98-5p/STAT3/HIF-α axis in the progression of OC.
Collapse
Affiliation(s)
- Lina Dong
- Department of Obstetrics and Gynecology Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuejiao Cao
- Department of Obstetrics and Gynecology Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yi Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guoqing Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dandan Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
57
|
Zou Y, Zhao X, Li Y, Duan S. miR-552: an important post-transcriptional regulator that affects human cancer. J Cancer 2020; 11:6226-6233. [PMID: 33033505 PMCID: PMC7532495 DOI: 10.7150/jca.46613] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022] Open
Abstract
MiR-552 is a small non-coding RNA located on chromosome 1p34.3, and its expression level is significantly up-regulated in tissues or cells of various tumors. miR-552 can target multiple genes. These targeted genes play important regulatory roles in biological processes such as gene transcription and translation, cell cycle progression, cell proliferation, apoptosis, cell migration, and invasion. Besides, miR-552 may affect the efficacy of various anticancer drugs by targeting genes such as TP53 and RUNX3. This review summarizes the biological functions and clinical expressions of miR-552 in human cancer. Our goal is to explore the potential value of miR-552 in the diagnosis, prognosis, and treatment of human cancer.
Collapse
Affiliation(s)
- Yuhao Zou
- Medical Genetics Center, Ningbo University School of Medicine, Ningbo, Zhejiang, China
| | - Xin Zhao
- Medical Genetics Center, Ningbo University School of Medicine, Ningbo, Zhejiang, China
| | - Yin Li
- Medical Genetics Center, Ningbo University School of Medicine, Ningbo, Zhejiang, China
| | - Shiwei Duan
- Medical Genetics Center, Ningbo University School of Medicine, Ningbo, Zhejiang, China
| |
Collapse
|
58
|
Lu S, Liu W, Shi H, Zhou H. Exosomal miR-34b inhibits proliferation and the epithelial-mesenchymal transition by targeting Notch2 in ovarian cancer. Oncol Lett 2020; 20:2721-2728. [PMID: 32782588 PMCID: PMC7400462 DOI: 10.3892/ol.2020.11837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 05/29/2020] [Indexed: 12/13/2022] Open
Abstract
Exosomal microRNA (miR) can affect signaling pathways in various physiological and pathological conditions, including ovarian cancer (OC). miR-34b, the first microRNA targeted in a human clinical trial for cancer treatment, exhibited decreased expression in several cancer types. However, the biological function of exosomal miR-34b in OC has not been elucidated. In the present study, using reverse transcription-quantitative PCR, it was reported that exosomal miR-34b is downregulated in OC cells. Exosomal miR-34b reduced cell proliferation and epithelial-mesenchymal transition (EMT) in the OC cell line SKOV3. In addition, it was confirmed that Notch2, which is upregulated in SKOV3 cells, is a target of miR-34b. Moreover, exosomal miR-34b and Notch2 levels were found to be negatively correlated. The present data highlights the importance of exosomal miR-34b-mediated inhibition of cell proliferation and EMT, suggesting that exosomal miR-34b has value as a diagnostic biomarker and a potential molecular target for the treatment of OC.
Collapse
Affiliation(s)
- Shenglian Lu
- Department of Obstetrics and Gynecology, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Wuxia Liu
- Department of Special Clinic, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Hong Shi
- Department of Ultrasound, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Han Zhou
- Center for Reproductive Medicine, The Second People's Hospital of Changzhou, Changzhou, Jiangsu 213003, P.R. China
| |
Collapse
|
59
|
An Y, Zhang J, Cheng X, Li B, Tian Y, Zhang X, Zhao F. miR-454 suppresses the proliferation and invasion of ovarian cancer by targeting E2F6. Cancer Cell Int 2020; 20:237. [PMID: 32536825 PMCID: PMC7291497 DOI: 10.1186/s12935-020-01300-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022] Open
Abstract
Background The aberrant expression of microRNA-454 (miR-454) has been confirmed to be involved in the development of cancers. However, the functional role of miR-454 in the progression of ovarian cancer remains unclear. Methods The expression of miR-454 in ovarian cancer cells and serum of ovarian cancer patients was detected by RT-PCR. CCK8, colony formation, transwell, and flow cytometry assays were conducted to assess the effects of miR-454 on ovarian cancer cell proliferation, migration, invasion, and apoptosis, respectively. Dual-luciferase reporter assay was used to confirm the targeting relationship between miR-454 and E2F6. The expression pattern of E2F6 in ovarian cancer tissues was detected using immunohistochemistry (IHC) assay. The relative expression of related proteins was examined using western blot analysis. Results miR-454 was markedly down-regulated by hypoxia in ovarian cancer cells. Compared with normal samples, the expression of miR-454 was up-regulated in the serum of ovarian cancer patients, and correlated with the clinicopathological stages of ovarian cancer. Next, we found that miR-454 overexpression inhibited the proliferation, migration and invasion of OVCAR3 and SKOV3 cells, as well as promoted apoptosis. In addition, the Akt/mTOR and Wnt/β-catenin signaling pathway were inhibited by miR-454 in ovarian cancer cells. Mechanically, bioinformatic analysis and dual-luciferase reporter assay confirmed that E2F6 was a direct target of miR-454 and negatively regulated by miR-454 in ovarian cancer cells. Moreover, IHC analysis showed that E2F6 was highly expressed in ovarian cancer tissues. Finally, we found that the increasing cell proliferation and migration triggered by E2F6 overexpression were abolished by miR-454 overexpression. Conclusion Taken together, these results highlight the role of miR-454 as a tumor suppressor in ovarian cancer cells by targeting E2F6, indicating that miR-454 may be a potential diagnostic biomarker and therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Yunhe An
- Department of Biotechnology, Beijing Center for Physical and Chemical Analysis, No. 27 Xisanhuan North Road, Beijing, 100089 China
| | - Jun Zhang
- Department of Obstetrics and Gynecology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029 China
| | - Xiaoyan Cheng
- Department of Biotechnology, Beijing Center for Physical and Chemical Analysis, No. 27 Xisanhuan North Road, Beijing, 100089 China
| | - Baoming Li
- Department of Biotechnology, Beijing Center for Physical and Chemical Analysis, No. 27 Xisanhuan North Road, Beijing, 100089 China
| | - Yanjie Tian
- Department of Biotechnology, Beijing Center for Physical and Chemical Analysis, No. 27 Xisanhuan North Road, Beijing, 100089 China
| | - Xiaoli Zhang
- Department of Biotechnology, Beijing Center for Physical and Chemical Analysis, No. 27 Xisanhuan North Road, Beijing, 100089 China
| | - Fangqi Zhao
- Department of Obstetrics and Gynecology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029 China
| |
Collapse
|