51
|
Ahmadi A, De Toma I, Vilor-Tejedor N, Eftekhariyan Ghamsari MR, Sadeghi I. Transposable elements in brain health and disease. Ageing Res Rev 2020; 64:101153. [PMID: 32977057 DOI: 10.1016/j.arr.2020.101153] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 07/22/2020] [Accepted: 08/19/2020] [Indexed: 12/17/2022]
Abstract
Transposable elements (TEs) occupy a large fraction of the human genome but only a small proportion of these elements are still active today. Recent works have suggested that TEs are expressed and active in the brain, challenging the dogma that neuronal genomes are static and revealing that they are susceptible to somatic genomic alterations. These new findings have major implications for understanding the neuroplasticity of the brain, which could hypothetically have a role in behavior and cognition, and contribute to vulnerability to disease. As active TEs could induce genetic diversity and mutagenesis, their influences on human brain development and diseases are of great interest. In this review, we will focus on the active TEs in the human genome and discuss in detail their impacts on human brain development. Furthermore, the association between TEs and brain-related diseases is discussed.
Collapse
|
52
|
Strain-Specific Epigenetic Regulation of Endogenous Retroviruses: The Role of Trans-Acting Modifiers. Viruses 2020; 12:v12080810. [PMID: 32727076 PMCID: PMC7472028 DOI: 10.3390/v12080810] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023] Open
Abstract
Approximately 10 percent of the mouse genome consists of endogenous retroviruses (ERVs), relics of ancient retroviral infections that are classified based on their relatedness to exogenous retroviral genera. Because of the ability of ERVs to retrotranspose, as well as their cis-acting regulatory potential due to functional elements located within the elements, mammalian ERVs are generally subject to epigenetic silencing by DNA methylation and repressive histone modifications. The mobilisation and expansion of ERV elements is strain-specific, leading to ERVs being highly polymorphic between inbred mouse strains, hinting at the possibility of the strain-specific regulation of ERVs. In this review, we describe the existing evidence of mouse strain-specific epigenetic control of ERVs and discuss the implications of differential ERV regulation on epigenetic inheritance models. We consider Krüppel-associated box domain (KRAB) zinc finger proteins as likely candidates for strain-specific ERV modifiers, drawing on insights gained from the study of the strain-specific behaviour of transgenes. We conclude by considering the coevolution of KRAB zinc finger proteins and actively transposing ERV elements, and highlight the importance of cross-strain studies in elucidating the mechanisms and consequences of strain-specific ERV regulation.
Collapse
|
53
|
Cullen H, Schorn AJ. Endogenous Retroviruses Walk a Fine Line between Priming and Silencing. Viruses 2020; 12:v12080792. [PMID: 32718022 PMCID: PMC7472051 DOI: 10.3390/v12080792] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/31/2022] Open
Abstract
Endogenous retroviruses (ERVs) in mammals are closely related to infectious retroviruses and utilize host tRNAs as a primer for reverse transcription and replication, a hallmark of long terminal repeat (LTR) retroelements. Their dependency on tRNA makes these elements vulnerable to targeting by small RNAs derived from the 3′-end of mature tRNAs (3′-tRFs), which are highly expressed during epigenetic reprogramming and potentially protect many tissues in eukaryotes. Here, we review some key functions of ERV reprogramming during mouse and human development and discuss how small RNA-mediated silencing maintains genome stability when ERVs are temporarily released from heterochromatin repression. In particular, we take a closer look at the tRNA primer binding sites (PBS) of two highly active ERV families in mice and their sequence variation that is shaped by the conflict of successful tRNA priming for replication versus evasion of silencing by 3′-tRFs.
Collapse
|
54
|
Rebollo R, Galvão-Ferrarini M, Gagnier L, Zhang Y, Ferraj A, Beck CR, Lorincz MC, Mager DL. Inter-Strain Epigenomic Profiling Reveals a Candidate IAP Master Copy in C3H Mice. Viruses 2020; 12:v12070783. [PMID: 32708087 PMCID: PMC7411935 DOI: 10.3390/v12070783] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/03/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022] Open
Abstract
Insertions of endogenous retroviruses cause a significant fraction of mutations in inbred mice but not all strains are equally susceptible. Notably, most new Intracisternal A particle (IAP) ERV mutagenic insertions have occurred in C3H mice. We show here that strain-specific insertional polymorphic IAPs accumulate faster in C3H/HeJ mice, relative to other sequenced strains, and that IAP transcript levels are higher in C3H/HeJ embryonic stem (ES) cells compared to other ES cells. To investigate the mechanism for high IAP activity in C3H mice, we identified 61 IAP copies in C3H/HeJ ES cells enriched with H3K4me3 (a mark of active promoters) and, among those tested, all are unmethylated in C3H/HeJ ES cells. Notably, 13 of the 61 are specific to C3H/HeJ and are members of the non-autonomous 1Δ1 IAP subfamily that is responsible for nearly all new insertions in C3H. One copy is full length with intact open reading frames and hence potentially capable of providing proteins in trans to other 1Δ1 elements. This potential “master copy” is present in other strains, including 129, but its 5’ long terminal repeat (LTR) is methylated in 129 ES cells. Thus, the unusual IAP activity in C3H may be due to reduced epigenetic repression coupled with the presence of a master copy.
Collapse
Affiliation(s)
- Rita Rebollo
- Terry Fox Laboratory, British Columbia Cancer, Vancouver, BC V5Z1L3, Canada; (L.G.); (Y.Z.)
- University of Lyon, INSA-Lyon, INRA, BF2i, UMR0203, F-69621 Villeurbanne, France;
- Correspondence: (R.R.); (D.L.M.)
| | | | - Liane Gagnier
- Terry Fox Laboratory, British Columbia Cancer, Vancouver, BC V5Z1L3, Canada; (L.G.); (Y.Z.)
| | - Ying Zhang
- Terry Fox Laboratory, British Columbia Cancer, Vancouver, BC V5Z1L3, Canada; (L.G.); (Y.Z.)
| | - Ardian Ferraj
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA; (A.F.); (C.R.B.)
| | - Christine R. Beck
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA; (A.F.); (C.R.B.)
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Matthew C. Lorincz
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T1Z3, Canada;
| | - Dixie L. Mager
- Terry Fox Laboratory, British Columbia Cancer, Vancouver, BC V5Z1L3, Canada; (L.G.); (Y.Z.)
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T1Z3, Canada;
- Correspondence: (R.R.); (D.L.M.)
| |
Collapse
|
55
|
Zhuang QKW, Galvez JH, Xiao Q, AlOgayil N, Hyacinthe J, Taketo T, Bourque G, Naumova AK. Sex Chromosomes and Sex Phenotype Contribute to Biased DNA Methylation in Mouse Liver. Cells 2020; 9:E1436. [PMID: 32527045 PMCID: PMC7349295 DOI: 10.3390/cells9061436] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
Sex biases in the genome-wide distribution of DNA methylation and gene expression levels are some of the manifestations of sexual dimorphism in mammals. To advance our understanding of the mechanisms that contribute to sex biases in DNA methylation and gene expression, we conducted whole genome bisulfite sequencing (WGBS) as well as RNA-seq on liver samples from mice with different combinations of sex phenotype and sex-chromosome complement. We compared groups of animals with different sex phenotypes, but the same genetic sexes, and vice versa, same sex phenotypes, but different sex-chromosome complements. We also compared sex-biased DNA methylation in mouse and human livers. Our data show that sex phenotype, X-chromosome dosage, and the presence of Y chromosome shape the differences in DNA methylation between males and females. We also demonstrate that sex bias in autosomal methylation is associated with sex bias in gene expression, whereas X-chromosome dosage-dependent methylation differences are not, as expected for a dosage-compensation mechanism. Furthermore, we find partial conservation between the repertoires of mouse and human genes that are associated with sex-biased methylation, an indication that gene function is likely to be an important factor in this phenomenon.
Collapse
Affiliation(s)
- Qinwei Kim-Wee Zhuang
- Department of Human Genetics, McGill University, Montréal, QC H3A 1C7, Canada; (Q.K.-W.Z.); (N.A.)
| | - Jose Hector Galvez
- Canadian Centre for Computational Genomics, Montréal, QC H3A 0G1, Canada;
| | - Qian Xiao
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA;
| | - Najla AlOgayil
- Department of Human Genetics, McGill University, Montréal, QC H3A 1C7, Canada; (Q.K.-W.Z.); (N.A.)
| | - Jeffrey Hyacinthe
- Department of Quantitative Life Sciences, McGill University, Montréal, QC H3A 0G4, Canada;
| | - Teruko Taketo
- The Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada;
- Department of Surgery, McGill University, Montréal, QC H4A 3J1, Canada
- Department of Obstetrics and Gynecology, McGill University, Montréal, QC H4A 3J1, Canada
| | - Guillaume Bourque
- Department of Human Genetics, McGill University, Montréal, QC H3A 1C7, Canada; (Q.K.-W.Z.); (N.A.)
- Canadian Centre for Computational Genomics, Montréal, QC H3A 0G1, Canada;
| | - Anna K. Naumova
- Department of Human Genetics, McGill University, Montréal, QC H3A 1C7, Canada; (Q.K.-W.Z.); (N.A.)
- The Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada;
- Department of Obstetrics and Gynecology, McGill University, Montréal, QC H4A 3J1, Canada
| |
Collapse
|
56
|
Wolf G, de Iaco A, Sun MA, Bruno M, Tinkham M, Hoang D, Mitra A, Ralls S, Trono D, Macfarlan TS. KRAB-zinc finger protein gene expansion in response to active retrotransposons in the murine lineage. eLife 2020; 9:56337. [PMID: 32479262 PMCID: PMC7289599 DOI: 10.7554/elife.56337] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/31/2020] [Indexed: 11/13/2022] Open
Abstract
The Krüppel-associated box zinc finger protein (KRAB-ZFP) family diversified in mammals. The majority of human KRAB-ZFPs bind transposable elements (TEs), however, since most TEs are inactive in humans it is unclear whether KRAB-ZFPs emerged to suppress TEs. We demonstrate that many recently emerged murine KRAB-ZFPs also bind to TEs, including the active ETn, IAP, and L1 families. Using a CRISPR/Cas9-based engineering approach, we genetically deleted five large clusters of KRAB-ZFPs and demonstrate that target TEs are de-repressed, unleashing TE-encoded enhancers. Homozygous knockout mice lacking one of two KRAB-ZFP gene clusters on chromosome 2 and chromosome 4 were nonetheless viable. In pedigrees of chromosome 4 cluster KRAB-ZFP mutants, we identified numerous novel ETn insertions with a modest increase in mutants. Our data strongly support the current model that recent waves of retrotransposon activity drove the expansion of KRAB-ZFP genes in mice and that many KRAB-ZFPs play a redundant role restricting TE activity.
Collapse
Affiliation(s)
- Gernot Wolf
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, United States
| | - Alberto de Iaco
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ming-An Sun
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, United States
| | - Melania Bruno
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, United States
| | - Matthew Tinkham
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, United States
| | - Don Hoang
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, United States
| | - Apratim Mitra
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, United States
| | - Sherry Ralls
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, United States
| | - Didier Trono
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Todd S Macfarlan
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, United States
| |
Collapse
|
57
|
Lee SC, Ernst E, Berube B, Borges F, Parent JS, Ledon P, Schorn A, Martienssen RA. Arabidopsis retrotransposon virus-like particles and their regulation by epigenetically activated small RNA. Genome Res 2020; 30:576-588. [PMID: 32303559 PMCID: PMC7197481 DOI: 10.1101/gr.259044.119] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/24/2020] [Indexed: 02/07/2023]
Abstract
In Arabidopsis, LTR retrotransposons are activated by mutations in the chromatin gene DECREASE in DNA METHYLATION 1 (DDM1), giving rise to 21- to 22-nt epigenetically activated siRNA (easiRNA) that depend on RNA DEPENDENT RNA POLYMERASE 6 (RDR6). We purified virus-like particles (VLPs) from ddm1 and ddm1rdr6 mutants in which genomic RNA is reverse transcribed into complementary DNA. High-throughput short-read and long-read sequencing of VLP DNA (VLP DNA-seq) revealed a comprehensive catalog of active LTR retrotransposons without the need for mapping transposition, as well as independent of genomic copy number. Linear replication intermediates of the functionally intact COPIA element EVADE revealed multiple central polypurine tracts (cPPTs), a feature shared with HIV in which cPPTs promote nuclear localization. For one member of the ATCOPIA52 subfamily (SISYPHUS), cPPT intermediates were not observed, but abundant circular DNA indicated transposon "suicide" by auto-integration within the VLP. easiRNA targeted EVADE genomic RNA, polysome association of GYPSY (ATHILA) subgenomic RNA, and transcription via histone H3 lysine-9 dimethylation. VLP DNA-seq provides a comprehensive landscape of LTR retrotransposons and their control at transcriptional, post-transcriptional, and reverse transcriptional levels.
Collapse
Affiliation(s)
- Seung Cho Lee
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Evan Ernst
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Benjamin Berube
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Filipe Borges
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Jean-Sebastien Parent
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Paul Ledon
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Andrea Schorn
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Robert A Martienssen
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
58
|
Abstract
Since Barbara McClintock’s groundbreaking discovery of mobile DNA sequences some 70 years ago, transposable elements have come to be recognized as important mutagenic agents impacting genome composition, genome evolution, and human health. Transposable elements are a major constituent of prokaryotic and eukaryotic genomes, and the transposition mechanisms enabling transposon proliferation over evolutionary time remain engaging topics for study, suggesting complex interactions with the host, both antagonistic and mutualistic. The impact of transposition is profound, as over 100 human heritable diseases have been attributed to transposon insertions. Transposition can be highly mutagenic, perturbing genome integrity and gene expression in a wide range of organisms. This mutagenic potential has been exploited in the laboratory, where transposons have long been utilized for phenotypic screening and the generation of defined mutant libraries. More recently, barcoding applications and methods for RNA-directed transposition are being used towards new phenotypic screens and studies relevant for gene therapy. Thus, transposable elements are significant in affecting biology both
in vivo and in the laboratory, and this review will survey advances in understanding the biological role of transposons and relevant laboratory applications of these powerful molecular tools.
Collapse
Affiliation(s)
- Anuj Kumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.,Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
59
|
A role for the rare endogenous retrovirus β4 in development of Japanese fancy mice. Commun Biol 2020; 3:53. [PMID: 32020010 PMCID: PMC7000388 DOI: 10.1038/s42003-020-0781-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 01/14/2020] [Indexed: 11/18/2022] Open
Abstract
Two coat-color mutations, nonagouti, which changes coat color from wild-type agouti to black, and piebald, which induces irregular white spotting, are the characteristics of Japanese fancy mouse strain JF1/Ms. In our Communications Biology article, we reported that insertion of a rare type of endogenous retrovirus β4 has caused both coat color mutations. Although there are some reports on the roles of β4 in the mouse genome, further studies on β4 will uncover new features of endogenous retrovirus sequences. In light of their recent finding that insertion of a rare endogenous retrovirus, β4, is the cause of the characteristic coat coloring in agouti and piebald mice, Akira Tanave and Tsuyoshi Koide now discuss the origin and expansion of this element as well as potential roles of β4 in the mouse genome.
Collapse
|
60
|
Moschetti R, Palazzo A, Lorusso P, Viggiano L, Massimiliano Marsano R. "What You Need, Baby, I Got It": Transposable Elements as Suppliers of Cis-Operating Sequences in Drosophila. BIOLOGY 2020; 9:E25. [PMID: 32028630 PMCID: PMC7168160 DOI: 10.3390/biology9020025] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 12/18/2022]
Abstract
Transposable elements (TEs) are constitutive components of both eukaryotic and prokaryotic genomes. The role of TEs in the evolution of genes and genomes has been widely assessed over the past years in a variety of model and non-model organisms. Drosophila is undoubtedly among the most powerful model organisms used for the purpose of studying the role of transposons and their effects on the stability and evolution of genes and genomes. Besides their most intuitive role as insertional mutagens, TEs can modify the transcriptional pattern of host genes by juxtaposing new cis-regulatory sequences. A key element of TE biology is that they carry transcriptional control elements that fine-tune the transcription of their own genes, but that can also perturb the transcriptional activity of neighboring host genes. From this perspective, the transposition-mediated modulation of gene expression is an important issue for the short-term adaptation of physiological functions to the environmental changes, and for long-term evolutionary changes. Here, we review the current literature concerning the regulatory and structural elements operating in cis provided by TEs in Drosophila. Furthermore, we highlight that, besides their influence on both TEs and host genes expression, they can affect the chromatin structure and epigenetic status as well as both the chromosome's structure and stability. It emerges that Drosophila is a good model organism to study the effect of TE-linked regulatory sequences, and it could help future studies on TE-host interactions in any complex eukaryotic genome.
Collapse
Affiliation(s)
- Roberta Moschetti
- Dipartimento di Biologia, Università degli Studi di Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy; (R.M.); (P.L.); (L.V.)
| | - Antonio Palazzo
- Laboratory of Translational Nanotechnology, “Istituto Tumori Giovanni Paolo II” I.R.C.C.S, Viale Orazio Flacco 65, 70125 Bari, Italy;
| | - Patrizio Lorusso
- Dipartimento di Biologia, Università degli Studi di Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy; (R.M.); (P.L.); (L.V.)
| | - Luigi Viggiano
- Dipartimento di Biologia, Università degli Studi di Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy; (R.M.); (P.L.); (L.V.)
| | - René Massimiliano Marsano
- Dipartimento di Biologia, Università degli Studi di Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy; (R.M.); (P.L.); (L.V.)
| |
Collapse
|
61
|
Ectopic expression of the Stabilin2 gene triggered by an intracisternal A particle (IAP) element in DBA/2J strain of mice. Mamm Genome 2020; 31:2-16. [PMID: 31912264 PMCID: PMC7060167 DOI: 10.1007/s00335-019-09824-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/29/2019] [Indexed: 12/21/2022]
Abstract
Stabilin2 (Stab2) encodes a large transmembrane protein which is predominantly expressed in the liver sinusoidal endothelial cells (LSECs) and functions as a scavenger receptor for various macromolecules including hyaluronans (HA). In DBA/2J mice, plasma HA concentration is ten times higher than in 129S6 or C57BL/6J mice, and this phenotype is genetically linked to the Stab2 locus. Stab2 mRNA in the LSECs was significantly lower in DBA/2J than in 129S6, leading to reduced STAB2 proteins in the DBA/2J LSECs. We found a retrovirus-derived transposable element, intracisternal A particle (IAP), in the promoter region of Stab2DBA which likely interferes with normal expression in the LSECs. In contrast, in other tissues of DBA/2J mice, the IAP drives high ectopic Stab2DBA transcription starting within the 5′ long terminal repeat of IAP in a reverse orientation and continuing through the downstream Stab2DBA. Ectopic transcription requires the Stab2-IAP element but is dominantly suppressed by the presence of loci on 59.7–73.0 Mb of chromosome (Chr) 13 from C57BL/6J, while the same region in 129S6 requires additional loci for complete suppression. Chr13:59.9–73 Mb contains a large number of genes encoding Krüppel-associated box-domain zinc-finger proteins that target transposable elements-derived sequences and repress their expression. Despite the high amount of ectopic Stab2DBA transcript in tissues other than liver, STAB2 protein was undetectable and unlikely to contribute to the plasma HA levels of DBA/2J mice. Nevertheless, the IAP insertion and its effects on the transcription of the downstream Stab2DBA exemplify that stochastic evolutional events could significantly influence susceptibility to complex but common diseases.
Collapse
|
62
|
Bertozzi TM, Ferguson-Smith AC. Metastable epialleles and their contribution to epigenetic inheritance in mammals. Semin Cell Dev Biol 2020; 97:93-105. [PMID: 31551132 DOI: 10.1016/j.semcdb.2019.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 02/02/2023]
Abstract
Many epigenetic differences between individuals are driven by genetic variation. Mammalian metastable epialleles are unusual in that they show variable DNA methylation states between genetically identical individuals. The occurrence of such states across generations has resulted in their consideration by many as strong evidence for epigenetic inheritance in mammals, with the classic Avy and AxinFu mouse models - each products of repeat element insertions - being the most widely accepted examples. Equally, there has been interest in exploring their use as epigenetic biosensors given their susceptibility to environmental compromise. Here we review the classic murine metastable epialleles as well as more recently identified candidates, with the aim of providing a more holistic understanding of their biology. We consider the extent to which epigenetic inheritance occurs at metastable epialleles and explore the limited mechanistic insights into the establishment of their variable epigenetic states. We discuss their environmental modulation and their potential relevance in genome regulation. In light of recent whole-genome screens for novel metastable epialleles, we point out the need to reassess their biological relevance in multi-generational studies and we highlight their value as a model to study repeat element silencing as well as the mechanisms and consequences of mammalian epigenetic stochasticity.
Collapse
Affiliation(s)
- Tessa M Bertozzi
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | | |
Collapse
|
63
|
Endogenous Retroviruses Activity as a Molecular Signature of Neurodevelopmental Disorders. Int J Mol Sci 2019; 20:ijms20236050. [PMID: 31801288 PMCID: PMC6928979 DOI: 10.3390/ijms20236050] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 12/20/2022] Open
Abstract
Human endogenous retroviruses (HERVs) are genetic elements resulting from relics of ancestral infection of germline cells, now recognized as cofactors in the etiology of several complex diseases. Here we present a review of findings supporting the role of the abnormal HERVs activity in neurodevelopmental disorders. The derailment of brain development underlies numerous neuropsychiatric conditions, likely starting during prenatal life and carrying on during subsequent maturation of the brain. Autism spectrum disorders, attention deficit hyperactivity disorders, and schizophrenia are neurodevelopmental disorders that arise clinically during early childhood or adolescence, currently attributed to the interplay among genetic vulnerability, environmental risk factors, and maternal immune activation. The role of HERVs in human embryogenesis, their intrinsic responsiveness to external stimuli, and the interaction with the immune system support the involvement of HERVs in the derailed neurodevelopmental process. Although definitive proofs that HERVs are involved in neurobehavioral alterations are still lacking, both preclinical models and human studies indicate that the abnormal expression of ERVs could represent a neurodevelopmental disorders-associated biological trait in affected individuals and their parents.
Collapse
|
64
|
Jeon J, Park JS, Min B, Chung SK, Kim MK, Kang YK. Retroelement Insertion in a CRISPR/Cas9 Editing Site in the Early Embryo Intensifies Genetic Mosaicism. Front Cell Dev Biol 2019; 7:273. [PMID: 31781562 PMCID: PMC6857330 DOI: 10.3389/fcell.2019.00273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/23/2019] [Indexed: 12/17/2022] Open
Abstract
Continued CRISPR/Cas9-mediated editing activity that allows differential and asynchronous modification of alleles in successive cell generations expands allelic complexity. To understand the earliest events during CRISPR/Cas9 editing and the allelic selection among the progeny of subsequent cell divisions, we inspected in detail the genotypes of 4- and 8-cell embryos and embryonic stem cells (ESCs) after microinjection of a CRISPR toolkit into the zygotes. We found a higher editing frequency in 8-cell embryos than in 4-cell embryos, indicating that the CRISPR/Cas9 activity persisted through the 8-cell stage. Analysis of a CRISPR/Cas9 transgenic founder mouse revealed that four different alleles were present in its organs in different combinations and that its germline included three different mutant alleles, as shown by the genotypes of the pups. The indel depth, which measured the extent of indels at the sequence level within single embryos, decreased significantly as the embryos advanced to form ESCs, suggesting that exclusion of fatal indels occurred in the subsequent cell generations. Interestingly, we discovered that the CRISPR sites frequently contained introduced retroelement sequences and that this occurred preferentially with certain classes of retroelements. Therefore, in addition to CRISPR/Cas9's innate mechanism of separate, differential enzymatic modifications of alleles, the frequent retroelement insertions that occur in early mouse embryos during CRISPR/Cas9 editing further expand the allelic diversity and mosaicism in the resulting transgenic founders.
Collapse
Affiliation(s)
- Jeehyun Jeon
- Development and Differentiation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.,Department of Animal Science, Chungnam National University, Daejeon, South Korea
| | - Jung Sun Park
- Development and Differentiation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Byungkuk Min
- Development and Differentiation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Sun-Ku Chung
- Division of Clinical Medicine, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Min Kyu Kim
- Department of Animal Science, Chungnam National University, Daejeon, South Korea
| | - Yong-Kook Kang
- Development and Differentiation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.,Department of Functional Genomics, University of Science and Technology (UST), Daejeon, South Korea
| |
Collapse
|
65
|
|
66
|
Abstract
Transposable elements (TEs) are mobile DNA sequences that colonize genomes and threaten genome integrity. As a result, several mechanisms appear to have emerged during eukaryotic evolution to suppress TE activity. However, TEs are ubiquitous and account for a prominent fraction of most eukaryotic genomes. We argue that the evolutionary success of TEs cannot be explained solely by evasion from host control mechanisms. Rather, some TEs have evolved commensal and even mutualistic strategies that mitigate the cost of their propagation. These coevolutionary processes promote the emergence of complex cellular activities, which in turn pave the way for cooption of TE sequences for organismal function.
Collapse
Affiliation(s)
- Rachel L Cosby
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Ni-Chen Chang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|