51
|
Hu Z, Wang L, Shi Z, Jiang J, Li X, Chen Y, Li K, Luo D. Customized one-step preparation of sgRNA transcription templates via overlapping PCR Using short primers and its application in vitro and in vivo gene editing. Cell Biosci 2019; 9:87. [PMID: 31673328 PMCID: PMC6814055 DOI: 10.1186/s13578-019-0350-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/04/2019] [Indexed: 11/10/2022] Open
Abstract
Overlap extension polymerase chain reaction (PCR) is a powerful technology for DNA assembly. Based on this technology, we synthesized DNA templates, which were transcribed into sgRNA in vitro, and further detected their efficiency of purified sgRNAs with Cas9 nuclease. The sgRNAs synthesized by this approach can effectively cleave the DNA fragments of interest in vitro and in vivo. Compared with the conventional method for generating sgRNA, it does not require construction of recombinant plasmids and design of primers to amplify sgRNA core fragment. Only several short primers with overlapped sequences are needed to assemble a DNA fragment as the template of sgRNA. This modified and simplified method is highly applicable and less time-consuming.
Collapse
Affiliation(s)
- Zheng Hu
- The First People's Hospital of Chenzhou, Affiliated to University of Southern Medical University, Chenzhou, 423000 People's Republic of China.,2National & Local Joint Engineering Laboratory for High-throughput Molecular Diagnosis Technology, Affiliated to The First People's Hospital of Chenzhou, University of South China, Chenzhou, 423000 People's Republic of China.,3Translational Medicine Institute, University of South China, Chenzhou, 423000 People's Republic of China
| | - Li Wang
- The First People's Hospital of Chenzhou, Affiliated to University of Southern Medical University, Chenzhou, 423000 People's Republic of China.,2National & Local Joint Engineering Laboratory for High-throughput Molecular Diagnosis Technology, Affiliated to The First People's Hospital of Chenzhou, University of South China, Chenzhou, 423000 People's Republic of China.,3Translational Medicine Institute, University of South China, Chenzhou, 423000 People's Republic of China
| | - Zhaoying Shi
- 4Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, 518055 Guangdong China
| | - Jing Jiang
- 2National & Local Joint Engineering Laboratory for High-throughput Molecular Diagnosis Technology, Affiliated to The First People's Hospital of Chenzhou, University of South China, Chenzhou, 423000 People's Republic of China.,3Translational Medicine Institute, University of South China, Chenzhou, 423000 People's Republic of China
| | - Xiangning Li
- 2National & Local Joint Engineering Laboratory for High-throughput Molecular Diagnosis Technology, Affiliated to The First People's Hospital of Chenzhou, University of South China, Chenzhou, 423000 People's Republic of China.,3Translational Medicine Institute, University of South China, Chenzhou, 423000 People's Republic of China
| | - Yonglong Chen
- 4Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, 518055 Guangdong China
| | - Kai Li
- 2National & Local Joint Engineering Laboratory for High-throughput Molecular Diagnosis Technology, Affiliated to The First People's Hospital of Chenzhou, University of South China, Chenzhou, 423000 People's Republic of China.,3Translational Medicine Institute, University of South China, Chenzhou, 423000 People's Republic of China.,Genetalks Bio-tech (Changsha) Limited Liability Company, Changsha, 410013 Hunan China
| | - Dixian Luo
- The First People's Hospital of Chenzhou, Affiliated to University of Southern Medical University, Chenzhou, 423000 People's Republic of China.,2National & Local Joint Engineering Laboratory for High-throughput Molecular Diagnosis Technology, Affiliated to The First People's Hospital of Chenzhou, University of South China, Chenzhou, 423000 People's Republic of China.,3Translational Medicine Institute, University of South China, Chenzhou, 423000 People's Republic of China
| |
Collapse
|
52
|
Parola C, Neumeier D, Friedensohn S, Csepregi L, Di Tacchio M, Mason DM, Reddy ST. Antibody discovery and engineering by enhanced CRISPR-Cas9 integration of variable gene cassette libraries in mammalian cells. MAbs 2019; 11:1367-1380. [PMID: 31478465 PMCID: PMC6816377 DOI: 10.1080/19420862.2019.1662691] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Antibody engineering in mammalian cells offers the important advantage of expression and screening of libraries in their native conformation, increasing the likelihood of generating candidates with more favorable molecular properties. Major advances in cellular engineering enabled by CRISPR-Cas9 genome editing have made it possible to expand the use of mammalian cells in biotechnological applications. Here, we describe an antibody engineering and screening approach where complete variable light (VL) and heavy (VH) chain cassette libraries are stably integrated into the genome of hybridoma cells by enhanced Cas9-driven homology-directed repair (HDR), resulting in their surface display and secretion. By developing an improved HDR donor format that utilizes in situ linearization, we are able to achieve >15-fold improvement of genomic integration, resulting in a screening workflow that only requires a simple plasmid electroporation. This proved suitable for different applications in antibody discovery and engineering. By integrating and screening an immune library obtained from the variable gene repertoire of an immunized mouse, we could isolate a diverse panel of >40 unique antigen-binding variants. Additionally, we successfully performed affinity maturation by directed evolution screening of an antibody library based on random mutagenesis, leading to the isolation of several clones with affinities in the picomolar range.
Collapse
Affiliation(s)
- Cristina Parola
- Department of Biosystems Science and Engineering, ETH Zürich , Basel , Switzerland
| | - Daniel Neumeier
- Department of Biosystems Science and Engineering, ETH Zürich , Basel , Switzerland
| | - Simon Friedensohn
- Department of Biosystems Science and Engineering, ETH Zürich , Basel , Switzerland
| | - Lucia Csepregi
- Department of Biosystems Science and Engineering, ETH Zürich , Basel , Switzerland
| | | | - Derek M Mason
- Department of Biosystems Science and Engineering, ETH Zürich , Basel , Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zürich , Basel , Switzerland
| |
Collapse
|
53
|
Bollen Y, Post J, Koo BK, Snippert HJG. How to create state-of-the-art genetic model systems: strategies for optimal CRISPR-mediated genome editing. Nucleic Acids Res 2019; 46:6435-6454. [PMID: 29955892 PMCID: PMC6061873 DOI: 10.1093/nar/gky571] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/14/2018] [Indexed: 12/24/2022] Open
Abstract
Model systems with defined genetic modifications are powerful tools for basic research and translational disease modelling. Fortunately, generating state-of-the-art genetic model systems is becoming more accessible to non-geneticists due to advances in genome editing technologies. As a consequence, solely relying on (transient) overexpression of (mutant) effector proteins is no longer recommended since scientific standards increasingly demand genetic modification of endogenous loci. In this review, we provide up-to-date guidelines with respect to homology-directed repair (HDR)-mediated editing of mammalian model systems, aimed at assisting researchers in designing an efficient genome editing strategy.
Collapse
Affiliation(s)
- Yannik Bollen
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, The Netherlands.,Oncode Institute, The Netherlands.,Medical Cell BioPhysics, MIRA Institute, University of Twente, Enschede, The Netherlands
| | - Jasmin Post
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, The Netherlands.,Oncode Institute, The Netherlands
| | - Bon-Kyoung Koo
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| | - Hugo J G Snippert
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, The Netherlands.,Oncode Institute, The Netherlands
| |
Collapse
|
54
|
Tang XD, Gao F, Liu MJ, Fan QL, Chen DK, Ma WT. Methods for Enhancing Clustered Regularly Interspaced Short Palindromic Repeats/Cas9-Mediated Homology-Directed Repair Efficiency. Front Genet 2019; 10:551. [PMID: 31263478 PMCID: PMC6590329 DOI: 10.3389/fgene.2019.00551] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 05/24/2019] [Indexed: 12/26/2022] Open
Abstract
The evolution of organisms has provided a variety of mechanisms to maintain the integrity of its genome, but as damage occurs, DNA damage repair pathways are necessary to resolve errors. Among them, the DNA double-strand break repair pathway is highly conserved in eukaryotes, including mammals. Nonhomologous DNA end joining and homologous directed repair are two major DNA repair pathways that are synergistic or antagonistic. Clustered regularly interspaced short palindromic repeats genome editing techniques based on the nonhomologous DNA end joining repair pathway have been used to generate highly efficient insertions or deletions of variable-sized genes but are error-prone and inaccurate. By combining the homology-directed repair pathway with clustered regularly interspaced short palindromic repeats cleavage, more precise genome editing via insertion or deletion of the desired fragment can be performed. However, homologous directed repair is not efficient and needs further improvement. Here, we describe several ways to improve the efficiency of homologous directed repair by regulating the cell cycle, expressing key proteins involved in homologous recombination and selecting appropriate donor DNA.
Collapse
Affiliation(s)
- Xi-Dian Tang
- Veterinary Immunology Laboratory, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| | - Fei Gao
- Veterinary Immunology Laboratory, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| | - Ming-Jie Liu
- Veterinary Immunology Laboratory, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| | - Qin-Lei Fan
- China Animal Health and Epidemiology Center, Qingdao, China
| | - De-Kun Chen
- Veterinary Immunology Laboratory, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| | - Wen-Tao Ma
- Veterinary Immunology Laboratory, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| |
Collapse
|
55
|
Satheesh V, Zhang H, Wang X, Lei M. Precise editing of plant genomes - Prospects and challenges. Semin Cell Dev Biol 2019; 96:115-123. [PMID: 31002868 DOI: 10.1016/j.semcdb.2019.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/26/2022]
Abstract
The past decade has witnessed unprecedented development in genome engineering, a process that enables targeted modification of genomes. The identification of sequence-specific nucleases such as zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and the CRISPR/Cas system, in particular, has led to precise and efficient introduction of genetic variations into genomes of various organisms. Since the CRISPR/Cas system is highly versatile, cost-effective and much superior to ZFNs and TALENs, its widespread adoption by the research community has been inevitable. In plants, a number of studies have shown that CRISPR/Cas could be a potential tool in basic research where insertion, deletion and/or substitution in the genetic sequence could help answer fundamental questions about plant processes, and in applied research these technologies could help build or reverse-engineer plant systems to make them more useful. In this review article, we summarize technologies for precise editing of genomes with a special focus on the CRISPR/Cas system, highlight the latest developments in the CRISPR/Cas system and discuss the challenges and prospects in using the system for plant biology research.
Collapse
Affiliation(s)
- Viswanathan Satheesh
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Hui Zhang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xianting Wang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingguang Lei
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
56
|
Sun Y, Yan N, Mu L, Sun B, Deng J, Fang Y, Shao S, Yan Q, Han F, Zhang Z, Xu K. sgRNA-shRNA Structure Mediated SNP Site Editing on Porcine IGF2 Gene by CRISPR/StCas9. Front Genet 2019; 10:347. [PMID: 31057603 PMCID: PMC6482158 DOI: 10.3389/fgene.2019.00347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/01/2019] [Indexed: 12/26/2022] Open
Abstract
The SNP within intron 3 of the porcine IGF2 gene (G3072A) plays an important role for muscle growth and fat deposition in pigs. In this study, the StCas9 derived from Streptococcus thermophilus together with the Drosha-mediated sgRNA-shRNA structure were combined to boost the G to A base editing on the IGF2 SNP site, which we called “SNP editing.” The codon-humanized StCas9 as we previously reported was firstly compared with the prevalently used SpCas9 derived from Streptococcus pyogenes using our idiomatic surrogate report assay, and the StCas9 demonstrated a comparable targeting activity. On the other hand, by combining shRNA with sgRNA, simultaneous gene silencing and genome targeting can be achieved. Thus, the novel IGF2.sgRNA-LIG4.shRNA-IGF2.sgRNA structure was constructed to enhance the sgRNA/Cas9-mediated HDR-based IGF2 SNP editing by silencing the LIG4 gene, which is a key molecule of the HDR’s competitive NHEJ pathway. The sgRNA-shRNA/StCas9 all-in-one expression vector and the IGF2.sgRNA/StCas9 as control were separately used to transfect porcine PK15 cells together with an ssODNs donor for the IGF2 SNP editing. The editing events were detected by the RFLP assay, Sanger sequencing as well as Deep-sequencing, and the Deep-sequencing results finally demonstrated a significant higher HDR-based editing efficiency (16.38%) for our sgRNA-shRNA/StCas9 strategy. In short, we achieved effective IGF2 SNP editing by using the combined sgRNA-shRNA/StCas9 strategy, which will facilitate the further production of base-edited animals and perhaps extend for the gene therapy for the base correction of some genetic diseases.
Collapse
Affiliation(s)
- Yongsen Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Nana Yan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Lu Mu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Bing Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jingrong Deng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yuanyuan Fang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Simin Shao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Qiang Yan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Furong Han
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zhiying Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Kun Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
57
|
Cullot G, Boutin J, Toutain J, Prat F, Pennamen P, Rooryck C, Teichmann M, Rousseau E, Lamrissi-Garcia I, Guyonnet-Duperat V, Bibeyran A, Lalanne M, Prouzet-Mauléon V, Turcq B, Ged C, Blouin JM, Richard E, Dabernat S, Moreau-Gaudry F, Bedel A. CRISPR-Cas9 genome editing induces megabase-scale chromosomal truncations. Nat Commun 2019; 10:1136. [PMID: 30850590 PMCID: PMC6408493 DOI: 10.1038/s41467-019-09006-2] [Citation(s) in RCA: 274] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 02/06/2019] [Indexed: 12/19/2022] Open
Abstract
CRISPR-Cas9 is a promising technology for genome editing. Here we use Cas9 nuclease-induced double-strand break DNA (DSB) at the UROS locus to model and correct congenital erythropoietic porphyria. We demonstrate that homology-directed repair is rare compared with NHEJ pathway leading to on-target indels and causing unwanted dysfunctional protein. Moreover, we describe unexpected chromosomal truncations resulting from only one Cas9 nuclease-induced DSB in cell lines and primary cells by a p53-dependent mechanism. Altogether, these side effects may limit the promising perspectives of the CRISPR-Cas9 nuclease system for disease modeling and gene therapy. We show that the single nickase approach could be safer since it prevents on- and off-target indels and chromosomal truncations. These results demonstrate that the single nickase and not the nuclease approach is preferable, not only for modeling disease but also and more importantly for the safe management of future CRISPR-Cas9-mediated gene therapies.
Collapse
MESH Headings
- CRISPR-Associated Protein 9/genetics
- CRISPR-Associated Protein 9/metabolism
- CRISPR-Cas Systems
- Chromosome Deletion
- Chromosomes, Human, Pair 10
- Clustered Regularly Interspaced Short Palindromic Repeats
- DNA/genetics
- DNA/metabolism
- DNA Breaks, Double-Stranded
- Deoxyribonuclease I/genetics
- Deoxyribonuclease I/metabolism
- Fibroblasts/cytology
- Fibroblasts/metabolism
- Gene Editing/methods
- Genetic Therapy/methods
- Genome, Human
- HEK293 Cells
- High-Throughput Nucleotide Sequencing
- Humans
- K562 Cells
- Models, Biological
- Porphyria, Erythropoietic/genetics
- Porphyria, Erythropoietic/metabolism
- Porphyria, Erythropoietic/pathology
- Porphyria, Erythropoietic/therapy
- Primary Cell Culture
- RNA, Guide, CRISPR-Cas Systems/genetics
- RNA, Guide, CRISPR-Cas Systems/metabolism
- Recombinational DNA Repair
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- Uroporphyrinogen III Synthetase/genetics
- Uroporphyrinogen III Synthetase/metabolism
Collapse
Affiliation(s)
- Grégoire Cullot
- Univ. Bordeaux, 33000, Bordeaux, France
- INSERM U1035, Biotherapy of genetic diseases, inflammatory disorders and cancers, 33000, Bordeaux, France
| | - Julian Boutin
- Univ. Bordeaux, 33000, Bordeaux, France
- INSERM U1035, Biotherapy of genetic diseases, inflammatory disorders and cancers, 33000, Bordeaux, France
- Biochemistry Laboratory, CHU Bordeaux, 33000, Bordeaux, France
| | - Jérôme Toutain
- Medical genetic laboratory, CHU Bordeaux, 33000, Bordeaux, France
| | - Florence Prat
- Univ. Bordeaux, 33000, Bordeaux, France
- INSERM U1035, Biotherapy of genetic diseases, inflammatory disorders and cancers, 33000, Bordeaux, France
| | - Perrine Pennamen
- Medical genetic laboratory, CHU Bordeaux, 33000, Bordeaux, France
| | - Caroline Rooryck
- Medical genetic laboratory, CHU Bordeaux, 33000, Bordeaux, France
| | - Martin Teichmann
- Univ. Bordeaux, 33000, Bordeaux, France
- UMR 5320, INSERM U1212, ARNA Laboratory, 33000, Bordeaux, France
| | - Emilie Rousseau
- Univ. Bordeaux, 33000, Bordeaux, France
- UMR 5320, INSERM U1212, ARNA Laboratory, 33000, Bordeaux, France
| | - Isabelle Lamrissi-Garcia
- Univ. Bordeaux, 33000, Bordeaux, France
- INSERM U1035, Biotherapy of genetic diseases, inflammatory disorders and cancers, 33000, Bordeaux, France
| | - Véronique Guyonnet-Duperat
- INSERM U1035, Biotherapy of genetic diseases, inflammatory disorders and cancers, 33000, Bordeaux, France
- Vectorology Platform, 33000, Bordeaux, France
| | - Alice Bibeyran
- INSERM U1035, Biotherapy of genetic diseases, inflammatory disorders and cancers, 33000, Bordeaux, France
- Vectorology Platform, 33000, Bordeaux, France
| | - Magalie Lalanne
- Univ. Bordeaux, 33000, Bordeaux, France
- INSERM U1035, Biotherapy of genetic diseases, inflammatory disorders and cancers, 33000, Bordeaux, France
| | | | - Béatrice Turcq
- Univ. Bordeaux, 33000, Bordeaux, France
- INSERM U1218, ACTION, 33000, Bordeaux, France
| | - Cécile Ged
- Univ. Bordeaux, 33000, Bordeaux, France
- INSERM U1035, Biotherapy of genetic diseases, inflammatory disorders and cancers, 33000, Bordeaux, France
- Biochemistry Laboratory, CHU Bordeaux, 33000, Bordeaux, France
- Laboratory of excellence, GR-Ex, Imagine institute, 75015, Paris, France
| | - Jean-Marc Blouin
- Univ. Bordeaux, 33000, Bordeaux, France
- INSERM U1035, Biotherapy of genetic diseases, inflammatory disorders and cancers, 33000, Bordeaux, France
- Biochemistry Laboratory, CHU Bordeaux, 33000, Bordeaux, France
- Laboratory of excellence, GR-Ex, Imagine institute, 75015, Paris, France
| | - Emmanuel Richard
- Univ. Bordeaux, 33000, Bordeaux, France
- INSERM U1035, Biotherapy of genetic diseases, inflammatory disorders and cancers, 33000, Bordeaux, France
- Biochemistry Laboratory, CHU Bordeaux, 33000, Bordeaux, France
- Laboratory of excellence, GR-Ex, Imagine institute, 75015, Paris, France
| | - Sandrine Dabernat
- Univ. Bordeaux, 33000, Bordeaux, France
- INSERM U1035, Biotherapy of genetic diseases, inflammatory disorders and cancers, 33000, Bordeaux, France
- Biochemistry Laboratory, CHU Bordeaux, 33000, Bordeaux, France
| | - François Moreau-Gaudry
- Univ. Bordeaux, 33000, Bordeaux, France.
- INSERM U1035, Biotherapy of genetic diseases, inflammatory disorders and cancers, 33000, Bordeaux, France.
- Biochemistry Laboratory, CHU Bordeaux, 33000, Bordeaux, France.
- Vectorology Platform, 33000, Bordeaux, France.
- Laboratory of excellence, GR-Ex, Imagine institute, 75015, Paris, France.
| | - Aurélie Bedel
- Univ. Bordeaux, 33000, Bordeaux, France
- INSERM U1035, Biotherapy of genetic diseases, inflammatory disorders and cancers, 33000, Bordeaux, France
- Biochemistry Laboratory, CHU Bordeaux, 33000, Bordeaux, France
- Laboratory of excellence, GR-Ex, Imagine institute, 75015, Paris, France
| |
Collapse
|
58
|
Yu N, Yang J, Mishina Y, Giannobile WV. Genome Editing: A New Horizon for Oral and Craniofacial Research. J Dent Res 2018; 98:36-45. [PMID: 30354846 DOI: 10.1177/0022034518805978] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Precise and efficient genetic manipulations have enabled researchers to understand gene functions in disease and development, providing a platform to search for molecular cures. Over the past decade, the unprecedented advancement of genome editing techniques has revolutionized the biological research fields. Early genome editing strategies involved many naturally occurring nucleases, including meganucleases, zinc finger nucleases, and transcription activator-like effector-based nucleases. More recently, the clustered regularly interspaced short palindromic repeats (CRISPR) / CRISPR-associated nucleases (CRISPR/Cas) system has greatly enriched genetic manipulation methods in conducting research. Those nucleases generate double-strand breaks in the target gene sequences and then utilize DNA repair mechanisms to permit precise yet versatile genetic manipulations. The oral and craniofacial field harbors a plethora of diseases and developmental defects that require genetic models that can exploit these genome editing techniques. This review provides an overview of the genome editing techniques, particularly the CRISPR/Cas9 technique, for the oral and craniofacial research community. We also discuss the details about the emerging applications of genome editing in oral and craniofacial biology.
Collapse
Affiliation(s)
- N Yu
- 1 Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - J Yang
- 2 Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.,3 The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Y Mishina
- 2 Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - W V Giannobile
- 1 Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.,4 Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
59
|
Aumann RA, Schetelig MF, Häcker I. Highly efficient genome editing by homology-directed repair using Cas9 protein in Ceratitis capitata. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 101:85-93. [PMID: 30157456 DOI: 10.1016/j.ibmb.2018.08.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 08/21/2018] [Accepted: 08/24/2018] [Indexed: 06/08/2023]
Abstract
The Mediterranean fruit fly Ceratitis capitata is a highly polyphagous and invasive insect pest, causing enormous economic damage in horticultural systems. A successful and environment-friendly control strategy is the sterile insect technique (SIT) that reduces pest populations through infertile matings with mass-released, sterilized insects. However, the SIT is not readily applicable to each pest species. While transgenic approaches hold great promise to improve critical aspects of the SIT to transfer it to new species, they are suspect to strict or even prohibitive legislation regarding the release of genetically modified (GM) organisms. In contrast, specific mutations created via CRISPR-Cas genome editing are not regulated as GM in the US, and might thus allow creating optimal strains for SIT. Here, we describe highly efficient homology-directed repair genome editing in C. capitata by injecting pre-assembled CRISPR-Cas9 ribonucleoprotein complexes using different guide RNAs and a short single-stranded oligodeoxynucleotide donor to convert an enhanced green fluorescent protein in C. capitata into a blue fluorescent protein. Six out of seven fertile and individually backcrossed G0 individuals generated 57-90% knock-in rate within their total offspring and 70-96% knock-in rate within their phenotypically mutant offspring. Based on the achieved efficiency, this approach could also be used to introduce mutations which do not produce a screenable phenotype and identify positive mutants with a reasonable workload. Furthermore, CRISPR-Cas HDR would allow to recreate mutations formerly identified in classical mutagenesis screens and to transfer them to related species to establish new (SIT-like) pest control systems. Considering the potential that CRISPR-induced alterations in organisms could be classified as non-GM in additional countries, such new strains could potentially be used for pest control applications without the need to struggle with GMO directives.
Collapse
Affiliation(s)
- Roswitha A Aumann
- Justus-Liebig-University Gießen, Institute for Insect Biotechnology, Department of Insect Biotechnology in Plant Protection, Winchesterstr. 2, 35394 Gießen, Germany
| | - Marc F Schetelig
- Justus-Liebig-University Gießen, Institute for Insect Biotechnology, Department of Insect Biotechnology in Plant Protection, Winchesterstr. 2, 35394 Gießen, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Division of Bioresources, Department of Insect Pest and Vector Control, 35394 Gießen, Germany.
| | - Irina Häcker
- Justus-Liebig-University Gießen, Institute for Insect Biotechnology, Department of Insect Biotechnology in Plant Protection, Winchesterstr. 2, 35394 Gießen, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Division of Bioresources, Department of Insect Pest and Vector Control, 35394 Gießen, Germany
| |
Collapse
|