51
|
Yu S, Zhang G, Liu Z, Wu P, Yu Z, Wang J. Repeated inoculation with fresh rumen fluid before or during weaning modulates the microbiota composition and co-occurrence of the rumen and colon of lambs. BMC Microbiol 2020; 20:29. [PMID: 32028889 PMCID: PMC7006167 DOI: 10.1186/s12866-020-1716-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 01/29/2020] [Indexed: 12/31/2022] Open
Abstract
Background Many recent studies have gravitated towards manipulating the gastrointestinal (GI) microbiome of livestock to improve host nutrition and health using dietary interventions. Few studies, however, have evaluated if inoculation with rumen fluid could effectively reprogram the development of GI microbiota. We hypothesized that inoculation with rumen fluid at an early age could modulate the development of GI microbiota because of its low colonization resistance. Results In this study, we tested the above hypothesis using young lambs as a model. Young lambs were orally inoculated repeatedly (four times before or twice during gradual weaning) with the rumen fluid collected from adult sheep. The oral inoculation did not significantly affect starter intake, growth performance, or ruminal fermentation. Based on sequencing analysis of 16S rRNA gene amplicons, however, the inoculation (both before and during weaning) affected the assemblage of the rumen microbiota, increasing or enabling some bacterial taxa to colonize the rumen. These included operational taxonomic units (OTUs) belonging to Moryella, Acetitomaculum, Tyzzerella 4, Succiniclasticum, Prevotella 1, Lachnospiraceae, Christensenellaceae R-7 group, Family XIII AD3011, and Bacteroidales S24–7 corresponding to inoculation before weaning; and OTUs belonging to Succiniclasticum, Prevotellaceae UCG-003, Erysipelotrichaceae UCG-004, Prevotella 1, Bacteroidales S24–7 gut group uncultured bacterium, and candidate Family XIII AD3011 corresponding to inoculation during weaning. Compared to the inoculation during weaning, the inoculation before weaning resulted in more co-occurrences of OTUs that were exclusively predominant in the inoculum. However, inoculation during weaning appeared to have more impacts on the colonic microbiota than the inoculation before weaning. Considerable successions in the microbial colonization of the GI tracts accompanied the transition from liquid feed to solid feed during weaning. Conclusions Repeated rumen fluid inoculation during early life can modulate the establishment of the microbiota in both the rumen and the colon and co-occurrence of some bacteria. Oral inoculation with rumen microbiota may be a useful approach to redirect the development of the microbiota in both the rumen and colon.
Collapse
Affiliation(s)
- Shaobo Yu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Guangyu Zhang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Zhibo Liu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Peng Wu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA
| | - Jiakun Wang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
52
|
Belanche A, Yáñez‐Ruiz DR, Detheridge AP, Griffith GW, Kingston‐Smith AH, Newbold CJ. Maternal versus artificial rearing shapes the rumen microbiome having minor long-term physiological implications. Environ Microbiol 2019; 21:4360-4377. [PMID: 31518039 PMCID: PMC6899609 DOI: 10.1111/1462-2920.14801] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 09/04/2019] [Accepted: 09/11/2019] [Indexed: 12/26/2022]
Abstract
Increasing productivity is a key target in ruminant science which requires better understanding of the rumen microbiota. This study investigated how maternal versus artificial rearing shapes the rumen microbiota using 24 sets of triplet lambs. Lambs within each sibling set were randomly assigned to natural rearing on the ewe (NN); ewe colostrum for 24 h followed by artificial milk feeding (NA); and colostrum alternative and artificial milk feeding (AA). Maternal colostrum feeding enhanced VFA production at weaning but not thereafter. At weaning, lambs reared on milk replacer had no rumen protozoa and lower microbial diversity, whereas natural rearing accelerated the rumen microbial development and facilitated the transition to solid diet. Differences in the rumen prokaryotic communities disappear later in life when all lambs were grouped on the same pasture up to 23 weeks of age. However, NN animals retained higher fungal diversity and abundances of Piromyces, Feramyces and Diplodiniinae protozoa as well as higher feed digestibility (+4%) and animal growth (+6.5%) during the grazing period. Nevertheless, no correlations were found between rumen microbiota and productive outcomes. These findings suggest that the early life nutritional intervention determine the initial rumen microbial community, but the persistence of these effects later in life is weak.
Collapse
Affiliation(s)
- Alejandro Belanche
- Estacion Experimental del Zaidín (CSIC)Profesor Albareda, 1, 18008GranadaSpain
- IBERSAberystwyth UniversitySY23 3DAAberystwythUK
| | - David R. Yáñez‐Ruiz
- Estacion Experimental del Zaidín (CSIC)Profesor Albareda, 1, 18008GranadaSpain
| | | | | | | | - Charles J. Newbold
- IBERSAberystwyth UniversitySY23 3DAAberystwythUK
- SRUC, Peter Wilson Building, King's BuildingsEH9 3JGEdinburghUK
| |
Collapse
|
53
|
Taxonomic and functional assessment using metatranscriptomics reveals the effect of Angus cattle on rumen microbial signatures. Animal 2019; 14:731-744. [PMID: 31662129 DOI: 10.1017/s1751731119002453] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A greater understanding of the rumen microbiota and its function may help find new strategies to improve feed efficiency in cattle. This study aimed to investigate whether the cattle breed affects specific ruminal taxonomic microbial groups and functions associated with feed conversion ratio (FCR), using two genetically related Angus breeds as a model. Total RNA was extracted from 24 rumen content samples collected from purebred Black and Red Angus bulls fed the same forage diet and then subjected to metatranscriptomic analysis. Multivariate discriminant analysis (sparse partial least square discriminant analysis (sPLS-DA)) and analysis of composition of microbiomes were conducted to identify microbial signatures characterizing Black and Red Angus cattle. Our analyses revealed relationships among bacterial signatures, host breeds and FCR. Although Black and Red Angus are genetically similar, sPLS-DA detected 25 bacterial species and 10 functions that differentiated the rumen microbial signatures between those two breeds. In Black Angus, we identified bacterial taxa Chitinophaga pinensis, Clostridium stercorarium and microbial functions with large and small subunits ribosomal proteins L16 and S7 exhibiting a higher abundance in the rumen microbiome. In Red Angus, nonetheless, we identified the poorly characterized bacterial taxon Oscillibacter valericigenes with a higher abundance and pathways related to carbohydrate metabolism. Analysis of composition of microbiomes revealed that C. pinensis and C. stercorarium exhibited a higher abundance in Black Angus compared to Red Angus associated with FCR, suggesting that these bacterial species may play a key role in the feed conversion efficiency of forage-fed bulls. This study highlights how the discovery of signatures of bacterial taxa and their functions can be used to harness the full potential of the rumen microbiome in Angus cattle.
Collapse
|
54
|
Temporal Dynamics in Rumen Bacterial Community Composition of Finishing Steers during an Adaptation Period of Three Months. Microorganisms 2019; 7:microorganisms7100410. [PMID: 31581417 PMCID: PMC6843415 DOI: 10.3390/microorganisms7100410] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/18/2019] [Accepted: 09/29/2019] [Indexed: 01/20/2023] Open
Abstract
The objective of this study was to explore whether collecting rumen samples of finishing steers at monthly intervals differed, and whether this difference or similarity varied with diets. For these purposes, 12 Chinese Holstein steers were equally divided into two groups. The dietary treatments were either standard energy and standard protein (C) or low energy and low protein (L). Rumen samples were obtained on day 30, day 60 and day 90 from both dietary treatments and were analyzed by using 16S rRNA gene sequencing. The results showed that monthly intervals had no effect on the richness and evenness of the rumen bacterial community in the two diets. However, taxonomic difference analysis (relative abundance >0.5%) revealed that the relative abundance of three phyla (Proteobacteria, Fibrobacteres and Cyanobacteria) and six genera (Rikenellaceae_RC9_gut_group, Ruminococcaceae_NK4A214_group, Fibrobacter, Eubacterium_coprostanoligenes_group, Ruminococcaceae_UCG-010 and Ruminobacter) were significantly different between monthly sampling intervals, and the difference was prominent between sampling in the first month and the subsequent two months. Moreover, the differences in abundances of phyla and genera between monthly sampling intervals were affected by diets. Analysis of similarity (ANOSIM) showed no significant differences between monthly sampling intervals in the C diet. However, ANOSIM results revealed that significant differences between the first month and second month and between the first month and third month were present in the L diet. These results indicated that temporal dynamics in rumen bacterial community composition did occur even after an adaptation period of three months. This study tracked the changes in rumen bacterial populations of finishing cattle after a shift in diet with the passage of time. This study may provide insight into bacterial adaptation time to dietary transition in finishing steers.
Collapse
|
55
|
Fan P, Nelson CD, Driver JD, Elzo MA, Jeong KC. Animal Breed Composition Is Associated With the Hindgut Microbiota Structure and β-Lactam Resistance in the Multibreed Angus-Brahman Herd. Front Microbiol 2019; 10:1846. [PMID: 31456774 PMCID: PMC6700273 DOI: 10.3389/fmicb.2019.01846] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/26/2019] [Indexed: 01/03/2023] Open
Abstract
Antibiotics have been widely used in livestock to treat and prevent bacterial diseases. However, use of antibiotics has led to the emergence of antibiotic resistant microorganisms (ARMs) in food animals. Due to the decreased efficacy of antibiotics, alternatives to antibiotics that can reduce infectious diseases in food animals to enhance animal health and growth performance are urgently required. Here, we show that animal genetics is associated with the hindgut microbiome, which is related to fat deposition and beta-lactam resistance in the gastrointestinal tract. We investigated the hindgut microbiota structure in 95 postweaning heifers belonging to the unique multibreed Angus-Brahman herd with breed composition ranging from 100% Angus to 100% Brahman. The hindgut microbial composition of postweaning heifers differed among breed groups. The mucin-degrading bacterium Akkermansia known for promoting energy expenditure was enriched in Brahman calves that contained less intramuscular fat content, while butyrate-producing bacterium Faecalibacterium was linearly positively correlated with Angus proportion. Moreover, the higher relative abundance of beta-lactam resistant genes including ampC gene and arcA gene was associated with the greater Brahman proportion. As the first study aimed at understanding changes in hindgut microbiota among beef cattle with linear gradient of breed composition and its association with marbling in meat, our results suggest that the effects of animal genetics on the gut microbiota structure is associated with fat deposition and potentially a factor affecting the gut antimicrobial resistance.
Collapse
Affiliation(s)
- Peixin Fan
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States.,Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Corwin D Nelson
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - J Danny Driver
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Mauricio A Elzo
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Kwangcheol Casey Jeong
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States.,Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
56
|
Moraïs S, Mizrahi I. Islands in the stream: from individual to communal fiber degradation in the rumen ecosystem. FEMS Microbiol Rev 2019; 43:362-379. [PMID: 31050730 PMCID: PMC6606855 DOI: 10.1093/femsre/fuz007] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 04/05/2019] [Indexed: 12/20/2022] Open
Abstract
The herbivore rumen ecosystem constitutes an extremely efficient degradation machinery for the intricate chemical structure of fiber biomass, thus, enabling the hosting animal to digest its feed. The challenging task of deconstructing and metabolizing fiber is performed by microorganisms inhabiting the rumen. Since most of the ingested feed is comprised of plant fiber, these fiber-degrading microorganisms are of cardinal importance to the ecology of the rumen microbial community and to the hosting animal, and have a great impact on our environment and food sustainability. We summarize herein the enzymological fundamentals of fiber degradation, how the genes encoding these enzymes are spread across fiber-degrading microbes, and these microbes' interactions with other members of the rumen microbial community and potential effect on community structure. An understanding of these concepts has applied value for agriculture and our environment, and will also contribute to a better understanding of microbial ecology and evolution in anaerobic ecosystems.
Collapse
Affiliation(s)
- Sarah Moraïs
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Sderot Ben Gurion 1, Beer-Sheva 8499000, Israel
| | - Itzhak Mizrahi
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Sderot Ben Gurion 1, Beer-Sheva 8499000, Israel
| |
Collapse
|
57
|
Meller RA, Wenner BA, Ashworth J, Gehman AM, Lakritz J, Firkins JL. Potential roles of nitrate and live yeast culture in suppressing methane emission and influencing ruminal fermentation, digestibility, and milk production in lactating Jersey cows. J Dairy Sci 2019; 102:6144-6156. [PMID: 31030922 DOI: 10.3168/jds.2018-16008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 03/05/2019] [Indexed: 12/11/2022]
Abstract
Concern over the carbon footprint of the dairy industry has led to various dietary approaches to mitigate enteric CH4 production. One approach is feeding the electron acceptor NO3-, thus outcompeting methanogens for aqueous H2. We hypothesized that a live yeast culture (LYC; Saccharomyces cerevisiae from Yea-Sacc 1026, Alltech Inc., Nicholasville, KY) would stimulate the complete reduction of NO3- to NH3 by selenomonads, thus decreasing the quantity of CH4 emissions per unit of energy-corrected milk production while decreasing blood methemoglobin concentration resulting from the absorbed intermediate, NO2-. Twelve lactating Jersey cows (8 multiparous and noncannulated; 4 primiparous and ruminally cannulated) were used in a replicated 4 × 4 Latin square design with a 2 × 2 factorial arrangement of treatments. Cattle were fed diets containing 1.5% NO3- (from calcium ammonium nitrate) or an isonitrogenous control diet (containing additional urea) and given a top-dress of ground corn without or with LYC, with the fourth week used for data collection. Noncannulated cows were spot measured for CH4 emission by mouth using GreenFeed (C-Lock Inc., Rapid City, SD). The main effect of NO3- decreased CH4 by 17% but decreased dry matter intake by 10% (from 19.8 to 17.8 kg/d) such that CH4:dry matter intake numerically decreased by 8% and CH4:milk net energy for lactation production was unaffected by treatment. Milk and milk fat production were not affected, but NO3- decreased milk protein from 758 to 689 g/d. Ruminal pH decreased more sharply after feeding for cows fed diets without NO3-. Acetate:propionate was greater for cows fed NO3-, particularly when combined with LYC (interaction effect). Blood methemoglobin was higher for cattle fed NO3- than for those fed the control diet but was low for both treatments (1.5 vs. 0.5%, respectively; only one measurement exceeded 5%), indicating minimal risk for NO2- accumulation at our feeding level of NO3-. Although neither apparent organic matter nor neutral detergent fiber digestibilities were affected, apparent N digestibility had an interaction for NO3- × LYC such that apparent N digestibility was numerically lowest for diets containing both NO3- and LYC compared with the other 3 diets. Under the conditions of this study, NO3- mitigated ruminal methanogenesis but also depressed dry matter intake and milk protein yield. Based on the fact that few interactions were detected, LYC had a minimal role in attenuating negative cow responses to NO3- supplementation.
Collapse
Affiliation(s)
- R A Meller
- Department of Animal Sciences, The Ohio State University, Columbus 43210
| | - B A Wenner
- Department of Animal Sciences, The Ohio State University, Columbus 43210
| | - J Ashworth
- Department of Animal Sciences, The Ohio State University, Columbus 43210
| | - A M Gehman
- Alltech, 3031 Catnip Hill Pike, Nicholasville, KY 40356
| | - J Lakritz
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus 43210
| | - J L Firkins
- Department of Animal Sciences, The Ohio State University, Columbus 43210.
| |
Collapse
|
58
|
Gut anatomical properties and microbial functional assembly promote lignocellulose deconstruction and colony subsistence of a wood-feeding beetle. Nat Microbiol 2019; 4:864-875. [PMID: 30858574 DOI: 10.1038/s41564-019-0384-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 01/22/2019] [Indexed: 11/08/2022]
Abstract
Beneficial microbial associations enhance the fitness of most living organisms, and wood-feeding insects offer some of the most striking examples of this. Odontotaenius disjunctus is a wood-feeding beetle that possesses a digestive tract with four main compartments, each of which contains well-differentiated microbial populations, suggesting that anatomical properties and separation of these compartments may enhance energy extraction from woody biomass. Here, using integrated chemical analyses, we demonstrate that lignocellulose deconstruction and fermentation occur sequentially across compartments, and that selection for microbial groups and their metabolic pathways is facilitated by gut anatomical features. Metaproteogenomics showed that higher oxygen concentration in the midgut drives lignocellulose depolymerization, while a thicker gut wall in the anterior hindgut reduces oxygen diffusion and favours hydrogen accumulation, facilitating fermentation, homoacetogenesis and nitrogen fixation. We demonstrate that depolymerization continues in the posterior hindgut, and that the beetle excretes an energy- and nutrient-rich product on which its offspring subsist and develop. Our results show that the establishment of beneficial microbial partners within a host requires both the acquisition of the microorganisms and the formation of specific habitats within the host to promote key microbial metabolic functions. Together, gut anatomical properties and microbial functional assembly enable lignocellulose deconstruction and colony subsistence on an extremely nutrient-poor diet.
Collapse
|
59
|
Moraïs S, Mizrahi I. The Road Not Taken: The Rumen Microbiome, Functional Groups, and Community States. Trends Microbiol 2019; 27:538-549. [PMID: 30679075 DOI: 10.1016/j.tim.2018.12.011] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/28/2018] [Accepted: 12/19/2018] [Indexed: 02/07/2023]
Abstract
The rumen ecosystem represents a classic example of host-microbiome symbiosis. In this obligatory relationship, the host feeds on plant fibers that can only be degraded through a set of complex metabolic cascades, exclusively encoded in rumen-associated microbes. These various metabolic pathways are distributed across a multitude of microbial populations. Application of basic ecological principles to this ecosystem can contribute to profound understanding of the rules that shape it. Here, we discuss recent studies by examining the mapping between host attributes, rumen ecosystem composition, and functionality to propose simple, yet powerful concepts to guide the interpretation of microbiome data and enable a better understanding of how the system responds to perturbations.
Collapse
Affiliation(s)
- Sarah Moraïs
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| | - Itzhak Mizrahi
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel.
| |
Collapse
|
60
|
Niederwerder MC. Fecal microbiota transplantation as a tool to treat and reduce susceptibility to disease in animals. Vet Immunol Immunopathol 2018; 206:65-72. [PMID: 30502914 PMCID: PMC7173282 DOI: 10.1016/j.vetimm.2018.11.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/29/2018] [Accepted: 11/01/2018] [Indexed: 12/19/2022]
Abstract
Fecal microbiota transplantation (FMT) is the process by which fecal microbiota are donated from a healthy individual and subsequently transplanted into a diseased or young individual. The mechanism by which FMT is effective is believed to be due to enhanced beneficial microbes, increased microbiome diversity, and restored normal flora. Beneficial gut microorganisms not only play a role in maintaining an intestinal barrier and metabolizing nutrients, but importantly, these microbes help regulate local and systemic immune function. Although FMT has been described for several centuries, only recently has it been utilized as a mainstream therapy in humans and significantly considered for applications in other species. In humans and animals, gastrointestinal diseases are by far the most widely accepted FMT-treatable conditions; however, recent research has shown exceptional promise for FMT being used to treat or prevent other conditions, including those outside of the gastrointestinal tract. Overall, FMT is likely an underutilized, widely-available, and inexpensive tool for improving the health and response to disease in animals. In this review, the effects of FMT on veterinary diseases and potential applications for FMT in animals are discussed.
Collapse
Affiliation(s)
- Megan C Niederwerder
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, USA.
| |
Collapse
|
61
|
Review: The compositional variation of the rumen microbiome and its effect on host performance and methane emission. Animal 2018; 12:s220-s232. [DOI: 10.1017/s1751731118001957] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|