51
|
Lee KJ, Chang WCL, Chen X, Valiyaveettil J, Ramirez-Alcantara V, Gavin E, Musiyenko A, Madeira da Silva L, Annamdevula NS, Leavesley SJ, Ward A, Mattox T, Lindsey AS, Andrews J, Zhu B, Wood C, Neese A, Nguyen A, Berry K, Maxuitenko Y, Moyer MP, Nurmemmedov E, Gorman G, Coward L, Zhou G, Keeton AB, Cooper HS, Clapper ML, Piazza GA. Suppression of Colon Tumorigenesis in Mutant Apc Mice by a Novel PDE10 Inhibitor that Reduces Oncogenic β-Catenin. Cancer Prev Res (Phila) 2021; 14:995-1008. [PMID: 34584001 DOI: 10.1158/1940-6207.capr-21-0208] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/12/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022]
Abstract
Previous studies have reported that phosphodiesterase 10A (PDE10) is overexpressed in colon epithelium during early stages of colon tumorigenesis and essential for colon cancer cell growth. Here we describe a novel non-COX inhibitory derivative of the anti-inflammatory drug, sulindac, with selective PDE10 inhibitory activity, ADT 061. ADT 061 potently inhibited the growth of colon cancer cells expressing high levels of PDE10, but not normal colonocytes that do not express PDE10. The concentration range by which ADT 061 inhibited colon cancer cell growth was identical to concentrations that inhibit recombinant PDE10. ADT 061 inhibited PDE10 by a competitive mechanism and did not affect the activity of other PDE isozymes at concentrations that inhibit colon cancer cell growth. Treatment of colon cancer cells with ADT 061 activated cGMP/PKG signaling, induced phosphorylation of oncogenic β-catenin, inhibited Wnt-induced nuclear translocation of β-catenin, and suppressed TCF/LEF transcription at concentrations that inhibit cancer cell growth. Oral administration of ADT 061 resulted in high concentrations in the colon mucosa and significantly suppressed the formation of colon adenomas in the Apc+/min-FCCC mouse model of colorectal cancer without discernable toxicity. These results support the development of ADT 061 for the treatment or prevention of adenomas in individuals at risk of developing colorectal cancer. PREVENTION RELEVANCE: PDE10 is overexpressed in colon tumors whereby inhibition activates cGMP/PKG signaling and suppresses Wnt/β-catenin transcription to selectively induce apoptosis of colon cancer cells. ADT 061 is a novel PDE10 inhibitor that shows promising cancer chemopreventive activity and tolerance in a mouse model of colon cancer.
Collapse
Affiliation(s)
- Kevin J Lee
- Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama
| | - Wen-Chi L Chang
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Xi Chen
- Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama
| | - Jacob Valiyaveettil
- Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama
| | | | - Elaine Gavin
- Gynecologic Oncology Research Division, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama
| | - Alla Musiyenko
- Gynecologic Oncology Research Division, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama
| | - Luciana Madeira da Silva
- Gynecologic Oncology Research Division, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama
| | - Naga S Annamdevula
- Department of Chemical and Biomedical Engineering, University of South Alabama, Mobile, Alabama.,Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Silas J Leavesley
- Department of Chemical and Biomedical Engineering, University of South Alabama, Mobile, Alabama.,Center for Lung Biology, University of South Alabama, Mobile, Alabama.,Department of Pharmacology, University of South Alabama, Mobile, Alabama
| | - Antonio Ward
- Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama
| | - Tyler Mattox
- Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama
| | - Ashley S Lindsey
- Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama
| | - Joel Andrews
- Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama
| | - Bing Zhu
- Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama
| | - Charles Wood
- Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama
| | - Ashleigh Neese
- Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama
| | - Ashley Nguyen
- Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama
| | - Kristy Berry
- Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama
| | - Yulia Maxuitenko
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama
| | | | | | | | | | - Gang Zhou
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Adam B Keeton
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama
| | - Harry S Cooper
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Margie L Clapper
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Gary A Piazza
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama.
| |
Collapse
|
52
|
LncRNA MIR155HG induces M2 macrophage polarization and drug resistance of colorectal cancer cells by regulating ANXA2. Cancer Immunol Immunother 2021; 71:1075-1091. [PMID: 34562123 DOI: 10.1007/s00262-021-03055-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 09/07/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To investigate the effects of lncRNA MIR155HG and Annexin A2 (ANXA2) on colorectal cancer (CRC) and the mechanism of the MIR155HG/ANXA2 axis. METHODS The expressions of MIR155HG and ANXA2 in human CRC tissues were analyzed for association with pathological characteristics and prognosis of CRC patients. CRC cell lines (Caco2 and HT29) were used to study the effects of MIR155HG or ANXA2 knockdown on tumor cell behaviors and macrophage polarization as well as the effect of M2 polarization on oxaliplatin resistance of CRC cells. RNA immunoprecipitation, RNA pull-down and dual-luciferase reporter assays were applied to verify the targeting relationships among MIR155HG, miR-650 and ANXA2. Heterotopic xenograft models were established to verify the results of cell experiments. RESULTS MIR155HG and ANXA2 were highly expressed in CRC tissues/cells and of prognostic values for CRC patients. Knockdown of MIR155HG or ANXA2 suppressed M2 macrophage polarization, and proliferation, migration, invasion and oxaliplatin resistance of CRC cells. MIR155HG competed with ANXA2 for binding miR-650 and can also directly target ANXA2. Knockdown of MIR155HG or ANXA2 also inhibited M2 macrophage polarization and CRC progression in nude mice. CONCLUSION This study highlighted that MIR155HG, by regulating the miR-650/ANXA2 axis, promotes CRC progression and enhances oxaliplatin resistance in CRC cells through M2 macrophage polarization.
Collapse
|
53
|
Potential of olive oil and its phenolic compounds as therapeutic intervention against colorectal cancer: a comprehensive review. Br J Nutr 2021; 128:1257-1273. [PMID: 34338174 DOI: 10.1017/s0007114521002919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Colorectal cancer (CRC) is one of the major causes of death across the world and incidence rate of CRC increasing alarmingly each passing year. Diet, genomic anomalies, inflammation and deregulated signalling pathways are among the major causes of CRC. Because of numerous side effects of CRC therapies available now, researchers all over the world looking for alternative treatment/preventive strategy with lesser/no side effects. Olive oil which is part of Mediterranean diet contains numerous phenolic compounds that fight against free radicals and inflammation and also well-known for protective role against CRC. The current review focused on the recent evidences where olive oil and its phenolic compounds such as hydroxytyrosol, oleuropein and oleocanthal showed activities against CRC as well to analyse the cellular and molecular signalling mechanism through which these compounds act on. These compounds shown to combat CRC by reducing proliferation, migration, invasion and angiogenesis through regulation of numerous signalling pathways including MAPK pathway, PI3K-Akt pathway and Wnt/β-catenin pathway and at the same time, induce apoptosis in different CRC model. However, further research is an absolute necessity to establish these compounds as nutritional supplements and develop therapeutic strategy in CRC.
Collapse
|
54
|
Casas-Solís J, Huizar-López MDR, Irecta-Nájera CA, Pita-López ML, Santerre A. Immunomodulatory Effect of Lactobacillus casei in a Murine Model of Colon Carcinogenesis. Probiotics Antimicrob Proteins 2021; 12:1012-1024. [PMID: 31797281 DOI: 10.1007/s12602-019-09611-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We previously reported beneficial effects of the probiotic strain Lactobacillus casei 393 in hindering colon carcinogenesis in a 1,2-dimethylhydrazine (DMH)-induced BALB/c mouse model of colon cancer. In the present study, we investigated the effect of preventive administration of L. casei 393 on the levels of selected pro- and anti-inflammatory circulating cytokines, as well as subpopulations of splenic T cells. The resulting experimental data on IFNγ, TNFα, IL-10, and colon histological features demonstrated that administration of L. casei 2 weeks before DMH treatment impaired the pro-inflammatory effect of DMH, while maintaining the levels of the three cytokines as well as colon histology; it also modulated splenic CD4+, CD8+, and NK T cell subpopulations. The preventive administration of L. casei to DMH-treated mice increased IL-17A synthesis and Treg percentages, further indicating a tumor-protecting role. Together, the results suggest that the colon-cancer-protective properties of L. casei 393 involve the dampening of inflammation through cytokine homeostasis and the maintenance of a healthy T cell subpopulation dynamic. For these reasons, probiotics such as L. casei may contribute to the health of the host as they promote optimal control of the immune response. Further, they may be used as prophylactic agents in combination with standard therapies against colon cancer.
Collapse
Affiliation(s)
- Josefina Casas-Solís
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Carretera Guadalajara-Nogales Km 15.5, Las Agujas, CP, 45110, Zapopan, Jalisco, México
| | - María Del Rosario Huizar-López
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Carretera Guadalajara-Nogales Km 15.5, Las Agujas, CP, 45110, Zapopan, Jalisco, México
| | - Cesar Antonio Irecta-Nájera
- Departamento de Salud, El Colegio de La Frontera Sur, Carretera a Reforma Km15.5 s/n, Ra ElGuieno 2ª Sección, 86280, Villahermosa, Tabasco, México
| | - María Luisa Pita-López
- Departamento de Ciencias Básicas para la Salud, CIBIMEC, Centro Universitario del Sur, Universidad de Guadalajara, Av. Enrique Arreola Silva 883, CP4900, Cd. Guzmán, Guadalajara, Jalisco, México
| | - Anne Santerre
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Carretera Guadalajara-Nogales Km 15.5, Las Agujas, CP, 45110, Zapopan, Jalisco, México.
| |
Collapse
|
55
|
Dobre M, Salvi A, Pelisenco IA, Vasilescu F, De Petro G, Herlea V, Milanesi E. Crosstalk Between DNA Methylation and Gene Mutations in Colorectal Cancer. Front Oncol 2021; 11:697409. [PMID: 34277443 PMCID: PMC8281955 DOI: 10.3389/fonc.2021.697409] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/14/2021] [Indexed: 12/18/2022] Open
Abstract
Colorectal cancer (CRC) is often characterized by mutations and aberrant DNA methylation within the promoters of tumor suppressor genes and proto-oncogenes. The most frequent somatic mutations occur within KRAS and BRAF genes. Mutations of the KRAS gene have been detected in approximately 40% of patients, while mutations in BRAF have been detected less frequently at a rate of 10%. In this study, the DNA methylation levels of 22 candidate genes were evaluated in three types of tissue: mucosal tumoral tissue from 18 CRC patients, normal adjacent tissues from 10 CRC patients who underwent surgical resection, and tissue from a control group of six individuals with normal colonoscopies. A differential methylation profile of nine genes (RUNX3, SFRP1, WIF1, PCDH10, DKK2, DKK3, TMEFF2, OPCML, and SFRP2) presenting high methylation levels in tumoral compared to normal tissues was identified. KRAS mutations (codons 12 or 13) were detected in eight CRC cases, and BRAF mutations (codon 600) in four cases. One of the CRC patients presented concomitant mutations in KRAS codon 12 and BRAF, whereas seven patients did not present these mutations (WT). When comparing the methylation profile according to mutation status, we found that six genes (SFRP2, DKK2, PCDH10, TMEFF2, SFRP1, HS3ST2) showed a methylation level higher in BRAF positive cases than BRAF negative cases. The molecular sub-classification of CRC according to mutations and epigenetic modifications may help to identify epigenetic biomarkers useful in designing personalized strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Maria Dobre
- Laboratory of Histopathology and Immunohistochemistry, Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Alessandro Salvi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Florina Vasilescu
- Laboratory of Histopathology and Immunohistochemistry, Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Giuseppina De Petro
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Vlad Herlea
- Department of Pathology, Fundeni Clinical Institute, Bucharest, Romania
| | - Elena Milanesi
- Laboratory of Radiobiology, Victor Babes National Institute of Pathology, Bucharest, Romania
| |
Collapse
|
56
|
Idaewor P, Lesi O, Elremeli M, Rasheed N, Saad Abdalla Al-Zawi A. Incidental Malignant Colonic Polyp Detected in a Resected Ischaemic Large Bowel: A Case Report and Literature Review. Cureus 2021; 13:e13928. [PMID: 33880275 PMCID: PMC8051532 DOI: 10.7759/cureus.13928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2021] [Indexed: 11/20/2022] Open
Abstract
Most patients with bowel cancer are symptomatic at the time of the diagnosis. They may present with a change in bowel habit, bleeding per rectum, abdominal pain, anaemia, weight loss or bowel obstruction. Colonic carcinoma can also be diagnosed incidentally during screening programs. Moreover, it may be incidentally detected in CT scans being performed for other indications or encountered during surgery for other causes. Some patients with colonic bowel ischaemia have associated large bowel cancer, where the ischaemic segment is usually proximal to the tumour and not necessarily associated with bowel obstruction. We are presenting a rare case of incidental malignant colonic polyp detected in a resected ischaemic large bowel in an 88-year-old gentleman. This was a very small tumour that was not visible macroscopically or detectable by imaging. Pathological examination of non-tumour colorectal resection specimens, as in this case, should include careful macroscopic examination and sequential block selection along the length of the colon, and where there is diffuse mucosal abnormality, block selection at 100mm interval is also advised. Attention to and block selection from any suspicious-looking area is warranted in all cases of non-tumour colorectal resections if such microscopic-sized malignancies of the type seen in our patient are to be picked up.
Collapse
Affiliation(s)
- Philip Idaewor
- Cellular Pathology, Basildon and Thurrock University Hospital, Basildon, GBR
| | - Omotara Lesi
- General and Colorectal Surgery, Basildon University Hospital, Essex, GBR
| | - Mariam Elremeli
- Allergy/Immunology, Sidra Medicine & Research Institute, Doha, QAT
- Pediatrics, Imperial College, London, GBR
| | - Noreen Rasheed
- Breast Radiology, Basildon and Thurrock University Hospital, Basildon, GBR
| | - Abdalla Saad Abdalla Al-Zawi
- General & Breast Surgery, Basildon and Thurrock University Hospital, Basildon, GBR
- General & Breast Surgery, Anglia Ruskin University, Chelmsford, GBR
- General & Breast Surgery, Mid and North Essex University Hospital Group, Basildon, GBR
| |
Collapse
|
57
|
Daisy PS, Shreyas KS, Anitha TS. Will CRISPR-Cas9 Have Cards to Play Against Cancer? An Update on its Applications. Mol Biotechnol 2021; 63:93-108. [PMID: 33386579 PMCID: PMC7775740 DOI: 10.1007/s12033-020-00289-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2020] [Indexed: 02/06/2023]
Abstract
Genome editing employs targeted nucleases as powerful tools to precisely alter the genome of target cells and regulate functional genes. Various strategies have been risen so far as the molecular scissors-mediated genome editing that includes zinc finger nuclease, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats-CRISPR-related protein 9. These tools allow researchers to understand the basics of manipulating the genome, create animal models to study human diseases, understand host-pathogen interactions and design disease targets. Targeted genome modification utilizing RNA-guided nucleases are of recent curiosity, as it is a fast and effective strategy that enables the researchers to manipulate the gene of interest, carry out functional studies, understand the molecular basis of the disease and design targeted therapies. CRISPR-Cas9, a bacterial defense system employed against viruses, consists of a single-strand RNA-guided Cas9 nuclease connected to the corresponding complementary target sequence. This powerful and versatile tool has gained tremendous attention among the researchers, owing to its ability to correct genetic disorders. To help illustrate the potential of this gene editor in unexplored corners of oncology, we describe the history of CRISPR-Cas9, its rapid progression in cancer research as well as future perspectives.
Collapse
Affiliation(s)
- Precilla S Daisy
- Central Inter-Disciplinary Research Facility, Sri Balaji Vidyapeeth (Deemed To-Be University), Mahatma Gandhi Medical College and Research Institute Campus, Pillaiyarkuppam, Puducherry, 607403, India
| | - Kuduvalli S Shreyas
- Central Inter-Disciplinary Research Facility, Sri Balaji Vidyapeeth (Deemed To-Be University), Mahatma Gandhi Medical College and Research Institute Campus, Pillaiyarkuppam, Puducherry, 607403, India
| | - T S Anitha
- Central Inter-Disciplinary Research Facility, Sri Balaji Vidyapeeth (Deemed To-Be University), Mahatma Gandhi Medical College and Research Institute Campus, Pillaiyarkuppam, Puducherry, 607403, India.
| |
Collapse
|
58
|
Han H, Davidson LA, Hensel M, Yoon G, Landrock K, Allred C, Jayaraman A, Ivanov I, Safe SH, Chapkin RS. Loss of Aryl Hydrocarbon Receptor Promotes Colon Tumorigenesis in ApcS580/+; KrasG12D/+ Mice. Mol Cancer Res 2021; 19:771-783. [PMID: 33495399 DOI: 10.1158/1541-7786.mcr-20-0789] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/03/2020] [Accepted: 01/14/2021] [Indexed: 11/16/2022]
Abstract
The mutational genetic landscape of colorectal cancer has been extensively characterized; however, the ability of "cooperation response genes" to modulate the function of cancer "driver" genes remains largely unknown. In this study, we investigate the role of aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, in modulating oncogenic cues in the colon. We show that intestinal epithelial cell-targeted AhR knockout (KO) promotes the expansion and clonogenic capacity of colonic stem/progenitor cells harboring ApcS580/+; KrasG12D/+ mutations by upregulating Wnt signaling. The loss of AhR in the gut epithelium increased cell proliferation, reduced mouse survival rate, and promoted cecum and colon tumorigenesis in mice. Mechanistically, the antagonism of Wnt signaling induced by Lgr5 haploinsufficiency attenuated the effects of AhR KO on cecum and colon tumorigenesis. IMPLICATIONS: Our findings reveal that AhR signaling plays a protective role in genetically induced colon tumorigenesis at least by suppressing Wnt signaling and provides rationale for the AhR as a therapeutic target for cancer prevention and treatment.
Collapse
Affiliation(s)
- Huajun Han
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas.,Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Laurie A Davidson
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas.,Department of Nutrition, Texas A&M University, College Station, Texas
| | - Martha Hensel
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas
| | - Grace Yoon
- Department of Statistics, Texas A&M University, College Station, Texas
| | - Kerstin Landrock
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas.,Department of Nutrition, Texas A&M University, College Station, Texas
| | - Clinton Allred
- Department of Nutrition, Texas A&M University, College Station, Texas
| | - Arul Jayaraman
- Department of Chemical Engineering, Texas A&M University, College Station, Texas
| | - Ivan Ivanov
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas.,Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Stephen H Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Robert S Chapkin
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas. .,Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas.,Department of Nutrition, Texas A&M University, College Station, Texas
| |
Collapse
|
59
|
Verediano TA, Viana ML, das G.V. Tostes M, Costa NM. The Potential Prebiotic Effects of Yacon (Smallanthus sonchifolius) in Colorectal Cancer. CURRENT NUTRITION & FOOD SCIENCE 2021. [DOI: 10.2174/1573401316999200605160433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background:
Colorectal cancer is caused by genetic predisposition and lifestyle risk factors
and is associated with altered homeostasis of the intestinal microbiota. Evidence suggests that
chronic infection and inflammation contribute to carcinogenic mutagenesis and promote cancer initiation
and progression. Food components with prebiotic properties, such as fructooligosaccharides
(FOS), promote intestinal integrity and health benefits. Yacon (Smallanthus sonchifolius) is an abundant
source of FOS, which are fermented by beneficial bacteria, improving the intestinal environment
affected by colorectal cancer.
Objective:
In the current review, the aim was to discuss colorectal cancer and its inflammatory process
of development. Also, some general aspects concerning yacon roots and its prebiotic properties
are described. Finely, the beneficial effects of yacon to reduce intestinal parameters altered due to
colorectal cancer are summarized.
Conclusion:
It was verified that yacon might improve immunological parameters, intestinal barrier,
intestinal microbiota, and inflammation in induced colorectal cancer in animals, especially. Researches
with humans must be further investigated to prove these positive effects.
Collapse
Affiliation(s)
- Thaísa A. Verediano
- Department of Pharmacy and Nutrition, Center for Exact Natural and Health Sciences, Federal University of Espirito Santo, Alegre-ES, Brazil
| | - Mirelle L. Viana
- Department of Pharmacy and Nutrition, Center for Exact Natural And Health Sciences, Federal University of Espirito Santo, Alegre-ES, Brazil
| | - Maria das G.V. Tostes
- Department of Pharmacy and Nutrition, Center for Exact Natural And Health Sciences, Federal University of Espirito Santo, Alegre-ES, Brazil
| | - Neuza M.B. Costa
- Department of Pharmacy and Nutrition, Center for Exact Natural And Health Sciences, Federal University of Espirito Santo, Alegre-ES, Brazil
| |
Collapse
|
60
|
Bars-Cortina D, Sakhawat A, Piñol-Felis C, Motilva MJ. Chemopreventive effects of anthocyanins on colorectal and breast cancer: A review. Semin Cancer Biol 2021; 81:241-258. [DOI: 10.1016/j.semcancer.2020.12.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023]
|
61
|
Bader El Din NG, Farouk S, Abdel-Salam LO, Khairy A. The potential value of miRNA-223 as a diagnostic biomarker for Egyptian colorectal patients. Eur J Gastroenterol Hepatol 2021; 33:25-31. [PMID: 33079781 DOI: 10.1097/meg.0000000000001961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVES Colorectal cancer (CRC) is the third lethal malignancy worldwide. Dysregulation of microRNAs (miRNAs) mediates several growth factors signaling pathways and induces abnormal genes expression, which leads to colorectal carcinogenesis. We aimed to comprehensively assess the expression of miRNA-200c, miRNA-203a, miRNA-223 in Egyptian CRC tissue and their corresponding serum samples and to explore if they have any potential prognostic or diagnostic value for CRC patients. METHODS A total of 195 subjects (120 CRC patients and 75 healthy controls) participated in exploration and validation sets. The relative expression of miRNA-200c, miRNA-203a, and miRNA-223 was measured in both CRC tissue and serum samples, and the expressed miRNAs were compared in different CRC grades and types and the prognostic value was evaluated. RESULTS The expression levels of miRNA-200c and miRNA-203a were reduced in CRC tissue samples than adjacent noncancerous tissues. miRNA-223 level was significantly upregulated in both CRC tissue and serum samples with a positive association between them (r = 0.85, P = 0.001). The miRNA-223 can effectively discriminate CRC patients from controls and can significantly differentiate between colon and rectal cancer patients. The association between serum miRNA-223 expression and CRC development was validated in the second set and the ROC curve showed highly significant prognostic value with 90.1% sensitivity, 87% specificity, and area under the curve of 0.914 (95% confidence interval: 0.830-0.978, P = 0.0001). These results showed the association between miRNA-223 upregulation and the CRC carcinogenesis. CONCLUSION Circulating miRNA-223 can be a potential noninvasive prognostic biomarker for Egyptian CRC patients.
Collapse
Affiliation(s)
| | - Sally Farouk
- Department of Microbial Biotechnology, National Research Centre, Dokki
| | | | - Ahmed Khairy
- Endemic Medicine Department, Faculty of Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
62
|
Avilés-Gaxiola S, Gutiérrez-Grijalva EP, León-Felix J, Angulo-Escalante MA, Heredia JB. Peptides in Colorectal Cancer: Current State of Knowledge. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2020; 75:467-476. [PMID: 32964320 DOI: 10.1007/s11130-020-00856-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/16/2020] [Indexed: 05/11/2023]
Abstract
Colorectal cancer (CRC) is the second most deadly and the third most commonly diagnosed cancer in the world. CRC treatment is mainly based on surgery, chemotherapy, and even though the probability of complications after surgery is very low, chemo drugs affect the patient's quality of life. Multiple studies have shown a strong correlation between diet and the onset and progression of CRC. Thus, the consumption of dietary nutraceuticals for its treatment and prevention has been suggested as a promising option. Peptides have increasingly become of interest in human health due to their antioxidant, antihypertensive, and anticancer potential. In recent years, there have been extensive reports on peptides with anti-tumor activity, and some studies suggest that peptides modulate cell proliferation, evasion of cell death, and metastasis in malignant cells. Plant-derived peptides such as soybean, bean, and rice have received main attention. In this review, we show evidence of several mechanisms through which bioactive peptides exert anti-tumor activity over in vitro and in vivo CRC models. We also report the current status of major production techniques, as well as limitations and future perspectives. Graphical Abstract.
Collapse
Affiliation(s)
- Sara Avilés-Gaxiola
- Centro de Investigación en Alimentación y Desarrollo, A.C. Coordinación Culiacán, Carretera a Eldorado Km 5.5 Col. Campo El Diez, CP 80110, Culiacán, Sinaloa, Mexico
| | - Erick P Gutiérrez-Grijalva
- Cátedras CONACYT-Centro de Investigación en Alimentación y Desarrollo, A.C. Coordinación Culiacán, Carretera a Eldorado Km 5.5 Col. Campo El Diez, CP 80110, Culiacán, Sinaloa, Mexico
| | - Josefina León-Felix
- Centro de Investigación en Alimentación y Desarrollo, A.C. Coordinación Culiacán, Carretera a Eldorado Km 5.5 Col. Campo El Diez, CP 80110, Culiacán, Sinaloa, Mexico
| | - Miguel A Angulo-Escalante
- Centro de Investigación en Alimentación y Desarrollo, A.C. Coordinación Culiacán, Carretera a Eldorado Km 5.5 Col. Campo El Diez, CP 80110, Culiacán, Sinaloa, Mexico
| | - J Basilio Heredia
- Centro de Investigación en Alimentación y Desarrollo, A.C. Coordinación Culiacán, Carretera a Eldorado Km 5.5 Col. Campo El Diez, CP 80110, Culiacán, Sinaloa, Mexico.
| |
Collapse
|
63
|
TCox: Correlation-Based Regularization Applied to Colorectal Cancer Survival Data. Biomedicines 2020; 8:biomedicines8110488. [PMID: 33182598 PMCID: PMC7696515 DOI: 10.3390/biomedicines8110488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/26/2020] [Accepted: 11/06/2020] [Indexed: 01/29/2023] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of mortality and morbidity in the world. Being a heterogeneous disease, cancer therapy and prognosis represent a significant challenge to medical care. The molecular information improves the accuracy with which patients are classified and treated since similar pathologies may show different clinical outcomes and other responses to treatment. However, the high dimensionality of gene expression data makes the selection of novel genes a problematic task. We propose TCox, a novel penalization function for Cox models, which promotes the selection of genes that have distinct correlation patterns in normal vs. tumor tissues. We compare TCox to other regularized survival models, Elastic Net, HubCox, and OrphanCox. Gene expression and clinical data of CRC and normal (TCGA) patients are used for model evaluation. Each model is tested 100 times. Within a specific run, eighteen of the features selected by TCox are also selected by the other survival regression models tested, therefore undoubtedly being crucial players in the survival of colorectal cancer patients. Moreover, the TCox model exclusively selects genes able to categorize patients into significant risk groups. Our work demonstrates the ability of the proposed weighted regularizer TCox to disclose novel molecular drivers in CRC survival by accounting for correlation-based network information from both tumor and normal tissue. The results presented support the relevance of network information for biomarker identification in high-dimensional gene expression data and foster new directions for the development of network-based feature selection methods in precision oncology.
Collapse
|
64
|
Interplay between APC and ALDH1B1 in a newly developed mouse model of colorectal cancer. Chem Biol Interact 2020; 331:109274. [PMID: 33007288 DOI: 10.1016/j.cbi.2020.109274] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/28/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is a leading cause of cancer mortality worldwide. Mutations in the adenomatous polyposis coli (APC) gene are pivotal in colorectal tumorigenesis. Recently, we demonstrated that aldehyde dehydrogenase 1B1 (ALDH1B1) knockdown dramatically reduced colon tumor growth in a mouse xenograft model. The purpose of the present preliminary study is to examine the effect of loss of ALDH1B1 in CRC development in an inducible colon-specific Apc mouse model. METHODS ApcW/FCdx2ERT2-Cre mice develop uni-allelic inactivation of Apc specifically in colon epithelial cells following tamoxifen treatment. Aldh1b1-/- KO mice were crossed with ApcW/FCdx2ERT2-Cre mice. Six-month-old male ApcW/FCdx2ERT2-Cre/Aldh1b1-/-, and ApcW/FCdx2ERT2-Cre/Aldh1b1+/+ mice were treated with tamoxifen (50 mg/kg, i.p.) for three consecutive days. ApcW/F/Aldh1b1-/- and ApcW/F/Aldh1b1+/+ mice were treated with corn oil (i.e., tamoxifen vehicle control) for three consecutive days. Eighteen days later, mice were sacrificed and their colons examined microscopically, macroscopically and histologically for the presence of adenoma. RESULTS All ApcW/FCdx2ERT2-Cre/Aldh1b1+/+ and ApcW/FCdx2ERT2-Cre/Aldh1b1-/- mice treated with tamoxifen developed colorectal adenoma. The ApcW/FCdx2ERT2-Cre/Aldh1b1-/- mice showed a significant decrease in the total volume of all ileal and colonic adenomas, and decreased incidence of large colonic adenoma compared to ApcW/FCdx2ERT2-Cre/Aldh1b1+/+ mice. Immunohistochemical analysis of p53 and β-catenin showed a trend toward decreased expression score in colonic adenomas of ApcW/FCdx2ERT2-Cre/Aldh1b1-/- mice. CONCLUSION The present preliminary study suggests that deletion of ALDH1B1 may protect against the full development of colorectal cancer. Further mechanistic studies are required to elucidate how ALDH1B1 contributes for colorectal cancer.
Collapse
|
65
|
The Curcumin Analogue, MS13 (1,5-Bis(4-hydroxy-3- methoxyphenyl)-1,4-pentadiene-3-one), Inhibits Cell Proliferation and Induces Apoptosis in Primary and Metastatic Human Colon Cancer Cells. Molecules 2020; 25:molecules25173798. [PMID: 32825505 PMCID: PMC7504349 DOI: 10.3390/molecules25173798] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/26/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Abstract
The cytotoxic and apoptotic effects of turmeric (Curcuma longa) on colon cancer have been well documented but specific structural modifications of curcumin have been shown to possess greater growth-suppressive potential on colon cancer than curcumin. Therefore, the aim of this study is to identify the anti-cancer properties of curcumin analogue-MS13, a diarylpentanoid on the cytotoxicity, anti-proliferative and apoptotic activity of primary (SW480) and metastatic (SW620) human colon cancer cells. A cell viability assay showed that MS13 has greater cytotoxicity effect on SW480 (EC50: 7.5 ± 2.8 µM) and SW620 (EC50: 5.7 ± 2.4 µM) compared to curcumin (SW480, EC50: 30.6 ± 1.4 µM) and SW620, EC50: 26.8 ± 2.1 µM). Treatment with MS13 at two different doses 1X EC50 and 2X EC50 suppressed the colon cancer cells growth with lower cytotoxicity against normal cells. A greater anti-proliferative effect was also observed in MS13 treated colon cancer cells compared to curcumin at 48 and 72 h. Subsequent analysis on the induction of apoptosis showed that MS13 treated cells exhibited morphological features associated with apoptosis. The findings are also consistent with cellular apoptotic activities shown by increased caspase-3 activity and decreased Bcl-2 protein level in both colon cancer cell lines. In conclusion, MS13 able to suppress colon cancer cell growth by inhibiting cell proliferation and induce apoptosis in primary and metastatic human colon cancer cells.
Collapse
|
66
|
Vaghari-Tabari M, Majidinia M, Moein S, Qujeq D, Asemi Z, Alemi F, Mohamadzadeh R, Targhazeh N, Safa A, Yousefi B. MicroRNAs and colorectal cancer chemoresistance: New solution for old problem. Life Sci 2020; 259:118255. [PMID: 32818543 DOI: 10.1016/j.lfs.2020.118255] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 08/01/2020] [Accepted: 08/09/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common gastrointestinal malignancies with a significant mortality rate. Despite the great advances in cancer treatment in the last few decades, effective treatment of CRC is still under challenge. One of the main problems associated with CRC treatment is the resistance of cancer cells to chemotherapy drugs. METHODS Many studies have been carried out to identify CRC chemoresistance mechanisms, and shed light on the role of ATP-binding cassette transporters (ABC transporters), enzymes as thymidylate synthase, some signaling pathways, and cancer stem cells (CSC) in chemoresistance and failed CRC chemotherapies. Other studies have also been recently carried out to find solutions to overcome chemoresistance. Some of these studies have identified the role of miRNAs in chemoresistance of the CRC cells and the effective use of these micro-molecules to CRC treatment. RESULTS Considering the results of these studies, more focus on miRNAs likely leads to a proper solution to overcome CRC chemoresistance. CONCLUSION The current study has reviewed the related literature while discussing the efficacy of miRNAs as potential clinical tools for overcoming CRC chemoresistance and reviewing the most important chemoresistance mechanisms in CRC cells.
Collapse
Affiliation(s)
- Mostafa Vaghari-Tabari
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Soheila Moein
- Department of Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran; Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Forough Alemi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Mohamadzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nilofar Targhazeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Safa
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam; Faculty of Medicine, Zabol University of Medical Sciences, Zabol, Iran.
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
67
|
Sieminska I, Baran J. Myeloid-Derived Suppressor Cells in Colorectal Cancer. Front Immunol 2020; 11:1526. [PMID: 32849517 PMCID: PMC7426395 DOI: 10.3389/fimmu.2020.01526] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/10/2020] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) remains one of the most common malignancies diagnosed worldwide. The pathogenesis of CRC is complex and involves, among others, accumulation of genetic predispositions and epigenetic factors, dietary habits, alterations in gut microbiota, and lack of physical activity. A growing body of evidence suggests that immune cells play different roles in CRC, comprising both pro- and anti-tumorigenic functions. Immunosuppression observed during cancer development and progression is a result of the orchestration of many cell types, including myeloid-derived suppressor cells (MDSCs). MDSCs, along with other cells, stimulate tumor growth, angiogenesis, and formation of metastases. This article focuses on MDSCs in relation to their role in the initiation and progression of CRC. Possible forms of immunotherapies targeting MDSCs in CRC are also discussed.
Collapse
Affiliation(s)
| | - Jarek Baran
- Department of Clinical Immunology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
68
|
An Y, Zhang S, Zhang J, Yin Q, Han H, Wu F, Zhang X. Overexpression of lncRNA NLIPMT Inhibits Colorectal Cancer Cell Migration and Invasion by Downregulating TGF-β1. Cancer Manag Res 2020; 12:6045-6052. [PMID: 32765103 PMCID: PMC7381797 DOI: 10.2147/cmar.s247764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/18/2020] [Indexed: 12/24/2022] Open
Abstract
Background NLIPMT, as a tumor suppressive lncRNA, has only been investigated in breast cancer, while its roles in other types of cancer remain unknown. This study aimed to explore the role of NLIPMT in colorectal cancer (CRC). Methods Expression levels of NLIPMT and TGF-β1 in two types of CRC tissue (Non-tumor tissues and tumor tissues) were measured and compared by qRT-PCR and paired t-test, respectively. Correlations between the expression of NLIPMT and TGF-β1 were analyzed by performing linear regression. The effects of transfections on cell invasion and migration were evaluated by Transwell assays. Results We found that NLIPMT was downregulated, while TGF-β1 was upregulated in CRC. In CRC tumor, a negative correlation was found between the expression of NLIPMT and TGF-β1. In CRC cells, overexpression of NLIPMT resulted in downregulation, while silencing of NLIPMT resulted in upregulation of TGF-β1. Analysis of cell invasion and migration showed that overexpression of NLIPMT suppressed the tumor cell invasion and migration. In contrast, overexpression of TGF-β1 could promote CRC cell invasion and migration and also reduce the role of NLIPMT. Through the overall survival evaluation, NLIPMT-high groups of CRC represented better survival rate compared to that of the NLIPMT-low group patients. Conclusion The expression of lncRNA NLIPMT was negatively correlated with TGF-β1 in CRC. Overexpression of NLIPMT inhibited the colorectal cancer cell migration and invasion by downregulating TGF-β1. Furthermore, the expression of NLIPMT in CRC patients predicted better prognosis, which suggested that NLIPMT could be considered as a novel diagnosis biomarker.
Collapse
Affiliation(s)
- Yongkang An
- The First Affiliated Hospital of Henan University of TCM, Anorectal Disease Clinic, Zhengzhou City, Henan Province 450000, People's Republic of China
| | - Shuangxi Zhang
- The First Affiliated Hospital of Henan University of TCM, Anorectal Disease Clinic, Zhengzhou City, Henan Province 450000, People's Republic of China
| | - Jing Zhang
- The First Affiliated Hospital of Henan University of TCM, Anorectal Disease Clinic, Zhengzhou City, Henan Province 450000, People's Republic of China
| | - Qing Yin
- The Affiliated Hospital of Henan Academy of TCM, Nursing Department, Zhengzhou City, Henan Province 450000, People's Republic of China
| | - Haitao Han
- The First Affiliated Hospital of Henan University of TCM, Anorectal Disease Clinic, Zhengzhou City, Henan Province 450000, People's Republic of China
| | - Fang Wu
- The First Affiliated Hospital of Henan University of TCM, Medical and Nursing Joint, Zhengzhou City, Henan Province 450000, People's Republic of China
| | - Xiangan Zhang
- The First Affiliated Hospital of Henan University of TCM, Anorectal Disease Clinic, Zhengzhou City, Henan Province 450000, People's Republic of China
| |
Collapse
|
69
|
Wielandt AM, Hurtado C, Moreno C M, Villarroel C, Castro M, Estay M, Simian D, Martinez M, Vial MT, Kronberg U, López-Köstner F. Characterization of Chilean patients with sporadic colorectal cancer according to the three main carcinogenic pathways: Microsatellite instability, CpG island methylator phenotype and Chromosomal instability. Tumour Biol 2020; 42:1010428320938492. [PMID: 32635826 DOI: 10.1177/1010428320938492] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Molecular classification of colorectal cancer is difficult to implement in clinical settings where hundreds of genes are involved, and resources are limited. This study aims to characterize the molecular subtypes of patients with sporadic colorectal cancer based on the three main carcinogenic pathways microsatellite instability (MSI), CpG island methylator phenotype (CIMP), and chromosomal instability (CIN) in a Chilean population. Although several reports have characterized colorectal cancer, most do not represent Latin-American populations. Our study includes 103 colorectal cancer patients who underwent surgery, without neoadjuvant treatment, in a private hospital between 2008 and 2017. MSI, CIN, and CIMP status were assessed. Frequent mutations in KRAS, BRAF, and PIK3CA genes were analyzed by Sanger sequencing, and statistical analysis was performed by Fisher's exact and/or chi-square test. Survival curves were estimated with Kaplan-Meier and log-rank test. Based on our observations, we can classify the tumors in four subgroups, Group 1: MSI-high tumors (15%) are located in the right colon, occur at older age, and 60% show a BRAF mutation; Group 2: CIN-high tumors (38%) are in the left colon, and 26% have KRAS mutations. Group 3: [MSI/CIN/CIMP]-low/negative tumors (30%) are left-sided, and 39% have KRAS mutations; Group 4: CIMP-high tumors (15%) were more frequent in men and left side colon, with 27% KRAS and 7% presented BRAF mutations. Three percent of patients could not be classified. We found that CIMP-high was associated with a worse prognosis, both in MSI-high and MSI stable patients (p = 0.0452). Group 3 (Low/negative tumors) tend to have better overall survival compared with MSI-high, CIMP-high, and CIN-high tumors. This study contributes to understanding the heterogeneity of tumors in the Chilean population being one of the few characterizations performed in Latin-America. Given the limited resources of these countries, these results allow to improve molecular characterization in Latin-American colorectal cancer populations and confirm the possibility of using the three main carcinogenic pathways to define therapeutic strategies.
Collapse
Affiliation(s)
- Ana María Wielandt
- Oncology and Molecular Genetics Laboratory, Coloproctology Unit, Clínica Las Condes, Santiago, Chile.,Coloproctology Unit, Clínica Las Condes, Santiago, Chile
| | - Claudia Hurtado
- Oncology and Molecular Genetics Laboratory, Coloproctology Unit, Clínica Las Condes, Santiago, Chile.,Coloproctology Unit, Clínica Las Condes, Santiago, Chile
| | - Mauricio Moreno C
- Oncology and Molecular Genetics Laboratory, Coloproctology Unit, Clínica Las Condes, Santiago, Chile.,Coloproctology Unit, Clínica Las Condes, Santiago, Chile
| | - Cynthia Villarroel
- Oncology and Molecular Genetics Laboratory, Coloproctology Unit, Clínica Las Condes, Santiago, Chile
| | - Magdalena Castro
- Academic Department Research Unit, Clínica Las Condes, Santiago, Chile
| | - Marlene Estay
- Coloproctology Unit, Clínica Las Condes, Santiago, Chile
| | - Daniela Simian
- Academic Department Research Unit, Clínica Las Condes, Santiago, Chile
| | - Maripaz Martinez
- Academic Department Research Unit, Clínica Las Condes, Santiago, Chile
| | | | - Udo Kronberg
- Coloproctology Unit, Clínica Las Condes, Santiago, Chile
| | | |
Collapse
|
70
|
Saito T, Chambers JK, Nakashima K, Nibe K, Ohno K, Tsujimoto H, Uchida K, Nakayama H. Immunohistochemical analysis of beta-catenin, E-cadherin and p53 in canine gastrointestinal epithelial tumors. J Vet Med Sci 2020; 82:1277-1286. [PMID: 32655099 PMCID: PMC7538321 DOI: 10.1292/jvms.20-0297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Wnt/beta-catenin signaling, E-cadherin and p53 reportedly play important roles in the development and/or progression of human gastrointestinal cancer. The present study evaluated the roles of beta-catenin, E-cadherin and p53 in canine gastrointestinal tumors. Endoscopic biopsy or
surgically resected samples, a total of 131, including 38 gastric, 13 small intestinal and 80 large intestinal tumors, were obtained from 95 dogs. Those specimens were examined pathologically. Immunohistochemically, nuclear beta-catenin expression was found in 88% (42/48) of polypoid type
adenocarcinomas. Most cases of non-polypoid type adenocarcinomas lacked nuclear expression of beta-catenin with the exception of one case (6%, 1/17). Nuclear beta-catenin expression was not observed in signet ring cell carcinomas (0/15), mucinous adenocarcinomas (0/7) and undifferentiated
carcinomas (0/4). The findings indicate that nuclear translocation of beta-catenin is closely related to the development of polypoid type adenocarcinomas but not that of non-polypoid type malignant tumors. The immunoreactivity of E-cadherin for tumor cells tended to decline overall in most
of cases including benign tumors. Significant immunoreactivity for p53 was not found in 61% of tumors examined (80/131), including malignant tumors (63%, 57/91), while intense p53-immunoreactivity was rarely found in a few cases of malignant tumors (8%, 7/91). We could not conclude clearly
significant correlations between histopathological tumor types and immunohistochemical results of E-cadherin or p53. This paper indicates the importance of the nuclear translocation of beta-catenin for the tumorigenesis of canine intestinal polypoid type adenocarcinomas, especially in the
colorectum.
Collapse
Affiliation(s)
- Tsubasa Saito
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - James K Chambers
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ko Nakashima
- Japan Small Animal Medical Center, 2-27-4 Nakatomi-minami, Tokorozawa, Saitama 359-0003, Japan
| | - Kazumi Nibe
- Japan Animal Referral Medical Center, 2-5-8 Kuji, Takatsu-ku, Kawasaki, Kanagawa 213-0032, Japan
| | - Koichi Ohno
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hajime Tsujimoto
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiroyuki Nakayama
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
71
|
Aghabozorgi AS, Ebrahimi R, Bahiraee A, Tehrani SS, Nabizadeh F, Setayesh L, Jafarzadeh-Esfehani R, Ferns GA, Avan A, Rashidi Z. The genetic factors associated with Wnt signaling pathway in colorectal cancer. Life Sci 2020; 256:118006. [PMID: 32593708 DOI: 10.1016/j.lfs.2020.118006] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022]
Abstract
Colorectal cancer (CRC) is a common cancer with poor prognosis and high mortality. There is growing information about the factors involved in the pathogenesis of CRC. However, the knowledge of the predisposing factors is limited. The development of CRC is strongly associated with the Wingless/Integrated (Wnt) signaling pathway. This pathway comprises several major target proteins, including LRP5/6, GSK3β, adenomatous polyposis coli (APC), axis inhibition protein (Axin), and β-catenin. Genetic variations in these components of the Wnt signaling pathway may lead to the activation of β-catenin, potentially increasing the proliferation of colorectal cells. Because of the potentially important role of the Wnt signaling pathway in CRC, we aimed to review the involvement of different mutations in the main downstream proteins of this pathway, including LRP5/6, APC, GSK3β, Axin, and β-catenin. Determination of the genetic risk factors involved in the progression of CRC may lead to novel approaches for the early diagnosis of CRC and the identification of potential therapeutic targets in the treatment of CRC.
Collapse
Affiliation(s)
- Amirsaeed Sabeti Aghabozorgi
- Medical Genetics Research Center, Basic Medical Sciences Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reyhane Ebrahimi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Bahiraee
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Nabizadeh
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Leila Setayesh
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran; Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Jafarzadeh-Esfehani
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Amir Avan
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Zahra Rashidi
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Anatomical Sciences, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
72
|
miRNAs-Based Molecular Signature for KRAS Mutated and Wild Type Colorectal Cancer: An Explorative Study. J Immunol Res 2020; 2020:4927120. [PMID: 32676506 PMCID: PMC7330647 DOI: 10.1155/2020/4927120] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/19/2020] [Accepted: 05/27/2020] [Indexed: 12/24/2022] Open
Abstract
microRNAs (miRNAs) have been proposed as promising molecular biomarkers for diagnosis, prognosis, and responsive therapeutic targets in different types of cancer, including colorectal cancer (CRC). In this study, we evaluated the expression levels of 84 cancer-associated miRNAs in a cohort of 39 human samples comprising 13 peritumoral and 26 tumoral tissues from surgical specimens of CRC patients. KRAS mutations were detected in 11 tumoral samples. In a first analysis, we found 5 miRNAs (miR-215-5p, miR-9-5p, miR-138-5p, miR378a-3p, and miR-150-5p) that were significantly downregulated and one upregulated (miR-135b-5p) in tumoral tissues compared with the peritumoral tissues. Furthermore, by comparing miRNA profile between KRAS mutated CRC tissues respect to wild type CRC tissues, we found 7 miRNA (miR-27b-3p, miR-191-5p, miR-let7d-5p, miR-15b-5p, miR-98-5p, miR-10a-5p, and miR-149-5p) downregulated in KRAS mutated condition. In conclusion, we have identified a panel of miRNAs that specifically distinguish CRC tissues from peritumoral tissue and a different set of miRNAs specific for CRC with KRAS mutations. These findings may contribute to the discovering of new molecular biomarkers with clinic relevance and might shed light on novel molecular aspects of CRC.
Collapse
|
73
|
McCabe M, Perner Y, Magobo R, Mirza S, Penny C. Descriptive epidemiological study of South African colorectal cancer patients at a Johannesburg Hospital Academic institution. JGH Open 2020; 4:360-367. [PMID: 32514437 PMCID: PMC7273728 DOI: 10.1002/jgh3.12248] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/01/2019] [Accepted: 08/04/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND AIM Epidemiological studies of colorectal cancer (CRC) in South Africa (SA) have been poorly characterized. Black and white SA population groups have demonstrated distinct CRC clinical presentations, suggesting that black SA patients follow a different carcinogenic pathway than their white counterparts. Thus, the aim of this study was to identify unique demographic and histopathological features associated with black SA patients to facilitate earlier diagnosis and to improve disease management. METHODS This preliminary descriptive epidemiological study included 665 retrospective CRC cases diagnosed between the period 2011 and 2015 at the Charlotte Maxeke Johannesburg Academic Hospital. Demographic and histopathological features in black versus other race groups (ORG) were compared, and Student's t-test, Chi-square, and Fischer's exact tests were used for statistical analysis. RESULTS Statistical analysis demonstrated that patients with left-sided tumors of invasive adenocarcinoma were predominantly black and male. These patients were considerably younger when compared to ORG (median 56 vs 62 years, respectively), P < 0.0001. However, no significant propensity for other histological features was illustrated. Polyps were mostly tubular adenomas (51%) and tubulovillous adenomas (TVAs) (44%). TVAs were mostly high-grade lesions (P < 0.0001) and associated with left-sided CRC (P = 0.0325). CONCLUSION These findings verify that black SA CRC patients have an earlier disease onset in comparison to ORG; however, no increased tendency for tumor site, precursor lesion, stage of disease, or gender was evident. Thus, a deeper molecular characterization of CRC is required to understand the underlying causes associated with earlier disease onset in black SA CRC patients.
Collapse
Affiliation(s)
- Michelle McCabe
- Department of Anatomical Pathology, School of Pathology, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Yvonne Perner
- Department of Anatomical Pathology, School of Pathology, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Rindidzani Magobo
- Department of Anatomical Pathology, School of Pathology, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Sheefa Mirza
- Department of Internal Medicine, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Clement Penny
- Department of Internal Medicine, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| |
Collapse
|
74
|
Bars-Cortina D, Martínez-Bardají A, Macià A, Motilva MJ, Piñol-Felis C. Consumption evaluation of one apple flesh a day in the initial phases prior to adenoma/adenocarcinoma in an azoxymethane rat colon carcinogenesis model. J Nutr Biochem 2020; 83:108418. [PMID: 32592950 DOI: 10.1016/j.jnutbio.2020.108418] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 03/17/2020] [Accepted: 04/24/2020] [Indexed: 01/03/2023]
Abstract
Colorectal cancer (CRC) is the fourth cancer with the most new cases reported in 2018 worldwide. Consumption of fruit and vegetables is a protective factor against the risk of CRC. Beyond this, flavonoids could orchestrate these healthy effects. Apart from containing the typical apple flavonoids, red-fleshed apples also contain anthocyanins, mainly cyanidin-3-O-galactoside (Cy3Gal). Through an azoxymethane rat carcinogenesis model, a study was carried out in order to assess the possible protective effects of apple polyphenols, with special attention to anthocyanins. In addition, apart from negative and positive controls, a group with chemotherapy with 5-fluorouracil (5FU) was included to compare their performance against the output collected from the animal treatments with white-fleshed apple (WF), red-fleshed apple (RF) and Cy3Gal (AE). Although the 5FU group presented the best performance towards aberrant crypt foci (ACF) inhibition (70.1%), rats fed with white-fleshed apples ('Golden Smoothee') were able to achieve 41.3% ACF inhibition, while none of the challenged treatments (WF, RF and AE) suffered mucin depletion in their colonocytes. Expression changes of 17 genes related to CRC were assessed. In detail, the ACF inhibition phenotype detected in 5FU and WF groups could be explained through the expression changes detected in the apoptosis-related genes of Aurka, p53 and Cox2. Moreover, in the apple consumption groups (WF and RF), a reduced protein expression of matrix metalloproteinases with gelatinase activity (MMP-2 and 9) was detected. Overall, our study suggests an effect of apple polyphenols and apple anthocyanin Cy3Gal against colon carcinogenesis, retarding/diminishing the appearance of the precancerous markers studied.
Collapse
Affiliation(s)
- David Bars-Cortina
- Food Technology Department, XaRTA-TPV, Agrotecnio Center, Escola Tècnica Superior d'Enginyeria Agrària, Universitat de Lleida, Lleida, Catalonia, Spain; Department of Medicine, Universitat de Lleida, Lleida, Catalonia, Spain.
| | | | - Alba Macià
- Food Technology Department, XaRTA-TPV, Agrotecnio Center, Escola Tècnica Superior d'Enginyeria Agrària, Universitat de Lleida, Lleida, Catalonia, Spain
| | - María-Jose Motilva
- Instituto de Ciencias de la Vid y del Vino (ICVV) (Consejo Superior de Investigaciones Científicas-CSIC, Universidad de la Rioja, Gobierno de la Rioja), Logroño, La Rioja, Spain.
| | - Carme Piñol-Felis
- Department of Medicine, Universitat de Lleida, Lleida, Catalonia, Spain; Institut de Recerca Biomèdica de Lleida, Fundació Dr. Pifarré-IRBLleida, Lleida, Catalonia, Spain.
| |
Collapse
|
75
|
Li X, Sun K, Liao X, Gao H, Zhu H, Xu R. Colorectal carcinomas with mucinous differentiation are associated with high frequent mutation of KRAS or BRAF mutations, irrespective of quantity of mucinous component. BMC Cancer 2020; 20:400. [PMID: 32384877 PMCID: PMC7206795 DOI: 10.1186/s12885-020-06913-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/29/2020] [Indexed: 02/08/2023] Open
Abstract
Background Mucinous adenocarcinoma (MAC) is a distinct type of colorectal cancer (CRC) associated with poor response to treatment and poorer prognosis. MAC is diagnosed by WHO definition when the extracellular mucin is more than 50% of the lesion. We aimed at assessing the gene expression profiles of the CRCs with any mucinous features (> 5%) in a retrospective study. Methods The data of a 50-gene next generation sequencing (NGS) panel of 166 CRCs was analyzed and the gene mutational profile with morphologic features was correlated. Results We identified the different genetic mutation profiles between CRCs with and without mucinous component, but noticed a similar genetic profile between MACs and CRCs with mucinous component, irrespective of the percentage (if mucinous component more than 5%). The different genetic mutation profile related to MSI status was also identified between two groups of tumors. The most frequent mutations in CRCs with mucinous component are KRAS (28/49, 57.1%) and BRAF (19/49, 38.7%), PIK3CA (16/49, 32.6%), followed by APC (12/49, 24.5%) and TP53 (11/49, 22.5%). The combined mutation frequency of the two key factors in the EGFR signaling pathway, KRAS and BRAF, in the CRCs with and without mucinous component is 95.9 and 52.1%, respectively. Conclusions The dysregulation of EGFR pathway plays a critical role in the development of CRCs with mucinous component, irrespective of the percentage. The result suggested that the current cut off of 50% mucin component to define mucinous adenocarcinoma might be challengeable.
Collapse
Affiliation(s)
- Xiaodong Li
- Department of Pathology, NYU Langone Medical Center, New York, NY, USA.,Present address: Department of Pathology, University of California Irvine, Orange, CA, USA
| | - Katherine Sun
- Department of Pathology, NYU Langone Medical Center, New York, NY, USA
| | - Xiaoyan Liao
- Department of Pathology, University of Rochester Medical Center, Rochester, NY, USA.,Department of Pathology, Mount Sinai Medical Center, New York, NY, USA
| | - Haijuan Gao
- Present address: Department of Pathology, University of California Irvine, Orange, CA, USA
| | - Hongfa Zhu
- Department of Pathology, Mount Sinai Medical Center, New York, NY, USA
| | - Ruliang Xu
- Department of Pathology, NYU Langone Medical Center, New York, NY, USA. .,Department of Pathology, White Plains Hospital, Montefiore Health System, White Plains, NY, USA.
| |
Collapse
|
76
|
Oxidative Damage in Sporadic Colorectal Cancer: Molecular Mapping of Base Excision Repair Glycosylases in Colorectal Cancer Patients. Int J Mol Sci 2020; 21:ijms21072473. [PMID: 32252452 PMCID: PMC7177219 DOI: 10.3390/ijms21072473] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress with subsequent premutagenic oxidative DNA damage has been implicated in colorectal carcinogenesis. The repair of oxidative DNA damage is initiated by lesion-specific DNA glycosylases (hOGG1, NTH1, MUTYH). The direct evidence of the role of oxidative DNA damage and its repair is proven by hereditary syndromes (MUTYH-associated polyposis, NTHL1-associated tumor syndrome), where germline mutations cause loss-of-function in glycosylases of base excision repair, thus enabling the accumulation of oxidative DNA damage and leading to the adenoma-colorectal cancer transition. Unrepaired oxidative DNA damage often results in G:C>T:A mutations in tumor suppressor genes and proto-oncogenes and widespread occurrence of chromosomal copy-neutral loss of heterozygosity. However, the situation is more complicated in complex and heterogeneous disease, such as sporadic colorectal cancer. Here we summarized our current knowledge of the role of oxidative DNA damage and its repair on the onset, prognosis and treatment of sporadic colorectal cancer. Molecular and histological tumor heterogeneity was considered. Our study has also suggested an additional important source of oxidative DNA damage due to intestinal dysbiosis. The roles of base excision repair glycosylases (hOGG1, MUTYH) in tumor and adjacent mucosa tissues of colorectal cancer patients, particularly in the interplay with other factors (especially microenvironment), deserve further attention. Base excision repair characteristics determined in colorectal cancer tissues reflect, rather, a disease prognosis. Finally, we discuss the role of DNA repair in the treatment of colon cancer, since acquired or inherited defects in DNA repair pathways can be effectively used in therapy.
Collapse
|
77
|
Immunotherapy, Inflammation and Colorectal Cancer. Cells 2020; 9:cells9030618. [PMID: 32143413 PMCID: PMC7140520 DOI: 10.3390/cells9030618] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/29/2020] [Accepted: 03/03/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer type, and third highest in mortality rates among cancer-related deaths in the United States. Originating from intestinal epithelial cells in the colon and rectum, that are impacted by numerous factors including genetics, environment and chronic, lingering inflammation, CRC can be a problematic malignancy to treat when detected at advanced stages. Chemotherapeutic agents serve as the historical first line of defense in the treatment of metastatic CRC. In recent years, however, combinational treatment with targeted therapies, such as vascular endothelial growth factor, or epidermal growth factor receptor inhibitors, has proven to be quite effective in patients with specific CRC subtypes. While scientific and clinical advances have uncovered promising new treatment options, the five-year survival rate for metastatic CRC is still low at about 14%. Current research into the efficacy of immunotherapy, particularly immune checkpoint inhibitor therapy (ICI) in mismatch repair deficient and microsatellite instability high (dMMR-MSI-H) CRC tumors have shown promising results, but its use in other CRC subtypes has been either unsuccessful, or not extensively explored. This Review will focus on the current status of immunotherapies, including ICI, vaccination and adoptive T cell therapy (ATC) in the treatment of CRC and its potential use, not only in dMMR-MSI-H CRC, but also in mismatch repair proficient and microsatellite instability low (pMMR-MSI-L).
Collapse
|
78
|
Gavrilas LI, Cruceriu D, Ionescu C, Miere D, Balacescu O. Pro-apoptotic genes as new targets for single and combinatorial treatments with resveratrol and curcumin in colorectal cancer. Food Funct 2019; 10:3717-3726. [PMID: 31169275 DOI: 10.1039/c9fo01014a] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Colorectal cancer (CRC) represents the third most diagnosed type of cancer worldwide with high mortality and an increased incidence rate. Bioactive dietary components such as curcumin and resveratrol have great therapeutic potential as they can modulate a plethora of signaling pathways related to colorectal carcinogenesis. Previous data have demonstrated that curcumin and resveratrol can induce apoptosis in different types of cancer cells. Considering the lack of data on the combinatorial effect of curcumin and resveratrol associated with the induction of apoptosis in colorectal pathology, the main objective of this study is to investigate the impact of single vs. combinatorial treatment of resveratrol and curcumin on their cytotoxic effects, as well as the modulation of several essential pro-apoptotic genes, on two colorectal cancer cell lines (DLD-1 and Caco-2) different in terms of chromosomal stability (MSI and MSS). The cytotoxic effects were evaluated by the MTT assay, the nature of the interaction between curcumin and resveratrol was assessed by the combination index method and the expression levels of key genes involved in the modulation of pro-apoptotic mechanisms were evaluated by RT-qPCR. Our data indicate that the combination treatment of curcumin and resveratrol is more effective in inhibiting the proliferation in a dose-dependent manner, with a synergistic effect for the DLD-1 cell line (CI < 1) and an additive effect for the Caco-2 cell line (CI ≥ 1). The IC50 values for the combination treatment were 71.8 μM (20.5 μM curcumin + 51.3 μM resveratrol) for the DLD-1 cell line and 66.21 μM (18.9 μM curcumin + 47.3 μM resveratrol) for the Caco-2 cell line, respectively. Our data pointed out, for the first time, that several genes involved in the modulation of apoptosis, including PMAIP1, BID, ZMAT3, CASP3, CASP7, and FAS, represent new targets of both singular and combinatorial treatments with resveratrol and curcumin, and also the combinatorial approach of curcumin and resveratrol exhibits a more powerful gene regulating effect compared to single treatment. Considering the beneficial aspects of the combinatorial approach with curcumin and resveratrol on colorectal cancer cells further studies should address the possible pharmacological benefits of using a combination of both dietary agents with different chemotherapeutic drug approaches.
Collapse
Affiliation(s)
- Laura Ioana Gavrilas
- University of Medicine and Pharmacy "Iuliu Hatieganu", Department of Bromatology, Hygiene, Nutrition, 23 Marinescu Street, Cluj-Napoca 400337, Romania.
| | | | | | | | | |
Collapse
|
79
|
Zhao Y, Xu J, Le VM, Gong Q, Li S, Gao F, Ni L, Liu J, Liang X. EpCAM Aptamer-Functionalized Cationic Liposome-Based Nanoparticles Loaded with miR-139-5p for Targeted Therapy in Colorectal Cancer. Mol Pharm 2019; 16:4696-4710. [PMID: 31589818 DOI: 10.1021/acs.molpharmaceut.9b00867] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide. MicroRNAs (miRNAs) play a vital role in a variety of biology processes. Our previous work identified miR-139-5p as a tumor suppressor gene overexpressed in CRC that assisted in inhibiting progression of cancer. The main challenge of miRNAs as therapeutic agents is their rapid degradation in plasma, poor uptake, and off-target effects. Therefore, the development of miRNA-based therapies is necessary. In this study, we developed a cationic liposome-based nanoparticle loaded with miR-139-5p (miR-139-5p-HSPC/DOTAP/Chol/DSPE-PEG2000-COOH nanoparticles, MNPs) and surface-decorated with epithelial cell adhesion molecule (EpCAM) aptamer (Apt) (miR-139-5p-EpCAM Apt-HSPC/DOTAP/Chol/DSPE-PEG2000-COOH nanoparticles, MANPs) for the targeted treatment of CRC. The size of MANPs was 150.3 ± 8.8 nm, which had a round-shaped appearance and functional dispersion capabilities. It also showed negligible hemolysis in the blood. MANPs markedly inhibited the proliferation, migration, and invasion of one or more CRC cell lines in vitro. Furthermore, we demonstrated the uptake and targeting ability of MANPs in vivo and in vitro. MANPs inhibit the growth of HCT8 cells in vitro and have a significant tumor suppressive effect on subcutaneous HCT8 colorectal tumor mice. Our results demonstrated that MANPs were an effective carrier approach to deliver therapeutic miRNAs to CRC.
Collapse
Affiliation(s)
- Yuyu Zhao
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy , East China University of Science and Technology , Shanghai , People's Republic of China
| | - Jiajun Xu
- Department of Pharmaceutics, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| | - Van Minh Le
- Research Center of Ginseng and Medicinal Materials , National Institute of Medicinal Materials , Ho Chi Minh City , Vietnam
| | - Qianyi Gong
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy , East China University of Science and Technology , Shanghai , People's Republic of China
| | - Shaoyu Li
- Department of Clinical Laboratory , The Third Affiliated Hospital of Xinjiang Medical University , Urumqi , Xinjiang , People's Republic of China
| | - Feng Gao
- Department of Pharmaceutics, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China.,Shanghai Key Laboratory of Functional Materials Chemistry , East China University of Science and Technology , Shanghai 200237 , China.,Shanghai Key Laboratory of New Drug Design , East China University of Science and Technology , Shanghai , People's Republic of China
| | - Lei Ni
- Department of Respiration , Ruijin Hospital, Shanghai Jiaotong University School of Medicine , 197 Ruijin Road II , Shanghai 200025 , P. R. China
| | - Jianwen Liu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy , East China University of Science and Technology , Shanghai , People's Republic of China
| | - Xin Liang
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy , East China University of Science and Technology , Shanghai , People's Republic of China
| |
Collapse
|
80
|
Simonson C. Predictive Biomarkers: Understanding Their Use in Treatment Decision Making. Clin J Oncol Nurs 2019; 23:360-363. [DOI: 10.1188/19.cjon.360-363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
81
|
Cruz-Gil S, Sánchez-Martínez R, Wagner-Reguero S, Stange D, Schölch S, Pape K, Ramírez de Molina A. A more physiological approach to lipid metabolism alterations in cancer: CRC-like organoids assessment. PLoS One 2019; 14:e0219944. [PMID: 31339921 PMCID: PMC6655698 DOI: 10.1371/journal.pone.0219944] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/03/2019] [Indexed: 12/17/2022] Open
Abstract
Precision medicine might be the response to the recent questioning of the use of metformin as an anticancer drug in colorectal cancer (CRC). Thus, in order to establish properly its benefits, metformin application needs to be assayed on the different progression stages of CRC. In this way, intestinal organoids imply a more physiological tool, representing a new therapeutic opportunity for CRC personalized treatment to assay tumor stage-dependent drugs. The previously reported lipid metabolism-related axis, Acyl-CoA synthetases/ Stearoyl-CoA desaturase (ACSLs/SCD), stimulates colon cancer progression and metformin is able to rescue the invasive and migratory phenotype conferred to cancer cells upon this axis overexpression. Therefore, we checked ACSL/SCD axis status, its regulatory miRNAs and the effect of metformin treatment in intestinal organoids with the most common acquired mutations in a sporadic CRC (CRC-like organoids) as a model for specific and personalized treatment. Despite ACSL4 expression is upregulated progressively in CRC-like organoids, metformin is able to downregulate its expression, especially in the first two stages (I, II). Besides, organoids are clearly more sensitive in the first stage (Apc mutated) to metformin than current chemotherapeutic drugs such as fluorouracil (5-FU). Metformin performs an independent "Warburg effect" blockade to cancer progression and is able to reduce crypt stem cell markers expression such as LGR5+. These results suggest a putative increased efficiency of the use of metformin in early stages of CRC than in advanced disease.
Collapse
Affiliation(s)
- Silvia Cruz-Gil
- Molecular Oncology Group/ IMDEA Food Institute, CEI UAM + CSIC, Ctra, De Cantoblanco, Madrid, Spain
| | - Ruth Sánchez-Martínez
- Molecular Oncology Group/ IMDEA Food Institute, CEI UAM + CSIC, Ctra, De Cantoblanco, Madrid, Spain
| | - Sonia Wagner-Reguero
- Molecular Oncology Group/ IMDEA Food Institute, CEI UAM + CSIC, Ctra, De Cantoblanco, Madrid, Spain
| | - Daniel Stange
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Sebastian Schölch
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kristin Pape
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Ana Ramírez de Molina
- Molecular Oncology Group/ IMDEA Food Institute, CEI UAM + CSIC, Ctra, De Cantoblanco, Madrid, Spain
| |
Collapse
|
82
|
The Molecular Hallmarks of the Serrated Pathway in Colorectal Cancer. Cancers (Basel) 2019; 11:cancers11071017. [PMID: 31330830 PMCID: PMC6678087 DOI: 10.3390/cancers11071017] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/15/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer death worldwide. It includes different subtypes that differ in their clinical and prognostic features. In the past decade, in addition to the conventional adenoma-carcinoma model, an alternative multistep mechanism of carcinogenesis, namely the “serrated pathway”, has been described. Approximately, 15 to 30% of all CRCs arise from neoplastic serrated polyps, a heterogeneous group of lesions that are histologically classified into three morphologic categories: hyperplastic polyps, sessile serrated adenomas/polyps, and the traditional serrated adenomas/polyps. Serrated polyps are characterized by genetic (BRAF or KRAS mutations) and epigenetic (CpG island methylator phenotype (CIMP)) alterations that cooperate to initiate and drive malignant transformation from normal colon mucosa to polyps, and then to CRC. The high heterogeneity of the serrated lesions renders their diagnostic and pathological interpretation difficult. Hence, novel genetic and epigenetic biomarkers are required for better classification and management of CRCs. To date, several molecular alterations have been associated with the serrated polyp-CRC sequence. In addition, the gut microbiota is emerging as a contributor to/modulator of the serrated pathway. This review summarizes the state of the art of the genetic, epigenetic and microbiota signatures associated with serrated CRCs, together with their clinical implications.
Collapse
|
83
|
Barani S, Hosseini SV, Ghaderi A. Activating and inhibitory killer cell immunoglobulin like receptors (KIR) genes are involved in an increased susceptibility to colorectal adenocarcinoma and protection against invasion and metastasis. Immunobiology 2019; 224:681-686. [PMID: 31248612 DOI: 10.1016/j.imbio.2019.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 05/21/2019] [Accepted: 06/18/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND A set of activating and inhibitory KIRs (aKIR, iKIR) are involved in NK cell mediated immunity. This study was carried out in order to investigate the KIRs pattern and its association with colorectal carcinoma (CRC) development and clinical outcomes. METHODS Sequence-specific primers-polymerase chain reaction (SSP-PCR) for typing of 16 KIR genes was utilized in 165 patients with colorectal adenocarcinoma with 165 age and gender matched healthy controls (CNs). RESULTS Possessing KIR2DS1, 2DS5, 3DS1, 2DS4fl, 2DL5, telomeric half KIR genes, ≥ 4 aKIR and CXT4 genotype were associated with an increased susceptibility to colorectal adenocarcinoma while KIR2DS4del and iKIR >aKIR confer resistance to CRC. On the other hand, clinical associations revealed the defensive role of telomeric KIR3DL1, 3DS1, 2DS1, 2DS4, genotypes with ≥ 4 aKIR and more inhibitory KIRs than activating ones (I > A) against metastasis and CXTX genotype in perineural invasion. CONCLUSION According to current results it appears that KIRs system play distinctive roles in development and metastasis of colorectal adenocarcinoma.
Collapse
Affiliation(s)
- Shaghik Barani
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Abbas Ghaderi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
84
|
Igder S, Mohammadiasl J, Mokarram P. Altered miR-21, miRNA-148a Expression in Relation to KRAS Mutation Status as Indicator of Adenoma-Carcinoma Transitional Pattern in Colorectal Adenoma and Carcinoma Lesions. Biochem Genet 2019; 57:767-780. [PMID: 30997628 DOI: 10.1007/s10528-019-09918-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 04/01/2019] [Indexed: 02/06/2023]
Abstract
Sporadic colorectal cancer (CRC) is a fatal disease, mostly known as the silent killer, due to the fact that this disease is asymptomatic before diagnosis in advanced stage. Screening and the early detection of CRC and colorectal adenoma (CRA) by non-aggressive molecular biomarkers' signature is useful for improvement of survival rate in CRC patients. To achieve such a goal, a better understanding of distinct molecular abnormalities as candidate biomarkers in CRC development is crucial. In this study, seventy-five archived FFPE CRC samples, including colorectal adenocarcinoma, adenomatous polyps (adenoma), and adjacent non-neoplastic mucosa were collected for the investigation by Sanger sequencing at the DNA level and by real-time PCR at the RNA level. The results of the KRAS mutational analysis have shown that the majority of somatic mutations in the KRAS affect only one codon, mainly codon 12(p.G12D) with low frequency in adenomas (13.3%) versus CRCs (36%). The results of dysregulated epigenetic changes of miR-21 clearly showed upregulation of expression in colorectal adenocarcinoma, compared to non-neoplastic mucosa, in colorectal adenoma vs non-neoplastic mucosa: (p < 0.001) and in CRC versus adenoma (p < 0.001); while miR-148a expression were significantly downregulated in CRC, compared to non-neoplastic mucosa, in colorectal adenoma vs non-neoplastic mucosa, and in adenoma vs CRC (p < 0.001). Our findings support the important role of miR-21 in stages I-II of CRC, and the KRAS G12D mutant, and differential miR-148a expression, in advanced stages of CRC.
Collapse
Affiliation(s)
- Somayeh Igder
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Javad Mohammadiasl
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Pooneh Mokarram
- Colorectal Cancer Research Center and Department of Biochemistry, Shiraz University of Medical Sciences, P.O Box 1167, Shiraz, Iran.
| |
Collapse
|
85
|
Hauptman N, Jevšinek Skok D, Spasovska E, Boštjančič E, Glavač D. Genes CEP55, FOXD3, FOXF2, GNAO1, GRIA4, and KCNA5 as potential diagnostic biomarkers in colorectal cancer. BMC Med Genomics 2019; 12:54. [PMID: 30987631 PMCID: PMC6466812 DOI: 10.1186/s12920-019-0501-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 04/03/2019] [Indexed: 02/06/2023] Open
Abstract
Background Colorectal cancer (CRC) is one of the leading causes of death by cancer worldwide and in need of novel potential diagnostic biomarkers for early discovery. Methods We conducted a two-step study. We first employed bioinformatics on data from The Cancer Genome Atlas to obtain potential biomarkers and then experimentally validated some of them on our clinical samples. Our aim was to find a methylation alteration common to all clusters, with the potential of becoming a diagnostic biomarker in CRC. Results Unsupervised clustering of methylation data resulted in four clusters, none of which had a known common genetic or epigenetic event, such as mutations or methylation. The intersect among clusters and regulatory regions resulted in 590 aberrantly methylated probes, belonging to 198 differentially expressed genes. After performing pathway and functional analysis on differentially expressed genes, we selected six genes: CEP55, FOXD3, FOXF2, GNAO1, GRIA4 and KCNA5, for further experimental validation on our own clinical samples. In silico analysis demonstrated that CEP55 was hypomethylated in 98.7% and up-regulated in 95.0% of samples. Genes FOXD3, FOXF2, GNAO1, GRIA4 and KCNA5 were hypermethylated in 97.9, 81.1, 80.3, 98.4 and 94.0%, and down-regulated in 98.3, 98.9, 98.1, 98.1 and 98.6% of samples, respectively. Our experimental data show CEP55 was hypomethylated in 97.3% of samples and down-regulated in all samples, while FOXD3, FOXF2, GNAO1, GRIA4 and KCNA5 were hypermethylated in 100.0, 90.2, 100.0, 99.1 and 100.0%, and down-regulated in 68.0, 76.0, 96.0, 95.2 and 84.0% of samples, respectively. Results of in silico and our experimental analyses showed that more than 97% of samples had at least four methylation markers altered. Conclusions Using bioinformatics followed by experimental validation, we identified a set of six genes that were differentially expressed in CRC compared to normal mucosa and whose expression seems to be methylation dependent. Moreover, all of these six genes were common in all methylation clusters and mutation statuses of CRC and as such are believed to be an early event in human CRC carcinogenesis and to represent potential CRC biomarkers. Electronic supplementary material The online version of this article (10.1186/s12920-019-0501-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nina Hauptman
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Korytkova 2, SI-1000, Ljubljana, Slovenia.
| | - Daša Jevšinek Skok
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Korytkova 2, SI-1000, Ljubljana, Slovenia.,Agricultural Institute of Slovenia, Hacquetova ulica 17, SI-1000, Ljubljana, Slovenia
| | - Elena Spasovska
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Korytkova 2, SI-1000, Ljubljana, Slovenia
| | - Emanuela Boštjančič
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Korytkova 2, SI-1000, Ljubljana, Slovenia
| | - Damjan Glavač
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Korytkova 2, SI-1000, Ljubljana, Slovenia
| |
Collapse
|
86
|
Pakiet A, Kobiela J, Stepnowski P, Sledzinski T, Mika A. Changes in lipids composition and metabolism in colorectal cancer: a review. Lipids Health Dis 2019; 18:29. [PMID: 30684960 PMCID: PMC6347819 DOI: 10.1186/s12944-019-0977-8] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/16/2019] [Indexed: 02/06/2023] Open
Abstract
Altered metabolism of lipids is currently considered a hallmark characteristic of many malignancies, including colorectal cancer (CRC). Lipids are a large group of metabolites that differ in terms of their fatty acid composition. This review summarizes recent evidence, documenting many alterations in the content and composition of fatty acids, polar lipids, oxylipins and triacylglycerols in CRC patients' sera, tumor tissues and adipose tissue. Some of altered lipid molecules may be potential biomarkers of CRC risk, development and progression. Owing to a significant role of many lipids in cancer cell metabolism, some of lipid metabolism pathways may also constitute specific targets for anti-CRC therapy.
Collapse
Affiliation(s)
- Alicja Pakiet
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Dębinki 1, 80-211, Gdansk, Poland
| | - Jarosław Kobiela
- Department of General, Endocrine and Transplant Surgery, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Dębinki 1, 80-211, Gdansk, Poland.
| | - Adriana Mika
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Dębinki 1, 80-211, Gdansk, Poland
| |
Collapse
|
87
|
Claudin-7 downregulation induces metastasis and invasion in colorectal cancer via the promotion of epithelial-mesenchymal transition. Biochem Biophys Res Commun 2018; 508:797-804. [PMID: 30528239 DOI: 10.1016/j.bbrc.2018.10.049] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 10/07/2018] [Indexed: 02/08/2023]
Abstract
The dysregulation of the tight junctions (TJs) protein claudin-7 is closely related to the development and metastasis of colorectal cancer (CRC). The aim of this study was to investigate the expression of claudin-7 and characterize the relationship between claudin-7 expression and epithelial-mesenchymal transition (EMT) in CRC. In this study, the expression of claudin-7, E-cadherin, vimentin and snail-1 was detected by immunohistochemistry (IHC) in a set of 80 CRC specimens comprising 20 specimens each of well-differentiated, moderately differentiated, poorly differentiated and liver metastases tissues. The correlation between claudin-7 and EMT-related proteins in the stably transfected claudin-7 knockdown HCT116 cell line was analyzed by IHC, immunofluorescence (IF), Western blotting (WB) and nude mouse xenograft models. The results revealed that the expression of claudin-7 was downregulated as CRC tissue differentiation grade decreased, and that low claudin-7 expression corresponded to the downregulation of E-cadherin (r = 0.725, p < 0.001) and upregulation of vimentin (r = -0.376, p = 0.001) and snail-1 (r = -0.599, p < 0.001). Additionally, in the claudin-7 knockdown HCT116 cell line, the staining intensity and expression of E-cadherin was decreased, while the immunoreactivity and expression of vimentin and snail-1 was increased. Futhermore, the result of tumor formation experiment was consistent with CRC tissues. In conclusion, the expression of claudin-7 in CRC is downregulated as differentiation grade decreases. Claudin-7 downregulation may promote the invasion and metastasis of CRC by regulating EMT. Our results provide new perspectives for a potential therapeutic target for CRC.
Collapse
|
88
|
Aghabozorgi AS, Bahreyni A, Soleimani A, Bahrami A, Khazaei M, Ferns GA, Avan A, Hassanian SM. Role of adenomatous polyposis coli (APC) gene mutations in the pathogenesis of colorectal cancer; current status and perspectives. Biochimie 2018; 157:64-71. [PMID: 30414835 DOI: 10.1016/j.biochi.2018.11.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 11/04/2018] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is one of the most common forms of solid tumors in the world with high rates of mortality and morbidity. Most cases of CRCs are initiated by inactivating mutations in a tumor suppressor gene, adenomatous polyposis coli (APC), leading to constitutive activation of the Wnt signaling pathway. This review summarizes the roles of somatic and germline mutations of the APC gene in hereditary as well as sporadic forms of CRC. We also discuss the diagnostic and prognostic value of the APC gene in the pathogenesis of CRC for a better understanding of CRC disease.
Collapse
Affiliation(s)
- Amirsaeed Sabeti Aghabozorgi
- Department of Human Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran; Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Amirhossein Bahreyni
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atena Soleimani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Afsane Bahrami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Majid Khazaei
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
89
|
Silva-Illanes N, Espinoza M. Critical Analysis of Markov Models Used for the Economic Evaluation of Colorectal Cancer Screening: A Systematic Review. VALUE IN HEALTH : THE JOURNAL OF THE INTERNATIONAL SOCIETY FOR PHARMACOECONOMICS AND OUTCOMES RESEARCH 2018; 21:858-873. [PMID: 30005759 DOI: 10.1016/j.jval.2017.11.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 11/12/2017] [Accepted: 11/27/2017] [Indexed: 05/22/2023]
Abstract
BACKGROUND The economic evaluation of colorectal cancer screening is challenging because of the need to model the underlying unobservable natural history of the disease. OBJECTIVES To describe the available Markov models and to critically analyze their main structural assumptions. METHODS A systematic search was performed in eight relevant databases (MEDLINE, Embase, Econlit, National Health Service Economic Evaluation Database, Health Economic Evaluations Database, Health Technology Assessment database, Cost-Effective Analysis Registry, and European Network of Health Economics Evaluation Databases), identifying 34 models that met the inclusion criteria. A comparative analysis of model structure and parameterization was conducted using two checklists and guidelines for cost-effectiveness screening models. RESULTS Two modeling techniques were identified. One strategy used a Markov model to reproduce the natural history of the disease and an overlaying model that reproduced the screening process, whereas the other used a single model to represent a screening program. Most of the studies included only adenoma-carcinoma sequences, a few included de novo cancer, and none included the serrated pathway. Parameterization of adenoma dwell time, sojourn time, and surveillance differed between studies, and there was a lack of validation and statistical calibration against local epidemiological data. Most of the studies analyzed failed to perform an adequate literature review and synthesis of diagnostic accuracy properties of the screening tests modeled. CONCLUSIONS Several strategies to model colorectal cancer screening have been developed, but many challenges remain to adequately represent the natural history of the disease and the screening process. Structural uncertainty analysis could be a useful strategy for understanding the impact of the assumptions of different models on cost-effectiveness results.
Collapse
Affiliation(s)
| | - Manuel Espinoza
- HTA Unit, Centre for Clinical Research UC, Pontifical Catholic University of Chile, Santiago, Chile
| |
Collapse
|
90
|
Colorectal Cancer – An Update for Primary Care Nurse Practitioners. J Nurse Pract 2018. [DOI: 10.1016/j.nurpra.2017.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
91
|
Peyravian N, Larki P, Gharib E, Nazemalhosseini-Mojarad E, Anaraki F, Young C, McClellan J, Ashrafian Bonab M, Asadzadeh-Aghdaei H, Zali MR. The Application of Gene Expression Profiling in Predictions of Occult Lymph Node Metastasis in Colorectal Cancer Patients. Biomedicines 2018; 6:E27. [PMID: 29498671 PMCID: PMC5874684 DOI: 10.3390/biomedicines6010027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 02/24/2018] [Accepted: 03/01/2018] [Indexed: 01/06/2023] Open
Abstract
A key factor in determining the likely outcome for a patient with colorectal cancer is whether or not the tumour has metastasised to the lymph nodes-information which is also important in assessing any possibilities of lymph node resection so as to improve survival. In this review we perform a wide-range assessment of literature relating to recent developments in gene expression profiling (GEP) of the primary tumour, to determine their utility in assessing node status. A set of characteristic genes seems to be involved in the prediction of lymph node metastasis (LNM) in colorectal patients. Hence, GEP is applicable in personalised/individualised/tailored therapies and provides insights into developing novel therapeutic targets. Not only is GEP useful in prediction of LNM, but it also allows classification based on differences such as sample size, target gene expression, and examination method.
Collapse
Affiliation(s)
- Noshad Peyravian
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Live Diseases, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran.
| | - Pegah Larki
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Live Diseases, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran.
| | - Ehsan Gharib
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Live Diseases, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran.
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran.
| | - Fakhrosadate Anaraki
- Colorectal Division of Department of Surgery, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113b, Iran.
| | - Chris Young
- School of Allied Health Sciences, Faculty of Health and Life Sciences, De Montfort University, Leicester LE1 9BH, UK.
| | - James McClellan
- School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2UP, UK.
| | | | - Hamid Asadzadeh-Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Live Diseases, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran.
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran.
| |
Collapse
|
92
|
Edwards Y. An Msh3 ATPase domain mutation has no effect on MMR function. BMC Res Notes 2017; 10:616. [PMID: 29178930 PMCID: PMC5702223 DOI: 10.1186/s13104-017-2939-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 11/15/2017] [Indexed: 11/10/2022] Open
|
93
|
Namani A, Li J, Wang XJ, Tang X. A Review of Compounds for Prevention of Colorectal Cancer. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s40495-017-0101-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
94
|
Qiu L, Tan X, Lin J, Liu RY, Chen S, Geng R, Wu J, Huang W. CDC27 Induces Metastasis and Invasion in Colorectal Cancer via the Promotion of Epithelial-To-Mesenchymal Transition. J Cancer 2017; 8:2626-2635. [PMID: 28900500 PMCID: PMC5595092 DOI: 10.7150/jca.19381] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 05/22/2017] [Indexed: 12/21/2022] Open
Abstract
Distant metastasis is the primary cause of cancer-related death among patients with colorectal cancer (CRC), and the discovery of novel therapeutic targets by further exploring the molecular mechanisms of CRC metastasis is therefore urgently needed. We previously illustrated that CDC27 overexpression promoted proliferation in CRC, but no studies have emphasized the role of CDC27 in cancer metastasis thus far. Our previous data indicated that the expression of CDC27 was significantly associated with distant metastasis in patient tissues, and therefore, in this study, we focused on the investigation of the potential mechanisms of CDC27 in CRC metastasis. The results revealed that CDC27 promoted the metastasis, invasion and sphere-formation capacity of DLD1 cells, but that the inhibition of CDC27 in HCT116 cells suppressed metastasis both in vitro and in vivo. Mechanistic analyses revealed that CDC27 promoted epithelial-to-mesenchymal transition (EMT), as demonstrated by the reduced expression of the epithelial markers ZO-1 and E-cadherin and the enhanced expression of the mesenchymal markers ZEB1 and Snail in HCT116 and DLD1 cells. Further mechanistic investigation indicated that CDC27 promoted metastasis and sphere-formation capacity in an ID1-dependent manner. In conclusion, we first demonstrated the role of CDC27 in cancer metastasis and showed that CDC27 may serve as a promising therapeutic target for CRC.
Collapse
Affiliation(s)
- Lin Qiu
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou.,Department of Hematology/Oncology, Guangzhou Women and Children's Medical center, Guangzhou Medical University, Guangzhou, Guangdong
| | - Xin Tan
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou
| | - Jiaxin Lin
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou.,Guangdong Lung Cancer Institute, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou
| | - Ran-Yi Liu
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou
| | - Shuai Chen
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou
| | - Rong Geng
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou
| | - Jiangxue Wu
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou
| | - Wenlin Huang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou
| |
Collapse
|
95
|
Geng R, Tan X, Zuo Z, Wu J, Pan Z, Shi W, Liu R, Yao C, Wang G, Lin J, Qiu L, Huang W, Chen S. Synthetic lethal short hairpin RNA screening reveals that ring finger protein 183 confers resistance to trametinib in colorectal cancer cells. CHINESE JOURNAL OF CANCER 2017; 36:63. [PMID: 28756770 PMCID: PMC5535279 DOI: 10.1186/s40880-017-0228-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/16/2017] [Indexed: 01/06/2023]
Abstract
Background The mitogen-activated extracellular signal-regulated kinase 1/2 (MEK1/2) inhibitor trametinib has shown promising therapeutic effects on melanoma, but its efficacy on colorectal cancer (CRC) is limited. Synthetic lethality arises with a combination of two or more separate gene mutations that causes cell death, whereas individual mutations keep cells alive. This study aimed to identify the genes responsible for resistance to trametinib in CRC cells, using a synthetic lethal short hairpin RNA (shRNA) screening approach. Methods We infected HT29 cells with a pooled lentiviral shRNA library and applied next-generation sequencing to identify shRNAs with reduced abundance after 8-day treatment of 20 nmol/L trametinib. HCT116 and HT29 cells were used in validation studies. Stable ring finger protein 183 (RNF183)-overexpressing cell lines were generated by pcDNA4-myc/his-RNF183 transfection. Stable RNF183-knockdown cell lines were generated by infection of lentiviruses that express RNF183 shRNA, and small interference RNA (siRNA) was used to knock down RNF183 transiently. Quantitative real-time PCR was used to determine the mRNA expression. Western blotting, immunohistochemical analysis, and enzyme-linked immunosorbent assay (ELISA) were used to evaluate the protein abundance. MTT assay, colony formation assay, and subcutaneous xenograft tumor growth model were used to evaluate cell proliferation. Results In the primary screening, we found that the abundance of RNF183 shRNA was markedly reduced after treatment with trametinib. Trametinib induced the expression of RNF183, which conferred resistance to drug-induced cell growth repression and apoptotic and non-apoptotic cell deaths. Moreover, interleukin-8 (IL-8) was a downstream gene of RNF183 and was required for the function of RNF183 in facilitating cell growth. Additionally, elevated RNF183 expression partly reduced the inhibitory effect of trametinib on IL-8 expression. Finally, xenograft tumor model showed the synergism of RNF183 knockdown and trametinib in repressing the growth of CRC cells in vivo. Conclusion The RNF183-IL-8 axis is responsible for the resistance of CRC cells to the MEK1/2 inhibitor trametinib and may serve as a candidate target for combined therapy for CRC. Electronic supplementary material The online version of this article (doi:10.1186/s40880-017-0228-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rong Geng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510507, Guangdong, P. R. China.,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, P. R. China
| | - Xin Tan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510507, Guangdong, P. R. China.,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, P. R. China
| | - Zhixiang Zuo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510507, Guangdong, P. R. China.,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, P. R. China
| | - Jiangxue Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510507, Guangdong, P. R. China.,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, P. R. China
| | - Zhizhong Pan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510507, Guangdong, P. R. China.,Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, P. R. China
| | - Wei Shi
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510507, Guangdong, P. R. China.,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, P. R. China
| | - Ranyi Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510507, Guangdong, P. R. China.,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, P. R. China
| | - Chen Yao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510507, Guangdong, P. R. China.,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, P. R. China
| | - Gaoyuan Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510507, Guangdong, P. R. China.,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, P. R. China
| | - Jiaxin Lin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510507, Guangdong, P. R. China.,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, P. R. China
| | - Lin Qiu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510507, Guangdong, P. R. China.,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, P. R. China
| | - Wenlin Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510507, Guangdong, P. R. China. .,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, P. R. China. .,Guangdong Provincial Key Laboratory of Tumor-Targeted Drugs and Guangzhou Enterprise Key Laboratory of Gene Medicine, Guangzhou Doublle Bioproducts Co. Ltd., Guangzhou, 510507, Guangdong, P. R. China.
| | - Shuai Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510507, Guangdong, P. R. China. .,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, P. R. China. .,Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, P. R. China.
| |
Collapse
|
96
|
The loss-of-function mutations and down-regulated expression of ASB3 gene promote the growth and metastasis of colorectal cancer cells. CHINESE JOURNAL OF CANCER 2017; 36:11. [PMID: 28088228 PMCID: PMC5237493 DOI: 10.1186/s40880-017-0180-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 12/30/2016] [Indexed: 02/06/2023]
Abstract
Background Ankyrin repeat and SOCS box protein 3 (ASB3) is a member of ASB family and contains ankyrin repeat sequence and SOCS box domain. Previous studies indicated that it mediates the ubiquitination and degradation of tumor necrosis factor receptor 2 and is likely involved in inflammatory responses. However, its effects on oncogenesis are unclear. This study aimed to investigate the effects of ASB3 on the growth and metastasis of colorectal cancer (CRC). Methods We used next-generation sequencing or Sanger sequencing to detect ASB3 mutations in CRC specimens or cell lines, and used real-time quantitative polymerase chain reaction, Western blotting, and immunohistochemical or immunofluorescence assay to determine gene expression. We evaluated cell proliferation by MTT and colony formation assays, tested cell cycle distribution by flow cytometry, and assessed cell migration and invasion by transwell and wound healing assays. We also performed nude mouse experiments to evaluate tumorigenicity and hepatic metastasis potential of tumor cells. Results We found that ASB3 gene was frequently mutated (5.3%) and down-regulated (70.4%) in CRC cases. Knockdown of endogenous ASB3 expression promoted CRC cell proliferation, migration, and invasion in vitro and facilitated tumorigenicity and hepatic metastasis in vivo. Conversely, the ectopic overexpression of wild-type ASB3, but not that of ASB3 mutants that occurred in clinical CRC tissues, inhibited tumor growth and metastasis. Further analysis showed that ASB3 inhibited CRC metastasis likely by retarding epithelial-mesenchymal transition, which was characterized by the up-regulation of β-catenin and E-cadherin and the down-regulation of transcription factor 8, N-cadherin, and vimentin. Conclusion ASB3 dysfunction resulted from gene mutations or down-regulated expression frequently exists in CRC and likely plays a key role in the pathogenesis and progression of CRC.
Collapse
|
97
|
Portela P, Merzoni J, Lindenau JD, Damin DC, Wilson TJ, Roesler R, Schwartsmann G, Jobim LF, Jobim M. KIR genes and HLA class I ligands in a Caucasian Brazilian population with colorectal cancer. Hum Immunol 2017; 78:263-268. [PMID: 28088355 DOI: 10.1016/j.humimm.2017.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 12/31/2016] [Accepted: 01/08/2017] [Indexed: 12/22/2022]
Abstract
Colorectal cancer (CRC) can occur anywhere in the colon or rectum and represents the third most common cancer in the world in both sexes. Natural killer cells (NK) are part of the innate immune system recognizing class I HLA molecules on target cells through their membrane receptors, called killer cell immunoglobulin-like receptors (KIR). The aim of our study was to evaluate the association between the KIR genes and HLA ligands in patients with colorectal cancer and healthy controls. We examined the polymorphism of 16 KIR genes and their HLA ligands in 154 caucasoid CRC patients and 216 controls. When both groups were compared, no significant differences were found for HLA ligands and KIR genes after Bonferroni correction. However, the Bx haplotypes (heterozygous and homozygous for the haplotype B) were more frequent in controls, when compared with patients. These findings suggest that individuals with Bx haplotypes could have some protection to colorectal cancer. The hypothesis is not related with the presence of a special KIR gene and HLA ligand related to the disease, but to the presence of several activating genes in the individuals with no better action of one in relation to other. Further studies to confirm this observation are warranted.
Collapse
Affiliation(s)
- Pâmela Portela
- Department of Immunology, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Joice Merzoni
- Department of Immunology, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Juliana D Lindenau
- Department of Genetic, Institute of Biosciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Daniel C Damin
- Division of Coloproctology, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Timothy John Wilson
- Department of Immunology, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gilberto Schwartsmann
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Internal Medicine, School of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Luiz Fernando Jobim
- Department of Immunology, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Department of Internal Medicine, School of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mariana Jobim
- Department of Immunology, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| |
Collapse
|
98
|
Das V, Kalita J, Pal M. Predictive and prognostic biomarkers in colorectal cancer: A systematic review of recent advances and challenges. Biomed Pharmacother 2016; 87:8-19. [PMID: 28040600 DOI: 10.1016/j.biopha.2016.12.064] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 12/15/2016] [Accepted: 12/15/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the leading cause of cancer deaths worldwide. Since CRC is largely asymptomatic until alarm features develop to advanced stages, the implementation of the screening programme is very much essential to reduce cancer incidence and mortality rates. CRC occurs predominantly from accumulation of genetic and epigenetic changes in colon epithelial cells, which later gets transformed into adenocarcinomas. SCOPE OF REVIEW The current challenges of screening paradigm and diagnostic ranges are from semi-invasive methods like colonoscopy to non-invasive stool-based test, have resulted in over-diagnosis and over-treatment of CRC. Hence, new screening initiatives and deep studies are required for early diagnosis of CRC. In this regard, we not only summarise current predictive and prognostic biomarkers with their potential for diagnostic and therapeutic applications, but also describe current limitations, future perspectives and challenges associated with the progression of CRC. MAJOR CONCLUSIONS Currently many potential biomarkers have already been successfully translated into clinical practice eg. Fecal haemoglobin, Carcinoembryonic antigen (CEA) and CA19.9, although these are not highly promising diagnostic target for personalized medicine. So there is a critical need for reliable, minimally invasive, highly sensitive and specific genetic markers of an individualised and optimised patient treatment at the earliest disease stage possible. GENERAL SIGNIFICANCE Identification of a new biomarker, or a set of biomarkers to the development of a valid, and clinical sensible assay that can be served as an alternative tool for early diagnosis of CRC and open up promising new targets in therapeutic intervention strategies.
Collapse
Affiliation(s)
- Vishal Das
- Biotechnology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India
| | - Jatin Kalita
- Biotechnology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India
| | - Mintu Pal
- Biotechnology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India.
| |
Collapse
|
99
|
Sun Y, Ji P, Chen T, Zhou X, Yang D, Guo Y, Liu Y, Hu L, Xia D, Liu Y, Multani AS, Shmulevich I, Kucherlapati R, Kopetz S, Sood AK, Hamilton SR, Sun B, Zhang W. MIIP haploinsufficiency induces chromosomal instability and promotes tumour progression in colorectal cancer. J Pathol 2016; 241:67-79. [PMID: 27741356 DOI: 10.1002/path.4823] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/21/2016] [Accepted: 09/23/2016] [Indexed: 12/20/2022]
Abstract
The gene encoding migration and invasion inhibitory protein (MIIP), located on 1p36.22, is a potential tumour suppressor gene in glioma. In this study, we aimed to explore the role and mechanism of action of MIIP in colorectal cancer (CRC). MIIP protein expression gradually decreased along the colorectal adenoma-carcinoma sequence and was negatively correlated with lymph node and distant metastasis in 526 colorectal tissue samples (p < 0.05 for all). Analysis of The Cancer Genome Atlas (TCGA) data showed that decreased MIIP expression was significantly associated with MIIP hemizygous deletion (p = 0.0005), which was detected in 27.7% (52/188) of CRC cases, and associated with lymph node and distant metastasis (p < 0.05 for both). We deleted one copy of the MIIP gene in HCT116 CRC cells using zinc finger nuclease technology and demonstrated that MIIP haploinsufficiency resulted in increased colony formation and cell migration and invasion, which was consistent with the results from siRNA-mediated MIIP knockdown in two CRC cell lines (p < 0.05 for all). Moreover, MIIP haploinsufficiency promoted CRC progression in vivo (p < 0.05). Genomic instability and spectral karyotyping assays demonstrated that MIIP haploinsufficiency induced chromosomal instability (CIN). Besides modulating the downstream proteins of APC/CCdc20 , securin and cyclin B1, MIIP haploinsufficiency inhibited topoisomerase II (Topo II) activity and induced chromosomal missegregation. Therefore, we report that MIIP is a novel potential tumour suppressor gene in CRC. Moreover, we characterized the MIIP gene as a novel CIN suppressor gene, through altering the stability of mitotic checkpoint proteins and disturbing Topo II activity. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yan Sun
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.,Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ping Ji
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tao Chen
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xinhui Zhou
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Da Yang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yuhong Guo
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Yuexin Liu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Limei Hu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dianren Xia
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yanxue Liu
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Asha S Multani
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Raju Kucherlapati
- Departments of Genetics and Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Center for RNAi and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Stanley R Hamilton
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Baocun Sun
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Wei Zhang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Center for RNAi and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Department of Cancer Biology, Comprehensive Cancer Center of Wake Forest Baptist Medical Center, Winston-Salem, NC 20174, USA
| |
Collapse
|
100
|
Biomarkers of genome instability and cancer epigenetics. Tumour Biol 2016; 37:13029-13038. [DOI: 10.1007/s13277-016-5278-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 07/15/2016] [Indexed: 02/06/2023] Open
|