51
|
Characterisation of acetylcholinesterase release from neuronal cells. Chem Biol Interact 2012; 203:302-8. [PMID: 23047022 DOI: 10.1016/j.cbi.2012.09.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 09/26/2012] [Accepted: 09/27/2012] [Indexed: 12/30/2022]
Abstract
Although acetylcholinesterase (AChE) is primarily a hydrolytic enzyme, metabolising the neurotransmitter acetylcholine in cholinergic synapses, it also has some non-catalytic functions in the brain which are far less well characterised. AChE was shown to be secreted or shed from the neuronal cell surface like several other membrane proteins, such as the amyloid precursor protein (APP). Since AChE does not possess a transmembrane domain, its anchorage in the membrane is established via the Proline Rich Membrane Anchor (PRiMA), a transmembrane protein. Both the subunit oligomerisation and membrane anchor of AChE are shared by a related enzyme, butyrylcholinesterase (BChE), the physiological function of which in the brain is unclear. In this work, we have assayed the relative activities of AChE and BChE in membrane fractions and culture medium of three different neuronal cell lines, namely the neuroblastoma cell lines SH-SY5Y and NB7 and the mouse basal forebrain cell line SN56. In an effort to understand the shedding process of AChE, we have used several pharmacological treatments, which showed that it is likely to be mediated in part by an EDTA- and batimastat-sensitive, but GM6001-insensitive metalloprotease, with the possible additional involvement of a thiol isomerase. Cellular release of AChE by SH-SY5Y is significantly enhanced by the muscarinic acetylcholine receptor (mAChR) agonists carbachol or muscarine, with the effect of carbachol blocked by the mAChR antagonist atropine. AChE has been implicated in the pathogenesis of Alzheimer's disease and it has been shown that it accelerates formation and increases toxicity of amyloid fibrils, which have been closely linked to the pathology of AD. In light of this, greater understanding of AChE and BChE physiology may also benefit AD research.
Collapse
|
52
|
Nalivaeva NN, Belyaev ND, Zhuravin IA, Turner AJ. The Alzheimer's amyloid-degrading peptidase, neprilysin: can we control it? Int J Alzheimers Dis 2012; 2012:383796. [PMID: 22900228 PMCID: PMC3412116 DOI: 10.1155/2012/383796] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 06/01/2012] [Indexed: 02/07/2023] Open
Abstract
The amyloid cascade hypothesis of Alzheimer's disease (AD) postulates that accumulation in the brain of amyloid β-peptide (Aβ) is the primary trigger for neuronal loss specific to this pathology. In healthy brain, Aβ levels are regulated by a dynamic equilibrium between Aβ release from the amyloid precursor protein (APP) and its removal by perivascular drainage or by amyloid-degrading enzymes (ADEs). During the last decade, the ADE family was fast growing, and currently it embraces more than 20 members. There are solid data supporting involvement of each of them in Aβ clearance but a zinc metallopeptidase neprilysin (NEP) is considered as a major ADE. NEP plays an important role in brain function due to its role in terminating neuropeptide signalling and its decrease during ageing or after such pathologies as hypoxia or ischemia contribute significantly to the development of AD pathology. The recently discovered mechanism of epigenetic regulation of NEP by the APP intracellular domain (AICD) opens new avenues for its therapeutic manipulation and raises hope for developing preventive strategies in AD. However, consideration needs to be given to the diverse physiological roles of NEP. This paper critically evaluates general biochemical and physiological functions of NEP and their therapeutic relevance.
Collapse
Affiliation(s)
- N. N. Nalivaeva
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, RAS, 44 Thorez Avenue, Saint Petersburg 194223, Russia
| | - N. D. Belyaev
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - I. A. Zhuravin
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, RAS, 44 Thorez Avenue, Saint Petersburg 194223, Russia
| | - A. J. Turner
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
53
|
Pimentel-Coelho PM, Rivest S. The early contribution of cerebrovascular factors to the pathogenesis of Alzheimer’s disease. Eur J Neurosci 2012; 35:1917-37. [DOI: 10.1111/j.1460-9568.2012.08126.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
54
|
Kaushal N, Ramesh V, Gozal D. Human apolipoprotein E4 targeted replacement in mice reveals increased susceptibility to sleep disruption and intermittent hypoxia. Am J Physiol Regul Integr Comp Physiol 2012; 303:R19-29. [PMID: 22573105 DOI: 10.1152/ajpregu.00025.2012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intermittent hypoxia (IH) and sleep fragmentation (SF) are major manifestations of sleep apnea, a frequent condition in aging humans. Sleep perturbations are frequent in Alzheimer's disease (AD) and may underlie the progression of disease. We hypothesized that acute short-term IH, SF, and their combination (IH+SF) may reveal unique susceptibility in sleep integrity in a murine model of AD. The effects of acute IH, SF, and IH+SF on sleep architecture, delta power, sleep latency, and core body temperature were assessed in adult male human ApoE4-targeted replacement mice (hApoE4) and wild-type (WT) controls. Slow wave sleep (SWS) was significantly reduced, and rapid eye movement (REM) sleep was almost abolished during acute exposure to IH alone and IH+SF for 6 h in hApoE4, with milder effects in WT controls. Decreased delta power during SWS did not show postexposure rebound in hApoE4 unlike WT controls. IH and IH+SF induced hypothermia, which was more prominent in hApoE4 than WT controls. Mice subjected to SF also showed sleep deficits but without hypothermia. hApoE4 mice, unlike WT controls, exhibited increased sleep propensity, especially following IH and IH+SF, suggesting limited ability for sleep recovery in hApoE4 mice. These findings substantiate the potential impact of IH and SF in modulating sleep architecture and sleep homeostasis including maintenance of body temperature. Furthermore, the increased susceptibility and limited recovery ability of hApoE4 mice to sleep apnea suggests that early recognition and treatment of the latter in AD patients may restrict the progression and clinical manifestations of this frequent neurodegenerative disorder.
Collapse
Affiliation(s)
- Navita Kaushal
- Department of Pediatrics, Section of Pediatric Sleep Medicine, The University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
55
|
Nalivaeva NN, Beckett C, Belyaev ND, Turner AJ. Are amyloid-degrading enzymes viable therapeutic targets in Alzheimer's disease? J Neurochem 2011; 120 Suppl 1:167-185. [PMID: 22122230 DOI: 10.1111/j.1471-4159.2011.07510.x] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
: The amyloid cascade hypothesis of Alzheimer's disease envisages that the initial elevation of amyloid β-peptide (Aβ) levels, especially of Aβ(1-42) , is the primary trigger for the neuronal cell death specific to onset of Alzheimer's disease. There is now substantial evidence that brain amyloid levels are manipulable because of a dynamic equilibrium between their synthesis from the amyloid precursor protein and their removal by amyloid-degrading enzymes (ADEs) providing a potential therapeutic strategy. Since the initial reports over a decade ago that two zinc metallopeptidases, insulin-degrading enzyme and neprilysin (NEP), contributed to amyloid degradation in the brain, there is now an embarras de richesses in relation to this category of enzymes, which currently number almost 20. These now include serine and cysteine proteinases, as well as numerous zinc peptidases. The experimental validation for each of these enzymes, and which to target, varies enormously but up-regulation of several of them individually in mouse models of Alzheimer's disease has proved effective in amyloid and plaque clearance, as well as cognitive enhancement. The relative status of each of these enzymes will be critically evaluated. NEP and its homologues, as well as insulin-degrading enzyme, remain as principal ADEs and recently discovered mechanisms of epigenetic regulation of NEP expression potentially open new avenues in manipulation of AD-related genes, including ADEs.
Collapse
Affiliation(s)
- Natalia N Nalivaeva
- Institute of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.,Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, St. Petersburg, Russia
| | - Caroline Beckett
- Institute of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Nikolai D Belyaev
- Institute of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Anthony J Turner
- Institute of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
56
|
Nuclear signalling by membrane protein intracellular domains: the AICD enigma. Cell Signal 2011; 24:402-409. [PMID: 22024280 DOI: 10.1016/j.cellsig.2011.10.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 10/10/2011] [Indexed: 01/13/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative illness and the leading cause of dementia in the elderly. The accumulation of amyloid-β peptide (Aβ) is a well-known pathological hallmark associated with the disease. However, Aβ is only one of several metabolites produced by β- and γ-secretase actions on the transmembrane protein, the amyloid precursor protein (APP). A proteolytic fragment termed the APP intracellular domain (AICD) is also produced. By analogy with the Notch signalling pathway, AICD has been proposed as a transcriptional regulator although its mechanism of action and the complement of genes regulated remain controversial. This review will focus on the contributions that studies of APP processing have brought to the understanding of a novel nuclear signalling pathway that may contribute to the pathology of AD and may provide new therapeutic opportunities.
Collapse
|
57
|
Nalivaeva NN, Belyaev ND, Lewis DI, Pickles AR, Makova NZ, Bagrova DI, Dubrovskaya NM, Plesneva SA, Zhuravin IA, Turner AJ. Effect of sodium valproate administration on brain neprilysin expression and memory in rats. J Mol Neurosci 2011; 46:569-77. [PMID: 21932040 DOI: 10.1007/s12031-011-9644-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 08/26/2011] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) is accompanied by memory loss due to neuronal cell death caused by toxic amyloid β-peptide (Aβ) aggregates. In the healthy brain, a group of amyloid-degrading enzymes including neprilysin (NEP) maintain Aβ levels at physiologically low concentrations but, with age and under some pathological conditions, expression and activity of these enzymes decline predisposing to late-onset AD. Hence, up-regulation of NEP might be a viable strategy for prevention of Aβ accumulation and development of the disease. As we have recently shown, inhibitors of histone deacetylases, in particular, valproic acid (VA), were capable of up-regulating NEP expression and activity in human neuroblastoma SH-SY5Y cell lines characterised by very low levels of NEP. In the present study, analysing the effect of i.p. injections of VA to rats, we have observed up-regulation of expression and activity of NEP in rat brain structures, in particular, in the hippocampus. This effect was brain region- and age-specific. Administration of VA has also restored NEP activity and memory deficit in adult rats caused by prenatal hypoxia. This suggests that VA and more specific HDAC inhibitors can be considered as potential pharmaceutical agents for up-regulation of NEP activity and improvement of cognitive functions of ageing brain.
Collapse
Affiliation(s)
- Natalia N Nalivaeva
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Zhuravin IA, Dubrovskaya NM, Vasilev DS, Tumanova NL, Nalivaeva NN. Epigenetic and pharmacological regulation of the amyloid-degrading enzyme neprilysin results in modulation of cognitive functions in mammals. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2011; 438:145-148. [PMID: 21728123 DOI: 10.1134/s001249661103015x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 03/24/2011] [Indexed: 05/31/2023]
Affiliation(s)
- I A Zhuravin
- Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, St. Petersburg, 194223, Russia,
| | | | | | | | | |
Collapse
|
59
|
|
60
|
Abstract
Central and peripheral neurons as well as neuroendocrine cells express a variety of neurotransmitters/modulators that play critical roles in regulation of physiological systems. The synthesis of several neurotransmitters/modulators is regulated by O(2)-requiring rate-limiting enzymes. Consequently, hypoxia resulting from perturbations in O(2) homeostasis can affect neuronal functions by altering neurotransmitter synthesis. Two broad categories of hypoxia are frequently encountered: continuous hypoxia (CH) and intermittent hypoxia (IH). CH is often seen during high altitude sojourns, whereas IH is experienced in sleep-disordered breathing with recurrent apneas (i.e., brief, repetitive cessations of breathing). This article presents what is currently known on the effects of both forms of hypoxia on neurotransmitter levels and neurotransmitter synthesizing enzymes in the central and peripheral nervous systems.
Collapse
Affiliation(s)
- Ganesh K Kumar
- Institute for Integrative Physiology and Center for Systems Biology of O(2) Sensing, Biological Sciences Division, University of Chicago, Illinois, USA.
| |
Collapse
|
61
|
Changes in the Activity of Amyloid-Degrading Metallopeptidases Leads to Disruption of Memory in Rats. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s11055-010-9355-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
62
|
Li QY, Wang HM, Wang ZQ, Ma JF, Ding JQ, Chen SD. Salidroside attenuates hypoxia-induced abnormal processing of amyloid precursor protein by decreasing BACE1 expression in SH-SY5Y cells. Neurosci Lett 2010; 481:154-8. [PMID: 20599477 DOI: 10.1016/j.neulet.2010.06.076] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 06/03/2010] [Accepted: 06/28/2010] [Indexed: 11/26/2022]
Abstract
Hypoxia which is mainly mediated by hypoxia-inducible factor 1 (HIF-1), can greatly contribute to the occurrence of Alzheimer's disease (AD) by increasing beta-site APP cleaving enzyme (BACE1) gene expression, protein level and beta-secretase activity, resulting in a significant generation of amyloid-beta (Abeta). Salidroside has been reported to have great neuroprotective effects. The aim of this study was to investigate the effects of salidroside on hypoxia-induced abnormal processing of the amyloid precursor protein (APP) in SH-SY5Y cells and its possible mechanism. Western blot analysis showed that 200muM of salidroside pretreatment significantly decreased BACE1 protein level and promoted the secretion of sAPPalpha in hypoxic condition. Salidroside had no effect on the level of APP, ADAM10 and ADAM17. ELISA analysis revealed that salidroside was able to inhibit the increase of beta-secretase activity and Abeta generation induced by hypoxia, with no effect on gamma-secretase activity. Notably, under hypoxia condition, mRNA of BACE1 and protein level of HIF-1alpha were decreased by salidroside pretreatment. These results demonstrated for the first time that salidroside was able to attenuate abnormal processing of amyloid precursor protein induced by hypoxia in SH-SY5Y cells, providing a new insight into prevention and treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Qing-Yun Li
- Lab of Neurodegenerative Diseases and Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences(SIBS), Chinese Academy of Sciences(CAS), and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | | | | | | | | | | |
Collapse
|
63
|
Pluta R, Ułamek M, Jabłoński M. Alzheimer's mechanisms in ischemic brain degeneration. Anat Rec (Hoboken) 2010; 292:1863-81. [PMID: 19943340 DOI: 10.1002/ar.21018] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
There is increasing evidence for influence of Alzheimer's proteins and neuropathology on ischemic brain injury. This review investigates the relationships between beta-amyloid peptide, apolipoproteins, presenilins, tau protein, alpha-synuclein, inflammation factors, and neuronal survival/death decisions in brain following ischemic episode. The interactions of these molecules and influence on beta-amyloid peptide synthesis and contribution to ischemic brain degeneration and finally to dementia are reviewed. Generation and deposition of beta-amyloid peptide and tau protein pathology are important key players involved in mechanisms in ischemic neurodegeneration as well as in Alzheimer's disease. Current evidence suggests that inflammatory process represents next component, which significantly contribute to degeneration progression. Although inflammation was initially thought to arise secondary to ischemic neurodegeneration, recent studies present that inflammatory mediators may stimulate amyloid precursor protein metabolism by upregulation of beta-secretase and therefore are able to establish a vicious cycle. Functional brain recovery after ischemic lesion was delayed and incomplete by an injury-related increase in the amount of the neurotoxic C-terminal of amyloid precursor protein and beta-amyloid peptide. Moreover, ischemic neurodegeneration is strongly accelerated with aging, too. New therapeutic alternatives targeting these proteins and repairing related neuronal changes are under development for the treatment of ischemic brain consequences including memory loss prevention.
Collapse
Affiliation(s)
- Ryszard Pluta
- Laboratory of Ischemic and Neurodegenerative Brain Research, Department of Neurodegenerative Disorders, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawinskiego 5 Str., Warsaw, Poland.
| | | | | |
Collapse
|
64
|
Zhang X, Le W. Pathological role of hypoxia in Alzheimer's disease. Exp Neurol 2009; 223:299-303. [PMID: 19679125 DOI: 10.1016/j.expneurol.2009.07.033] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2009] [Revised: 06/23/2009] [Accepted: 07/24/2009] [Indexed: 11/16/2022]
Abstract
The majority cases of Alzheimer's disease (AD) are sporadic late-onset form not being linked to APP and PS1 gene mutations. It is believed that the environmental risk factors play an important role in the onset and development of AD. Patients suffering from cerebral ischemia and stroke in which hypoxic conditions occur are much more susceptible to AD. Increasing evidence suggests that hypoxia facilitates the pathogenesis of AD through accelerating the accumulation of Abeta, increasing the hyperphosphorylation of tau, impairing the normal functions of blood-brain barrier, and promoting the degeneration of neurons. Further investigations into the relationship between hypoxia and AD may open the avenue for effective preservation and pharmacological treatments of this neurodegenerative disease.
Collapse
Affiliation(s)
- Xin Zhang
- Institute of Neurology, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | | |
Collapse
|
65
|
Hiltunen M, Mäkinen P, Peräniemi S, Sivenius J, van Groen T, Soininen H, Jolkkonen J. Focal cerebral ischemia in rats alters APP processing and expression of Abeta peptide degrading enzymes in the thalamus. Neurobiol Dis 2009; 35:103-13. [PMID: 19426802 DOI: 10.1016/j.nbd.2009.04.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 04/21/2009] [Accepted: 04/27/2009] [Indexed: 11/30/2022] Open
Abstract
We have previously demonstrated aggregation of amyloid precursor protein (APP) and beta-amyloid (Abeta) to dense plaque-like deposits in the thalamus of rats subjected to transient middle cerebral artery occlusion (MCAO). Here, we investigated the underlying molecular effects of MCAO on APP processing and expression profiles of Abeta degrading enzymes in the cortex adjacent to the infarct (penumbra) and ipsilateral thalamus 2, 7 and 30 days after ischemic insult. Enhanced beta-amyloidogenic processing of APP and altered insulin degrading enzyme and neprilysin expression were observed in the thalamus, but not the penumbral cortex, 7 and 30 days after MCAO coinciding with increased calcium levels and beta-secretase (BACE) activity. Consecutively, increased BACE activity associated with depletion of BACE trafficking protein GGA3, suggesting a post-translational stabilization of BACE. These results demonstrate that focal cerebral ischemia leads to complex pathogenic events in the thalamus long after the initial insult.
Collapse
Affiliation(s)
- Mikko Hiltunen
- Department of Neurology, University of Kuopio and Kuopio University Hospital, Kuopio, Finland.
| | | | | | | | | | | | | |
Collapse
|
66
|
Fisk L, Nalivaeva NN, Boyle JP, Peers CS, Turner AJ. Effects of hypoxia and oxidative stress on expression of neprilysin in human neuroblastoma cells and rat cortical neurones and astrocytes. Neurochem Res 2007; 32:1741-8. [PMID: 17486446 DOI: 10.1007/s11064-007-9349-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Accepted: 04/03/2007] [Indexed: 11/24/2022]
Abstract
Pathogenesis of Alzheimer's disease (AD), which is characterised by accumulation of extracellular deposits of beta-amyloid peptide (Abeta) in the brain, has recently been linked to vascular disorders such as ischemia and stroke. Abeta is constantly produced in the brain from amyloid precursor protein (APP) through its cleavage by beta- and gamma-secretases and certain Abeta species are toxic for neurones. The brain has an endogenous mechanism of Abeta removal via proteolytic degradation and the zinc metalloproteinase neprilysin (NEP) is a critical regulator of Abeta concentration. Down-regulation of NEP could predispose to AD. By comparing the effects of hypoxia and oxidative stress on expression and activity of the Abeta-degrading enzyme NEP in human neuroblastoma NB7 cells and rat primary cortical neurones we have demonstrated that hypoxia reduced NEP expression at the protein and mRNA levels as well as its activity. On contrary in astrocytes hypoxia increased NEP mRNA expression.
Collapse
Affiliation(s)
- Lilia Fisk
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Mount Preston Street, Leeds, LS2 9JT, UK
| | | | | | | | | |
Collapse
|
67
|
Clifford PM, Zarrabi S, Siu G, Kinsler KJ, Kosciuk MC, Venkataraman V, D'Andrea MR, Dinsmore S, Nagele RG. Abeta peptides can enter the brain through a defective blood-brain barrier and bind selectively to neurons. Brain Res 2007; 1142:223-36. [PMID: 17306234 DOI: 10.1016/j.brainres.2007.01.070] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 01/11/2007] [Accepted: 01/11/2007] [Indexed: 11/28/2022]
Abstract
We have investigated the possibility that soluble, blood-borne amyloid beta (Abeta) peptides can cross a defective blood-brain barrier (BBB) and interact with neurons in the brain. Immunohistochemical analyses revealed extravasated plasma components, including Abeta42 in 19 of 21 AD brains, but in only 3 of 13 age-matched control brains, suggesting that a defective BBB is common in AD. To more directly test whether blood-borne Abeta peptides can cross a defective BBB, we tracked the fate of fluorescein isothiocyanate (FITC)-labeled Abeta42 and Abeta40 introduced via tail vein injection into mice with a BBB rendered permeable by treatment with pertussis toxin. Both Abeta40 and Abeta42 readily crossed the permeabilized BBB and bound selectively to certain neuronal subtypes, but not glial cells. By 48 h post-injection, Abeta42-positive neurons were widespread in the brain. In the cerebral cortex, small fluorescent, Abeta42-positive granules were found in the perinuclear cytoplasm of pyramidal neurons, suggesting that these cells can internalize exogenous Abeta42. An intact BBB (saline-injected controls) blocked entry of blood-borne Abeta peptides into the brain. The neuronal subtype selectivity of Abeta42 and Abeta40 was most evident in mouse brains subjected to direct intracranial stereotaxic injection into the hippocampal region, thereby bypassing the BBB. Abeta40 was found to preferentially bind to a distinct subset of neurons positioned at the inner face of the dentate gyrus, whereas Abeta42 bound selectively to the population of large neurons in the hilus region of the dentate gyrus. Our results suggest that the blood may serve as a major, chronic source of soluble, exogenous Abeta peptides that can bind selectively to certain subtypes of neurons and accumulate within these cells.
Collapse
Affiliation(s)
- Peter M Clifford
- New Jersey Institute for Successful Aging, University of Medicine and Dentistry of New Jersey/SOM, 2 Medical Center Drive, Stratford, NJ 08084, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Turner AJ, Nalivaeva NN. New insights into the roles of metalloproteinases in neurodegeneration and neuroprotection. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2007; 82:113-35. [PMID: 17678958 PMCID: PMC7112344 DOI: 10.1016/s0074-7742(07)82006-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteolytic enzymes constitute around 2% of the human genome and are involved in many stages of cell development from fertilization to death (apoptosis). The identification of many novel proteases from genome-sequencing programs has suggested them as potential new therapeutic targets. In addition, several well-characterized metallopeptidases were recently shown to possess new biological roles in neuroinflammation and neurodegeneration. As a result of these studies, metabolism of the neurotoxic and inflammatory amyloid peptide (Abeta) is considered as a physiologically relevant process with several metallopeptidases being suggested for the role of amyloid-degrading enzymes. These include the neprilysin (NEP) family of metalloproteinases (including its homologue endothelin-converting enzyme), insulin-degrading enzyme, angiotensin-converting enzyme, plasmin, and, possibly, some other enzymes. NEP also has a role in metabolism of sensory and inflammatory neuropeptides such as tachykinins and neurokinins. The existence of natural enzymatic mechanisms for removal of amyloid peptides has extended the therapeutic avenues in Alzheimer's disease (AD) and neurodegeneration. The proteolytic events underlying AD are highly compartmentalized in the cell and formation of amyloid peptide from its precursor molecule APP (amyloid precursor protein) takes place both within intracellular compartments and in the plasma membrane, especially in lipid raft domains. Degradation of amyloid peptide by metallopeptidases can also be both intra- and extracellular depending on the activity of membrane-bound enzymes and their soluble partners. Soluble forms of proteases can be secreted or released from the cell surface through the activity of "sheddases"-another group of proteolytic enzymes involved in key cellular regulatory functions. The activity of proteases involved in amyloid metabolism depends on numerous factors (e.g., genetic, environmental, age), and some conditions (e.g., hypoxia and ischemia) shift the balance of amyloid metabolism toward accumulation of higher concentrations of Abeta. In this regard, regulation of the activity of amyloid-degrading enzymes should be considered as a viable strategy in neuroprotection.
Collapse
Affiliation(s)
- A J Turner
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds Leeds LS2 9JT, United Kingdom
| | | |
Collapse
|
69
|
Goto Y, Niidome T, Akaike A, Kihara T, Sugimoto H. Amyloid beta-peptide preconditioning reduces glutamate-induced neurotoxicity by promoting endocytosis of NMDA receptor. Biochem Biophys Res Commun 2006; 351:259-65. [PMID: 17054909 DOI: 10.1016/j.bbrc.2006.10.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Accepted: 10/09/2006] [Indexed: 12/30/2022]
Abstract
Amyloid beta-peptide (Abeta) and glutamate are generally believed to be closely related to the pathogenesis of Alzheimer's disease and cerebrovascular disease, respectively. Recent advances suggest that risk factors linked to cerebrovascular disease significantly increase the risk of developing Alzheimer's disease. In this study, we examined the effects of pretreatment of cultured hippocampal neurons with Abeta(1-42) (0.3, 0.5, and 1.0microM) for 3h (Abeta preconditioning) on glutamate-induced neurotoxicity. Abeta preconditioning significantly reduced both glutamate-induced neurotoxicity and the glutamate-induced increase in intracellular Ca(2+) concentration ([Ca(2+)](i)). Abeta preconditioning significantly reduced cell surface expression of N-methyl-d-aspartate (NMDA) glutamate receptor subunit protein NR1, although it exerted no significant effect on the total expression of NR1. These results suggest that Abeta preconditioning reduced glutamate-induced neurotoxicity by promoting endocytosis of NMDA receptor, followed by inhibition of the increase in [Ca(2+)](i). Our results support the notion of an association between Alzheimer's disease and cerebrovascular disease, and suggest a new mechanism for neuroprotection by promoting endocytosis of NMDA receptor.
Collapse
Affiliation(s)
- Yasuaki Goto
- Department of Neuroscience for Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida-Shimodachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | |
Collapse
|
70
|
Peters DG, Ning W, Chu TJ, Li CJ, Choi AMK. Comparative SAGE analysis of the response to hypoxia in human pulmonary and aortic endothelial cells. Physiol Genomics 2006; 26:99-108. [PMID: 16595741 DOI: 10.1152/physiolgenomics.00152.2005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We utilized serial analysis of gene expression (SAGE) to analyze the temporal response of human pulmonary artery endothelial cells (HPAECs) to short-term chronic hypoxia at the level of transcription. Primary cultures of HPAECs were exposed to 1% O2hypoxia for 8 and 24 h and compared with identical same-passage cells cultured under standard (5% CO2-95% air) conditions. Hierarchical clustering of significant hypoxia-responsive genes identified temporal changes in the expressions of a number of well-described gene families including those encoding proteins involved in thrombosis, stress response, apoptosis, angiogenesis, and cell proliferation. These experiments build on previously published data describing the transcriptomic response of human aortic endothelial cells (HAECs) obtained from the same donor and cultured under identical conditions, and we have thus taken advantage of the immortality of SAGE data to make direct comparisons between these two data sets. This approach revealed comprehensive information relating to the similarities and differences at the level of mRNA expression between HAECs and HPAECs. For example, we found differences in the cell type-specific response to hypoxia among genes encoding cytoskeletal factors, including paxillin, and proteins involved in metabolic energy production, the response to oxidative stress, and vasoreactivity (e.g., endothelin-1). These efforts contribute to the expanding collection of publicly available SAGE data and provide a foundation on which to base further efforts to understand the characteristics of the vascular response to hypoxia in the pulmonary circulation relative to systemic vasculature.
Collapse
Affiliation(s)
- D G Peters
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, USA.
| | | | | | | | | |
Collapse
|
71
|
Esh C, Patton L, Kalback W, Kokjohn TA, Lopez J, Brune D, Newell AJ, Beach T, Schenk D, Games D, Paul S, Bales K, Ghetti B, Castaño EM, Roher AE. Altered APP Processing in PDAPP (Val717 → Phe) Transgenic Mice Yields Extended-Length Aβ Peptides†. Biochemistry 2005; 44:13807-19. [PMID: 16229470 DOI: 10.1021/bi051213+] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Central to the pathology of Alzheimer's disease (AD) is the profuse accumulation of amyloid-beta (Abeta) peptides in the brain of affected individuals, and several amyloid precursor protein (APP) transgenic (Tg) mice models have been created to mimic Abeta deposition. Among these, the PDAPP Tg mice carrying the familial AD APP 717 Val --> Phe mutation have been widely used to test potential AD therapeutic interventions including active and passive anti-Abeta immunizations. The structure and biochemistry of the PDAPP Tg mice Abeta-related peptides were investigated using acid and detergent lysis of brain tissue, ultracentrifugation, FPLC, HPLC, enzymatic and chemical cleavage of peptides, Western blot, immunoprecipitation, and MALDI-TOF and SELDI-TOF mass spectrometry. Our experiments reveal that PDAPP mice produce a variety of C-terminally elongated Abeta peptides in addition to Abeta n-40 and Abeta n-42, as well as N-terminally truncated peptides, suggesting anomalous proteolysis of both APP and Abeta. Important alterations in the overall APP degradation also occur in this model, resulting in a striking comparative lack of CT83 and CT99 fragments, which may be inherent to the strain of mice, a generalized gamma-secretase failure, or the ultimate manifestation of the overwhelming amount of expressed human transgene; these alterations are not observed in other strains of APP Tg mice or in sporadic AD. Understanding at the molecular level the nature of these important animal models will permit a better understanding of therapeutic interventions directed to prevent, delay, or reverse the ravages of sporadic AD.
Collapse
Affiliation(s)
- Chera Esh
- The Longtine Center for Molecular Biology and Genetics, Sun Health Research Institute, Sun City, Arizona 85351, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Abrams B. Add Alzheimer's to the list of sleep apnea consequences. Med Hypotheses 2005; 65:1201-2. [PMID: 16085367 DOI: 10.1016/j.mehy.2005.06.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 06/21/2005] [Indexed: 11/30/2022]
|